
Melanoma Recognition via Visual Attention

Yiqi Yan[0000−0002−7612−2907], Jeremy Kawahara[0000−0002−6406−5300], and
Ghassan Hamarneh[0000−0001−5040−7448]

Medical Image Analysis Lab, Simon Fraser University, Burnaby, BC, Canada

Abstract. We propose an attention-based method for melanoma recog-
nition. The attention modules, which are learned together with other
network parameters, estimate attention maps that highlight image re-
gions of interest that are relevant to lesion classification. These attention
maps provide a more interpretable output as opposed to only outputting
a class label. Additionally, we propose to utilize prior information by
regularizing attention maps with regions of interest (ROIs) (e.g., lesion
segmentation or dermoscopic features). Whenever such prior information
is available, both the classification performance and the attention maps
can be further refined. To our knowledge, we are the first to introduce an
end-to-end trainable attention module with regularization for melanoma
recognition. We provide both quantitative and qualitative results on pub-
lic datasets to demonstrate the effectiveness of our method. The code is
available at https://github.com/SaoYan/IPMI2019-AttnMel.

1 Introduction

Melanoma is one of the deadliest skin cancers in the world. The American Cancer
Society reported that over 70% of skin cancer related deaths in the U.S. are
associated with melanoma [19]. Fortunately, early diagnosis can facilitate proper
treatment. However, accurate diagnosis of melanoma is non-trivial and requires
expert human knowledge. Many automatic algorithms were proposed to classify
melanoma from dermoscopy images. Particularly, deep learning based methods
have been used in top-performing approaches [7, 3].

Many deep learning methods turned to network or feature ensembles. Ha-
rangi et al. [8] trained an ensemble of AlexNet, VGGNet, and GoogLeNet, fus-
ing their final features for a shared softmax classification layer. Codella et al. [2]
trained an SVM using both deep convolutional features and sparse coding, which
they later extended to an ensemble of 8 different features [4]. Similarly, Yu et
al. [25, 26] aggregated deep network features and fisher vector encoding. Training
ensemble methods is time-consuming and is sensitive to how different models or
feature extractors are tuned.

Other works trained a segmentation network to guide the classification. Yu et
al. [24] designed a two-stage method. In the first step, a segmentation network
was trained, which was used to detect and crop the lesion from the entire image.
Then a classification network was trained using the cropped images. Yang et
al. and Chen et al. exploited the lesion segmentation in a parallel manner by
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applying a multi-task model that simultaneously tackled the problems of segmen-
tation and classification [23, 1]. When pixel-level annotations are not available,
the training of these models becomes infeasible.

Although deep learning methods are widely used for skin lesion analysis, only
a few efforts have been made to interpret which part of the image the model
“concentrates” on. Van Molle et al. [21] visualized CNN features by rescaling
the feature map to the input size and overlapping it with the input image. They
attempted to gain insights into which image regions contribute to the results.
They observed that the features seem to focus on specific characteristics, such as
skin color, lesion border, hair, and artifacts, but there were no specific conclusions
on how these features correlate with classification. A similar feature visualization
was performed by Kawahara et al. [12]. Wu et al. [22] sought image biomarkers
through prediction difference analysis. Specifically, a certain image region was
corrupted each time, and the importance of that region was represented by the
difference between the prediction scores based on the original and the corrupted
images. Prediction difference analysis is a post-processing method designed to
explain a fully trained network, while our model is trained end-to-end with
learnable attention maps.

In this paper, we leverage attention mechanisms for melanoma recognition.
A similar idea was presented by Ge et al. [6], who computed a class activation
map (CAM) [27] as a saliency map to assign spatial weights to bilinear pooling
features. CAM is a post-hoc analysis technique that requires extra computation
based on a fully trained classification network. Similar to the works of Jetley et
al. and Schlemper et al. [10, 18], we propose an end-to-end solution via a trainable
attention module. Our model extends the linear attention module proposed by
Jetley et al. to more complex non-linear computations. Additionally, we propose
to regularize the attention maps in order to train the model to focus on the
expected regions of interest (ROIs). Our model not only yields state-of-the-art
classification performance, but also produces attention maps indicating relevant
image regions for classification. Our contributions are as follows:

– We incorporate end-to-end trainable attention modules for melanoma recog-
nition. The attention maps automatically highlight image regions that are
relevant to classification, which produces additional interpretable informa-
tion as opposed to a mere class label. We perform a series of ablation studies
to examine the effectiveness of attention.

– We introduce a method to efficiently utilize prior information via regularizing
the attention maps with regions of interest (ROIs) (e.g., lesion segmentation,
dermoscopic features). With prior information, the learned attention maps
are refined and the classification performance is improved.

– The proposed regularization method can also be used to validate the effec-
tiveness of ROI priors. For example, we show that regularizing using image
background impedes the performance. This confirms that the model is prop-
erly deeming the background less relevant to classification compared to the
areas of skin lesion and dermoscopic features.
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Fig. 1: The overall network architecture. The backbone network is VGG-16 (the
yellow and red blocks) without any dense layers. Two attention modules (de-
scribed in Fig. 2) are applied (the gray blocks). The three feature vectors (green
blocks) are computed via global average pooling and are concatenated together
to form the final feature vector, which serves as the input to the classification
layer. The classification layer is not shown here.

2 Proposed Method

2.1 Network Architecture

The human vision system focuses on objects in its field-of-view that are relevant
to the task at hand. For example, when diagnosing skin cancer, dermatologists
may focus more on the lesion rather than irrelevant areas such as background or
hair. To imitate this visual exploration pattern, we use an attention module to
estimate a spatial (pixel-wise) attention map. The proposed network architecture
is illustrated in Fig. 1, with the attention modules shown as gray blocks. The
inner details of the attention module are shown in Fig. 2.

We adopt VGG-16 [20], with all dense layers removed, as the backbone net-
work of our model. We exploit intermediate feature maps (pool-3 and pool-4
in VGG-16) to infer attention maps. When computing the attention maps, the
output of pool-5 serves as a form of “global guidance” (denoted as G) because
the last-stage feature contains the most compressed and abstracted information
over the entire image. Let F =

(
f1,f2, . . . ,fn

)
denote the intermediate fea-

ture, where f i is the feature vector at the i-th spatial location. F and G are fed
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Fig. 2: Inner architecture of the attention module (i.e., the gray blocks in Fig. 1).
When the spatial size of global and intermediate features are different, feature
upsampling is done via bilinear interpolation. The sum operation is element-wise,
and the multiplication is “pixel-wise” following Eq. 3

through an attention module (Fig. 2), yielding a one-channel response R,

R = W ~ ReLU
(
W f ~F + up

(
W g ~ G

))
, (1)

where ~ represents a convolutional operation, W f and W g are convolutional
kernels with 256 filters, and the convolutional kernel W outputs a single channel.
up
(
·
)

is bilinear interpolation that aligns the spatial size.
The attention map A is then calculated as the normalization of R,

A = Sigmoid
(
R
)
. (2)

Each scalar element ai ∈ A represents the degree of attention to the corre-
sponding spatial feature vector in F . The feature map with attention (F̂) is
then computed by “pixel-wise” multiplication. That is, each feature vector f i is
multiplied by the attention element,

f̂ i = ai · f i. (3)

Now that we have the attention version of pool-3 and pool-4 features (F̂
(3)

,

F̂
(4)

), we obtain the final feature vector by concatenating the global average

pooling of F̂
(3)

, F̂
(4)

, and G (green blocks in Fig. 1). A softmax classification
layer is then formed based on this final feature. The whole network is trained
end-to-end.
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2.2 Regularization via Regions of Interest

Given binary maps of some specific ROIs, we incorporate these maps as prior
information to guide the attention maps. To this end, we introduce a regulariza-
tion term where these ROIs serve as a reference. Inspired by [11], we minimize
a negative Sørensen-Dice-F1 loss,

LD

(
A, Ā

)
= 1−D

(
A, Ā

)
= 1−

2 ·
∑n

i=1

(
ai · āi

)∑n
i=1

(
ai + āi

) , (4)

where Ā is a reference binary map of ROIs. We do not compute LD per image to
avoid division-by-zero when there exists Ā with no positive pixel labels. Instead,
we treat one batch of data as a high dimensional tensor and calculate LD using
these two tensors. The overall loss with regularization becomes

L = Lfocal + λ1LD

(
A(3), Ā(3))

+ λ2LD

(
A(4), Ā(4))

, (5)

where Lfocal is the focal loss [13], which is a modified cross-entropy loss de-

signed to deal with imbalanced training data; A(3), A(4) are the attention maps

corresponding to pool-3 and pool-4 with Ā(3)
, Ā(4)

being their reference maps
respectively. The original reference maps, which have the same size as the input
image, are downsampled to the size of pool-3 and pool-4 before computing the
loss. We fix λ1 = 0.001, λ2 = 0.01. λ2 has a larger value as the features in the
deeper layers should be more discriminative.

3 Experiments

3.1 Implementation Details

Data Preparation and Preprocessing Our experiments are performed on
ISIC 2016 [7] and ISIC 2017 [3]. ISIC 2016 contains two classes: benign and
malignant (melanoma). While in ISIC 2017 there are three classes: melanoma,
nevus, and seborrheic keratosis. Participants were tasked with two independent
binary classification tasks: melanoma vs others, and seborrheic keratosis vs oth-
ers. We focus on melanoma recognition, which is the harder task. For a fair
comparison, we use the exact same training, validation, and test sets as were
provided in the challenge. We preprocess the data by center-cropping the image
to a squared size with the length of each side equal to 0.8×min(Height,Width),
and then resizing to 256× 256.

Dealing with Imbalanced Data The ISIC dataset is highly imbalanced. For
example, there are 304 benign and 75 malignant samples in the training set of
ISIC 2016. Classifiers are prone to bias towards the more frequent label. We
perform data oversampling in our experiments. Besides, we use focal loss [13] as
the main classification loss term in Eq. 5, as it can automatically down-weight
easy samples in the training set.
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AP AUC Lesion Interp Ensemble

#1 Lequan et al. [24] 0.637 0.804 3 7 7

#2 Codella et al. [4] 0.596 0.808 7 7 3

#3 Yu et al. [25, 26] 0.685 0.852 7 7 3

#4 VGG-16 0.602 0.806 7 7 7

#5 VGG-16-GAP 0.635 0.815 7 3 7

#6 Mel-CNN 0.664 0.844 7 7 7

#7 AttnMel-CNN 0.693 0.852 7 3 7

Table 1: Quantitative results on ISIC 2016 test set. The first ranking in terms of
AP or AUC is highlighted in bold, and the second ranking is indicated in ital-
ics. The proposed method (AttnMel-CNN ) achieves state-of-the-art
without using an ensemble of models or ground truth segmentations.
Notations: AP : average precision; AUC : the area under the ROC curve; Le-
sion: requires lesion segmentation or not; Interp: interpretable or not; Ensemble:
ensemble method or not.

Network Training We implement our method using PyTorch [17]. The back-
bone network is initialized with VGG-16 pre-trained on ImageNet, and the at-
tention modules are initialized using He’s initialization [9]. The whole network is
trained end-to-end for 50 epochs using stochastic gradient descent with momen-
tum. The initial learning rate is 0.01 and is decayed by 0.1 every 10 epochs. We
apply run-time data augmentation (random cropping, rotation, and flipping) via
PyTorch transform modules.

Model Evaluation The performance is evaluated over the test set based on the
average precision (AP) and the area under the ROC curve (AUC)1, as they were
the official metrics used in the ISIC 2016 and 2017 challenge [7, 3], respectively.
We always pick the best epoch according to the area under the ROC curve
(AUC) on the validation set, and report the final result on the test set.

3.2 Ablation Study

First, we train our model without regularization, i.e., only Lfocal is used for
training. We denote this model as AttnMel-CNN. We compare AttnMel-CNN
with three baselines (VGG-16, VGG-16-GAP, Mel-CNN ) to verify the effec-
tiveness of attention. Then we add regularization using different ROIs, yielding
AttnMel-CNN-Lesion and AttnMel-CNN-Dermo. We also apply background (the
inverse of lesion segmentation) as a “wrong” ROI to demonstrate how improper
attention influence the performance. We discuss the details of each model in the
following paragraphs.

1 We use APIs average precision score and roc auc score from scikit-learn toolbox
(https://scikit-learn.org).
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AP AUC Lesion Dermo Interp Ensemble External

#1 ISIC 2017 Winner 1 [15] – 0.868 7 7 7 3 3

#2 ISIC 2017 Winner 2 [5] – 0.856 3 3 7 7 3

#3 ISIC 2017 Winner 3 [16] – 0.874 7 7 7 3 3

#4 Harangi et al. [8] – 0.836 7 7 7 3 7

#5 Mahbod et al. [14] – 0.873 7 7 7 3 3

#6 VGG-16 0.600 0.824 7 7 7 7 7

#7 VGG-16-GAP 0.627 0.834 7 7 3 7 7

#8 Mel-CNN 0.653 0.854 7 7 7 7 7

#9 AttnMel-CNN 0.655 0.872 7 7 3 7 7

#10 AttnMel-CNN-Dermo 0.665 0.864 7 3 3 7 7

#11 AttnMel-CNN-Lesion 0.672 0.883 3 7 3 7 7

#12 AttnMel-CNN-Bkg 0.647 0.849 3 7 3 7 7

Table 2: Quantitative results on the ISIC 2017 test set. The highest rankings
in terms of AP or AUC are highlighted in bold, and the second ranking is
indicated in italics. The proposed method with attention maps achieves
comparable performance without external data, model ensembles, or
any ground truth ROIs (AttnMel-CNN ). When ROIs are available, the
performance is further improved. Notation: AP : average precision; AUC : the
area under the ROC curve; Lesion: use lesion segmentation or not; Dermo: use
dermoscopic features or not; Interp: interpretable or not; Ensemble: ensemble
method or not; External : use external training data or not.

Comparing with the original VGG The first baseline model is the original
VGG network. We modify the last classification layer to have 2 output nodes, and
the rest of the network parameters are initialized with ImageNet pre-training.
We denote this baseline VGG-16. Note that even though our backbone network
is based on the VGG network (Fig. 1), we remove the two dense layers and add
our own attention modules. Since dense layers take nearly 90% of the parameters
in VGG-16, our network is much more lightweight (around 100M fewer param-
eters). Referring to Table 1 (rows 4,7) and Table 2 (rows 6,9), AttnMel-CNN
achieves better performance despite the large degree of parameter reduction.

Comparison with the truncated VGG The poor performance of the original
VGG-16 could be due to overfitting. For a fair comparison, we design another
baseline, termed VGG-16-GAP, by replacing the dense layers with global average
pooling. Note that this is also equivalent to our model without attention. Refer-
ring to Table 1 and 2, VGG-16-GAP slightly outperforms the original VGG-16,
but is surpassed by the proposed AttnMel-CNN. This demonstrates that overfit-
ting can be reduced by removing the dense layers, but that further improvements
come from the proposed architecture, which explicitly leverages the intermediate
features.
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Does attention help? After confirming the usefulness of intermediate features,
one may ask whether it helps to assign attention maps to these features. In
order to validate the effectiveness of attention modules themselves, we compute
global average pooling on pool-3 and pool-4 instead of their attention versions.
We denote this baseline Mel-CNN. According to Table 1 and 2, this baseline
yields worse performance than AttnMel-CNN. This is an expected result because
shallow features are not well compressed and abstracted, and attention maps help
rule out irrelevant information within shallow features.

How does the regularization influence the model? We re-train the net-
work using the loss proposed in Eq. 5 with three different reference maps (Ā):
(1) AttnMel-CNN-Lesion uses the whole lesion segmentation map (available from
ISIC 2017 Task 1); (2) AttnMel-CNN-Dermo uses the union of four dermoscopic
features2 (available from ISIC 2017 Task 2); and (3) AttnMel-CNN-Bkg uses im-
age background (the inverse of whole lesion segmentation). Table 2 shows that
encouraging attention to lesion or dermoscopic features yields better perfor-
mance, while improper attention (AttnMel-CNN-Bkg) harms the performance.

3.3 Visual Interpretability

In order to show whether better attention correlates with higher performance,
we evaluate the learned attention maps both qualitatively and quantitatively.

Qualitative Analysis We visualize the learned attention maps of AttnMel-
CNN, AttnMel-CNN-Lesion and AttnMel-CNN-Dermo on the ISIC 2017 test
data by upsampling A (Eq. 2) to align with the input image. The results are
shown in Fig. 3. When comparing rows 2 and 3, we observe that the shallower
layer (pool-3) tends to focus on more general and diffused areas, while the deeper
layer (pool-4) is more concentrated, focusing on the lesion and avoiding irrele-
vant objects. Furthermore, rows 4-7 demonstrate that the models with additional
regularization pay attention to more semantically meaningful regions, which ac-
counts for the performance improvement illustrated in Table 2.

Quantitative Analysis We quantify the “quality” of the learned attention
map by computing its overlap with the ground truth lesion segmentation. First,
we re-normalize each attention map to

[
0, 1
]

and binarize it using a threshold
of 0.5. Then we compute the Jaccard index with respect to the ground truth
lesion segmentation. We also calculate the class activation map (CAM) [27] from
VGG-16-GAP and follow the same procedure as above to compute the Jaccard
index value. The results reported in Table 3 lead to several conclusions: (1) The
proposed learnable attention module highlights the relevant image regions better
than the post-processing-based attention (CAM). (2) The attention map of the
deeper layer (pool-4) yields a higher Jaccard index value, demonstrating that

2 We convert the superpixel labels to binary pixel labels in the same way as [11], and
use the union across all the dermoscopic features.
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AttnMel-CNN AttnMel-CNN-Dermo AttnMel-CNN-Lesion VGG-16-GAP
pool3 pool4 pool3 pool4 pool3 pool4 CAM

0.3105 0.3186 0.3621 0.4767 0.5533 0.6560 0.2825

Table 3: Jaccard index of (binarized) attention maps and class activation maps
with respect to the ground truth lesion segmentations.

the deeper layer learns more discriminative features than the shallower layer.
(3) The regularization encourages the attention maps to concentrate more on
relevant ROIs.

3.4 Comparison with Previous Methods

We summarize previous work in Table 1 rows 1-3 and Table 2 rows 1-5. Com-
parison with [23, 1] is not feasible as separate results for melanoma classification
are not reported. The advantages of our method are:

– Our method yields state-of-the-art performance for melanoma classification
even without additional regularization (AttnMel-CNN ), and produces fur-
ther performance improvements when reference ROIs are available (AttnMel-
CNN-Lesion and AttnMel-CNN-Dermo). Additionally, we achieve state-of-
the-art performance without any external training data.

– Our method relies on a single model, avoiding complex model ensembles.

– Compared with other methods utilizing segmentation maps [24, 23, 1, 5], our
method is more robust and flexible in that: (1) One of our models (AttnMel-
CNN ), optimized using only the focal loss, performs well without any regions
of interests, while network training in those competing works requires pixel-
wise annotations. (2) The competing works can only utilize whole lesion seg-
mentations, but our regularization method can efficiently use dermoscopic
(AttnMel-CNN-Dermo). We note that in a fair number of images, no der-
moscopic features occur, and our proposed model is improved through these
“sparse” reference maps.

4 Conclusion and Discussion

In this paper, we proposed an attention-based network for melanoma recogni-
tion with a novel technique to regularize the attention maps with prior infor-
mation. We achieve state-of-the-art performance for melanoma classification on
two public datasets without external training data or complex model ensembles.
One limitation of this work is that we only apply the model to a binary classi-
fication task. Future work would explore visual attention in more general skin
lesion classification problems.



10 Yiqi Yan et al.

Lesion
Image

AttnMel
-CNN
pool-3

AttnMel
-CNN
pool-4

AttnMel
-CNN
-Dermo
pool-3

AttnMel
-CNN
-Dermo
pool-4

AttnMel
-CNN
-Lesion
pool-3

AttnMel
-CNN
-Lesion
pool-4

Fig. 3: Visualization of attention maps for different models. The deeper layer
(pool-4) exhibits more concentrated attention to valid regions than the shallower
layer (pool-3). The models with additional regularization (rows 4-7) produce
more refined and semantically meaningful attention maps.
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