

Globally-Optimal Anatomical Tree Extraction from 3D Medical Images using Pictorial Structures and Minimal Paths

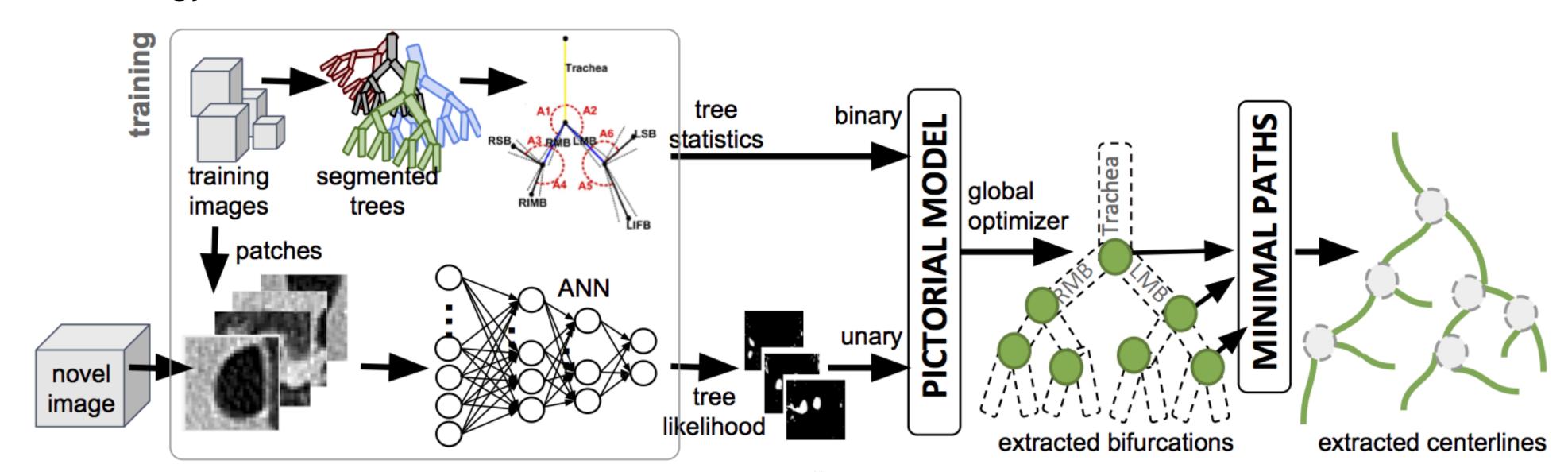
Zahra Mirikharaji, Mengliu Zhao, Ghassan Hamarneh

Problem

Extracting centerline of anatomical trees in 3D medical images

Goal

- Encode the geometrical and topological priors of trees
- Ensure a globally optimal tree extraction solution


Pictorial Structure

$$\mathcal{L}^* = \underset{\mathcal{L} = \{\mathcal{L}_1, \dots, \mathcal{L}_n\}}{\operatorname{arg\,min}} \left(\sum_{i=1}^n \mathcal{U}(\mathcal{L}_i | \mathcal{I}) + \sum_{e_{ij} \in E} \mathcal{B}(\mathcal{L}_i, \mathcal{L}_j) \right)$$

 $U(L_i|I)$: degree of mismatch for part V_i

 $B(L_i, L_j)$:degree of deformation of the model when part V_i is at L_i and part V_j is at L_j

Methodology

- Pictorial node: 3D anatomical tree bifurcations
- Deformation cost: branch directions and lengths statistics

 $\mu_{\emph{ij}}$: mean of displacement vectors

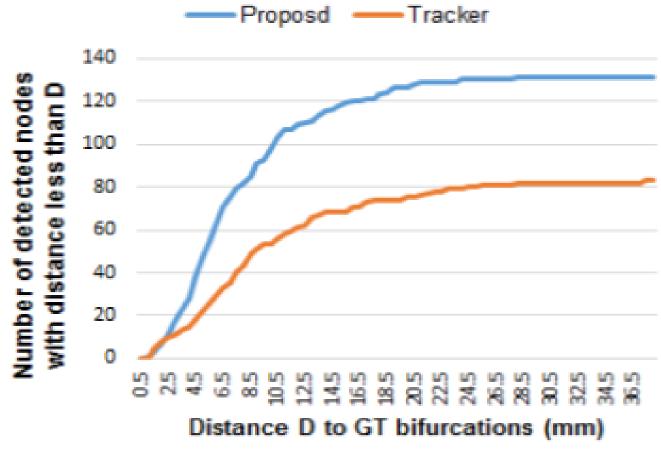
 Σ_{ij} : covariance matrix of displacement vectors

$$\mathcal{L}^* = \underset{\mathcal{L} = \{\mathcal{L}_1, \dots, \mathcal{L}_n\}}{\operatorname{arg\,min}} (\underbrace{\sum_{i=1}^n \mathcal{U}(\mathcal{L}_i | \mathcal{I})}_{i=1} + \underbrace{\sum_{e_{ij} \in E} \mathcal{B}(\mathcal{L}_i, \mathcal{L}_j)}_{\text{eij} \in E})$$
Unary Term
via an ANN
Binary Term from
Geometrical Statistical

metrical Statistica Priors

$$T_{ij} = U'_{ij}(\mathcal{L}_i - \mu_{ij})$$
$$T_{ji} = U'_{ij}(\mathcal{L}_j)$$

$$\Sigma_{ij} = U'_{ij} M_{ij}^{-1} U_{ij} \qquad \mathcal{B}(\mathcal{L}_i, \mathcal{L}_j) = [T_{ij}(\mathcal{L}_i) - T_{ji}(\mathcal{L}_j)]' M_{ij}^{-1} [T_{ij}(\mathcal{L}_i) - T_{ji}(\mathcal{L}_j)]$$


Experimental Validation

Validation measures:

 N_D : number of detected bifurcations with distance less than D from the ground truth locations.

M: mean distance between the ground truth bifurcations and the corresponding closest detected bifurcations.

 $\mu_{\textbf{\textit{D}}}$: the average distance between centerlines

Variation of N_D on real data for proposed method and Tracker

	Method	M (mm)	$\mu_D \text{ (mm)}$	bifurcation det./ path init.
A	Tracker [1]	9.41 ± 6.84	9.21 ± 9	manual for root seed only
В	OOF [2]	NR^{\dagger}	3.24 ± 1.68	manual bif. det.
C	Minimal path + ANN + DT	NR^{\dagger}	3.09 ± 1.5	manual bif. det.
D	Proposed (pict w/o stats + mininal path)	14.54 ± 16.54	4.87 ± 4.84	automatic
Е	Proposed (pict with stats + minimal path)	8.39 ± 7.41	3.51 ± 2.4	automatic

 $^\dagger NR$: Not reported since bifurcations are manually selected.

Performance of different methods on clinical data with measure M and μ_D . Distance unit in mm and values shown in format mean \pm std.

SNR	∞ (noise-free)	10	5	3.3
M (voxel)	5.19 ± 3.30	5.29 ± 3.23	6.69 ± 11.29	7.83 ± 9.3

Effect of SNR on measure M for synthetic data (mean ± std)

References

- [1] Macedo, et al.: A centerline-based estimator of vessel bifurcations in angiography images, SPIE Medical Imaging. (2013)
- [2] Law, et al.: Three dimensional curvilinear structure detection using optimally oriented flux, ECCV (2008)

