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ABSTRACT

We propose a biquaternion formalism to model diffusion ten-
sor magnetic resonance imaging (DT-MRI) data. Unlike pre-
vious methods that use dimensionality reduction, we are able
to process the full tensor in a holistic manner while respecting
the underlying manifold of the data. Using this approach, we
introduce the Fourier transform and convolution for DT-MRI
for the first time, which can be applied directly on the full
tensor. This opens up a wide range of applications for DT-
MRI image processing. Further, based on this formulation,
we present a biquaternion gradient vector and edge detector
for DT images. Preliminary results of applying the Fourier
transform, convolution and edge detector on synthetic exam-
ples as well as real DT data show great promise in our ap-
proach for DT image processing.

Index Terms— diffusion tensor MRI, biquaternions

1. INTRODUCTION

DT-MRI is a powerful non-invasive imaging modality whose
processing, analysis and visualization has become a strong
focus in medical imaging research [1]. In this modality, the
direction of the water diffusion is locally modeled by a Gaus-
sian probability density function whose covariance matrix is
a second order 3 × 3 symmetric positive definite matrix [2].
The manifold-valued nature of the data as well as its high
dimensionality makes the computational analysis of DT-MRI
complex. Very often, the data dimensionality is reduced
to a single scalar derived from the tensors, e.g. fractional
anisotropy (FA) [3]. Another common approach has been to
ignore the restriction to the manifold of symmetric second-
order tensors and, instead, treat the data as a multi-valued
image [4].

Quaternion representation has been proven useful for
processing color images [5, 6]. Taking inspiration from
that work, we propose a biquaternion (complexified quater-
nion) representation to model DT data. The basic idea is
to represent the DT at each pixel by a biquaternion via the
log-Euclidean transform [7]. The key innovation here is that
we can now consider the DT as a whole in a holistic manner
rather than as separate scalar channels or as a single scalar

derived from the tensors. With this representation, we handle
the coupling between the channels naturally while respecting
the manifold of the symmetric second order tensors. Fur-
ther, this approach for the first time, enables us to introduce
tools from biquaternion theory such as Fourier transform and
convolution for processing DT images. We also present a
biquaternion gradient vector and edge detector for DT im-
ages that further demonstrate the applicability of this novel
representation. Our approach opens new ways for carrying
out DT image processing tasks including frequency filter-
ing, convolution, compression, and interpolation. We present
preliminary results of applying the Fourier transform on var-
ious synthetic and real DT images, which give the desired
and expected results. We further demonstrate the applica-
tion of our method to frequency filtering and compression.
Finally, we show how our representation enables DT-MRI
edge detection with favorable results over FA-derived edges.
Our results demonstrate the potential of our approach for DT
image processing.

2. METHODS

2.1. Brief review of biquaternions

We begin by reviewing biquaternions and some of their ba-
sic properties. Let us denote the set of complex numbers by
C and the set of biquaternions by Hc (the set of Hamilton’s
quaternions are denoted by H). Biquaternions are an 8-D
algebra consisting of Hamiltonian quaternions with complex
components and can be represented as q = a+ bi+ cj + dk,
where q ∈ Hc, a, b, c, d ∈ C, and i, j, k are the quaternion
imaginary units. We have the following set of standard re-
lations between i, j, k: i2 = j2 = k2 = ijk = −1; ij =
−ji = k; ki = −ik = j; jk = −kj = i. Hence, just like
quaternions, biquaternion multiplication is non-commutative.

Let the elements of C be represented as z = <(z) +
I=(z), where I =

√
−1 is the complex imaginary unit

and <(z),=(z) ∈ R. i, j, k and I are related as iI =
Ii; jI = Ij; kI = Ik. This basically means that any complex
co-efficient commutes with any quaternion imaginary unit.
Thus biquaternions form an 8-D vector space with the basis
{1, i, j, k, I, iI, jI, kI} over R.



Any biquaternion can be seen as the sum of a scalar and
a vector part as q = S(q) + V (q), where S(q) = a and
V (q) = bi + cj + dk. A biquaternion with zero scalar part
(S(q) = 0) is called a pure biquaternion. The total conjugate
of a biquaternion is defined as q̄ = a∗ − b∗i − c∗j − d∗k,
where a∗, b∗, c∗, and d∗ are the complex conjugates of a, b, c,
and d, respectively. Lastly, the norms of a biquaternion q and
a biquaternion vector q ∈ HNc (a vector whose components
are biquaternions) are given by

|q| =
√
S(q̄q); ||q|| =

√
S(

∑N
n=1q̄nqn), (1)

where S(·) is the scalar part and qn is the nth component of
q. It is to be noted that biquaternions do not form a normed
division algebra and hence the norm of a biquaternion is not
multiplicative. i.e. |qr| 6= |q||r|.

2.2. Biquaternion representation for DT

DTs do not form a vector space. In particular, the space of
symmetric second order positive definite tensors SPD(3) is
restricted to a convex half cone. Hence before we proceed
to represent a DT by a biquaternion, we need to ensure that
we respect the manifold of the DTs. For this, we employ the
log-Euclidean (LE) transformation proposed in [7] to map the
space of DTs into a vector space. Let D(x) denote a DT
image indexed by x (i.e. x = [x1 x2] in 2D and x =
[x1 x2 x3] in 3D). Then the LE transformation gives L(x) =
logm(D(x)), where L(x) is the LE tensor and logm(·) is the
matrix logarithm. L spans a vector space of symmetric matri-
ces also known as the log-Euclidean space [7]. Let the com-
ponents of L(x) be denoted by (L0, L1, L2, L3, L4, L5). The
log-Euclidean tensor L(x) is represented by a pure biquater-
nion (whose scalar part is zero) in the following way:

q(x) = (L0 + IL1)i+ (L2 + IL3)j+ (L4 + IL5)k. (2)

The result of this representation is that we have now moved
from the space of symmetric second order positive definite
tensors to the vector space of pure biquaternions, while re-
specting the manifold of the tensors1.

2.3. Fourier transform, convolution and gradient for DTs

We introduce the Fourier transform for DTs based on the bi-
quaternion Fourier transform [8]. Considering only a single
biquaternion exponential kernel, we can define left and right
Fourier transforms depending on the side by which the expo-
nential kernel is multiplied. The left 2D DT Fourier transform

1Even though there are multiple ways to encode the components of L into
q, any one choice will result in a specific representation that can be uniquely
decoded back to the log-Euclidean space and the advantages/analyses that we
present next still hold regardless of the choice made.

and its inverse are given by:

q̂L(f1, f2) =
1√
MN

M−1∑
x1=0

N−1∑
x2=0

e−µ2π( x1f1
M +

x2f2
N )q(x1, x2),

q(x1, x2) =
1√
MN

M−1∑
f1=0

N−1∑
f2=0

eµ2π( x1f1
M +

x2f2
N )q̂L(f1, f2),

(3)

where f1, f2 are the frequency variables, M and N are the
number of pixels along x1 and x2, and µ is a biquaternion root
of -1, also called the axis of the transform. The magnitude
spectrum of the Fourier transform is computed by taking the
norm of q̂L using (1).

Convolution for 2D DT images is given by

(q1∗q2)(x1, x2) =

M−1∑
xm=0

N−1∑
xn=0

q1(xm, xn)q2(x1−xm, x2−xn),

(4)

where q1 and q2 are biquaternions.
Finally, the gradient vector and edge detector for 2D DT

images using biquaternions is given by

g(x1, x2) = [∂q(x1, x2)/∂x1 ∂q(x1, x2)/∂x2]T ,
(5)

e(x1, x2) = ||g(x1, x2)||, (6)

where g is the biquaternion gradient vector and e is the edge
measure. Equations (3-6) can be easily extended to 3D.

3. RESULTS

We present some preliminary results of the proposed bi-
quaternion based DT image processing approach on synthetic
and real DT data. The real DT data consisted of 12 im-
ages of normal adult brains taken from the John Hopkins
LBAM database [9]. The Fourier transform axis was set to
µ = i + (1 + I)j + (1 − I)k. The quaternion toolbox [10]
was used for the MATLAB implementations of the Fourier
transform and convolution.

Figure 1 shows the magnitude spectra of various synthetic
images. Figures 1(a), 1(c), and 1(b) show tensors varying in
shape and orientation along different directions, which is also
reflected in their magnitude spectra. Figures 1(d) and 1(e)
show tensors varying at low and high frequencies along the
horizontal. We see that their magnitude spectra have high
response in the expected low frequency and high frequency
regions, respectively. Figure 1(f) shows a square synthetic
image and its frequency response, which is a sync function.
These results confirm the basic working of the Fourier trans-
form on DTs.



(a) Shape edge (b) Diag. variation (c) Orientation edge (d) Low freq. (e) High freq. (f) Square image

Fig. 1. Synthetic examples (top row) and their magnitude spectrum (bottom row). (a) and (b): DTs varying in shape along the
horizontal and diagonal. (c): DTs varying in orientation along the vertical. (d) and (e): DTs varying with different frequencies
along the horizontal. (f) DTs oriented horizontally inside the square and vertically elsewhere.

(a) Square image (b) All-stop (c) Low-pass (d) High-pass (e) Convolution (f) Edge (g) Noisy (h) Denoised

Fig. 2. Frequency filtering, convolution and edge detection on a square synthetic image (a). (b), (c) and (d) show all-stop,
low-pass and high-pass frequency filtered images, respectively. (e) shows the biquaternion norm of the image convolved with
itself. (f) shows edge strength using (6). (g) shows a noisy image of tensors oriented along the vertical and (h) shows the image
after denoising.

Figure 2 shows frequency filtering, convolution and edge
detection on the square synthetic image. Figure 2(b) shows
the all-stop filtered image which has isotropic tensors every-
where2. Figure 2(c) shows the low-pass filtered image, where
the edges are blurred. Figure 2(d) shows the high-pass fil-
tered image, where tensors are anisotropic along the edges
and isotropic elsewhere. Figure 2(e) shows the biquaternion
norm of the image convolved with itself (auto-convolution, or
auto-correlation given the symmetric image), where we see a
high response in the centre as expected. Figure 2(f) shows the
proposed edge computed using (6). Figures 2(g), 2(h) show a
noisy and denoised image after low pass filtering. These fig-
ures illustrate sample applications of the proposed tools and
show that they work as expected.

Figure 3 shows compression of a DT image slice of a cross
section of the Corpus Callosum (CC) obtained by truncating
a fraction of the low energy Fourier coefficients. Note that
even when 60% of the low energy Fourier coefficients are
truncated, the energy lost is minimal and the shape and ori-
entation characteristics of the DTs are largely retained.

Figure 4 illustrates the rotation property of the Fourier
transform on a sagittal slice of the CC. Figure 4(c) is a 90◦-
rotated version of figure 4(a). The corresponding frequency

2Zero biquaternion decodes to a unit isotropic tensor in the DT domain.

(a) 0% FT co-eff. truncated (b) 30% FT co-eff. truncated

(c) 60% FT co-eff. truncated (d) Energy lost vs percent FT coeff.
truncated

Fig. 3. DT image compression using Fourier transform. (a),
(b) and (c) show reconstructed coronal slices of a cross sec-
tion of the CC after a fraction of the low energy Fourier coeffi-
cients are truncated. (d) shows a plot of the energy lost for dif-
ferent levels of truncation. The energy lost was computed as
the sum of squared magnitudes of the truncated coefficients.



(a) Sagittal slice of CC (b) Mag. spec. (c) Slice rotated by 90◦ (d) Mag. spec. (e) Biquaternion edge (f) FA edge

Fig. 4. Rotation of the magnitude spectrum and edge detection. (a) and (c) show a sagittal slice of the CC and its 90◦-rotated
version respectively. (b) and (d) show their corresponding magnitude spectra. (e) and (f) show edge detection using the proposed
biquaternion gradient and FA gradient, respectively.

(a) DT image slice (b) Low pass filtering (c) High pass filtering

Fig. 5. Frequency filtering on real data. (a) lateral ventricle. (b) and (c): after low pass and high pass filtering, respectively.

spectrum is also rotated by 90◦, as seen from figures 4(b)
and 4(d). Figure 4(e) shows the biquaternion based edge
strength computed using (6). Edge computed from FA gradi-
ent is also shown for comparison in Figure 4(f). We see that
the biquaternion based edge captures more structure than the
FA based edge, demonstrating that the biquaternion gradient
captures greater amount of information than the FA gradient.

Finally, figure 5 shows frequency domain filtering of a
real DT slice containing the ventricle. We clearly see more
regularized tensors in figure 5(b) and the highlighted edge in
figure 5(c). These results show great potential for frequency
domain processing of DT images.

4. CONCLUSIONS

We proposed a biquaternion formalism to model DT-MRI
data. This approach enables us to process DT images in a
holistic manner. Further, we introduced biquaternion based
Fourier transform (3), convolution (4), gradient (5) and edge
detection (6) for DT images. Preliminary results show great
potential of our approach for various DT image processing
applications including denoising, compression, interpolation,
classification and registration.
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