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Abstract. While deep learning based approaches have demonstrated
expert-level performance in dermatological diagnosis tasks, they have
also been shown to exhibit biases toward certain demographic attributes,
particularly skin types (e.g., light versus dark), a fairness concern that
must be addressed. We propose CIRCLe, a skin color invariant deep
representation learning method for improving fairness in skin lesion clas-
sification. CIRCLe is trained to classify images by utilizing a regular-
ization loss that encourages images with the same diagnosis but dif-
ferent skin types to have similar latent representations. Through ex-
tensive evaluation and ablation studies, we demonstrate CIRCLe’s su-
perior performance over the state-of-the-art when evaluated on 16k+
images spanning 6 Fitzpatrick skin types and 114 diseases, using clas-
sification accuracy, equal opportunity difference (for light versus dark
groups), and normalized accuracy range, a new measure we propose to
assess fairness on multiple skin type groups. Our code is available at
https://github.com/arezou-pakzad/CIRCLe.

Keywords: Fair AI · Skin Type Bias · Dermatology · Classification ·
Representation Learning.

1 Introduction

Owing to the advancements in deep learning (DL)-based data-driven learning
paradigm, convolutional neural networks (CNNs) can be helpful decision sup-
port tools in healthcare. This is particularly true for dermatological applica-
tions where recent research has shown that DL-based models can reach the
dermatologist-level classification accuracies for skin diseases [10, 20, 24] while
doing so in a clinically interpretable manner [7, 38]. However, this data-driven
learning paradigm that allows models to automatically learn meaningful repre-
sentations from data leads DL models to mimic biases found in the data, i.e.,
biases in the data can propagate through the learning process and result in an
inherently biased model, and consequently in a biased output.

Most public skin disease image datasets are acquired from demographics con-
sisting primarily of fair-skinned people. However, skin conditions exhibit vast vi-
sual differences in manifestations across different skin types [56]. Lighter skinned
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populations suffer from over-diagnosis of melanoma [2] while darker skinned pa-
tients get diagnosed at later stages, leading to increased morbidity and mor-
tality [4]. Despite this, darker skin is under-represented in most publicly avail-
able data sets [31, 36], reported studies [16], and in dermatology textbooks [3].
Kinyanjui et al. [31] performed an analysis on two popular benchmark dermatol-
ogy datasets: ISIC 2018 Challenge dataset [13] and SD-198 dataset [53], to un-
derstand the skin type representations. They measured the individual typology
angle (ITA), which measures the constitutive pigementation of skin images [43],
to estimate the skin tone on these datasets, and found that the majority of the
images in the two datasets ITA values between 34.8◦ and 48◦, which are associ-
ated with lighter skin. This is consistent with the under-representation of darker
skinned populations in these datasets. It has been shown that CNNs perform
best at classifying skin conditions for skin types that are similar to those they
were trained on [23]. Thus, the data imbalance across different skin types in the
majority of the skin disease image datasets can manifest as racial biases in the
DL models’ predictions, leading to racial disparities [1]. However, despite these
well-documented concerns, very little research has been directed towards evalu-
ating these DL-based skin disease diagnosis models on diverse skin types, and
therefore, their utility and reliability as disease screening tools remains untested.

Although research into algorithmic bias and fairness has been an active area
of research, interest in fairness of machine learning algorithms in particular is
fairly recent. Multiple studies have shown the inherent racial disparities in ma-
chine learning algorithms’ decisions for a wide range of areas: pre-trial bail de-
cisions [32], recidivism [5], healthcare [42], facial recognition [11], and college
admissions [33]. Specific to healthcare applications, previous research has shown
the effect of dataset biases on DL models’ performance across genders and racial
groups in cardiac MR imaging [47], chest X-rays [35, 50, 51], and skin disease
imaging [23]. Recently, Groh et al. [23] showed that CNNs are the most accurate
when classifying skin diseases manifesting on skin types similar to those they
were trained on.

Learning domain invariant representations, a predominant approach in do-
main generalization [40], attempts to learn data distributions that are indepen-
dent of the underlying domains, and therefore addresses the issue of training
models on data from a set of source domains that can generalize well to previ-
ously unseen test domains. Domain invariant representation learning has been
used in medical imaging for histopathology image analysis [34] and for learn-
ing domain-invariant shape priors in segmentation of prostrate MR and retinal
fundus images [37]. On the other hand, previous works on fair classification and
diagnosis of skin diseases have relied on skin type detection and debiasing [9]
and classification model pruning [57].

One of the common definitions of algorithmic fairness for classification tasks,
based on measuring statistical parity, aims to seek independence between the
bias attribute (also known as the protected attribute; i.e., the skin type for our
task) and the model’s prediction (i.e., the skin disease prediction). Our proposed
approach, Color Invariant Representation learning for unbiased Classification
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of skin Lesions (CIRCLe), employs a color-invariant model that is trained to
classify skin conditions independent of the underlying skin type. In this work, we
aim to mitigate the skin type bias learnt by the CNNs and reduce the accuracy
disparities across skin types. We address this problem by enforcing the feature
representation to be invariant across different skin types. We adopt a domain-
invariant representation learning method [41] and modify it to transform skin
types from clinical skin images and propose a color-invariant skin condition clas-
sifier. In particular, we make the following contributions:

– To the best of our knowledge, this is the first work that uses skin type
transformations and skin color-invariant disease classification to tackle the
problem of skin type bias present in large scale clinical image datasets and
how these biases permeate through the prediction models.

– We present a new state-of-the-art classification accuracy over 114 skin condi-
tions and 6 Fitzpatrick skin types (FSTs) from the Fitzpatrick17K dataset.
While previous works had either limited their analysis to a subset of di-
agnoses [9] or less granular FST labels [57], our proposed method achieves
superior performance over a much larger set of diagnoses spanning over all
the FST labels.

– We provide a comprehensive evaluation of our proposed method, CIRCLe,
on 6 different CNN architectures, along with ablation studies to demonstrate
the efficacy of the proposed domain regularization loss. Furthermore, we also
assess the impact of varying the size and the FST distribution of the train-
ing dataset partitions on the generalization performance of the classification
models.

– Finally, we propose a new fairness metric called Normalized Accuracy Range
that, unlike several existing fairness metrics, works with multiple protected
groups (6 different FSTs in our problem).

2 Method

2.1 Problem Definition

Given a dataset D = {X,Y, Z}, consider xi, yi, zi to be the input, the label, and
the protected attribute for the ith sample respectively, where we have M classes
(|Y | = M) and N protected groups (|Z| = N). Let ŷi denote the predicted
label of sample i. Our goal is to train a classification model fθ(·) parametrized
by θ that maps the input xi to the final prediction ŷi = fθ(xi), such that (1)
the prediction ŷi is invariant to the protected attribute zi and (2) the model’s
classification loss is minimized.

2.2 Feature Extractor and Classifier

In the representation learning framework, the prediction function ŷi = fθ(xi) is
obtained as a composition ŷi = ϕC ◦ ϕE(xi) of a feature extractor ri = ϕE(xi),
where ri ∈ Rp is a learned representation of data xi, and a classifier ŷi = ϕC(ri),
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Fig. 1: Overview of CIRCLe. (a) The skin lesion image x with skin type z and
diagnosis label y is passed through the feature extractor ϕE . The learned repre-
sentation r goes through the classifier ϕC to obtain the predicted label ŷ. The
classification loss enforces the correct classification objective. (b) The skin color
transformer (G), transforms x with skin type z into x′ with the new skin type
z′. The generated image x′ is fed into the feature extractor to get the represen-
tation r′. The regularization loss enforces r and r′ to be similar. (c) The skin
color transformer’s schematic view with the possible transformed images, where
one of the possible transformations is randomly chosen for generating x′.

predicting the label ŷi, given the representation ri (Figure 1(a)). Thus, we aim
to learn a feature representation r that is invariant to the protected attributes,
and hypothesize that this will lead to better generalization for classification.

2.3 Regularization Network

Inspired by the method proposed by Nguyen et al. [41], we use a generative
modelling framework to learn a function g that transforms the data distributions
between skin types. To this end, we employ a method to synthesize a new image
corresponding to a given input image with the subject’s skin type in that image
changed according to the desired Fitzpatrick skin type (FST) score. We call this
model our Skin Color Transformer. After training the Skin Color Transformer
model, we introduce an auxiliary loss term to our learning objective, whose aim
is to enforce the domain invariance constraint. (Figure 1(b))

Skin Color Transformer. We learn the function G that performs image-to-
image transformations between skin type domains. To this end, we use a Star
Generative Adversarial Network (StarGAN) [12]. The goal of the StarGAN is to
learn a unified network G (generator) that transforms the data density among
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multiple domains. In particular, the network G(x, z, z′) transforms an image x
from skin type z to skin type z′. The generator’s goal is to fool the discriminator
D into classifying the transformed image as the destination skin type z′. In other
words, the equilibrium state of StarGAN is when G successfully transforms the
data density of the original skin type to that of the destination skin type. After
training, we use G(., z, z′) as the Skin Color Transformer. This model takes the
image xi with skin type zi as the input, along with a target skin type zj and
synthesizes a new image z′i = G(xi, zi, zj) similar to xi, only with the skin type
of the image changed in accordance with zj .

Domain Regularization Loss. In the training process of the disease classifier,
for each input image xi with skin type si, we randomly select another skin
type sj ̸= si, and use the Skin Type Transformer to synthesize a new image
x′
i = G(xi, si, sj). After that, we obtain the latent representations ri = ϕE(xi),

and r′i = ϕE(x
′
i) for the original image and the synthetic image respectively.

Then we enforce the model to learn similar representations for ri and r′i by
adding a regularization loss term to the overall loss function of the model:

Ltotal = Lcls + λLreg (1)

where Lcls is the prediction loss of the network that predicts ŷi given ri =
ϕE(xi), and Lreg is the regularization loss. In this equation, λ ∈ [0, 1] is a hyper-
parameter controlling the trade-off between the classification and regularization
losses. We define Lreg as the distance between the two representations ri and r′i
to enforce the invariant condition. In our implementation, we use cross entropy
as the classification loss Lcls:

Lcls = −
M∑
j=1

yij log(ŷij), (2)

where yij is a binary indicator (0 or 1) if class label j is the correct classification
for the sample i and ŷij is the predicted probability the sample i is of class j.
The final predicted class ŷi is calculated as

ŷi = argmax
j

ŷij . (3)

We use squared error distance for computing the regularization loss Lreg:

Lreg = ||ri − r′i||22. (4)

3 Experiments

3.1 Dataset

We evaluate the performance of the proposed method on the Fitzpatrick17K
dataset [23]. The Fitzpatrick17K dataset contains 16,577 clinical images with
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Fig. 2: Sample images of all six Fitzpatrick skin types (FSTs) from the Fitz-
patrick17K dataset [23]. Notice the wide varieties in disease appearance, field of
view, illumination, presence of imaging artifacts including non-standard back-
ground consistent with clinical images in the wild, and watermarks on some
images.
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Fig. 3: Visualizing the distribution of (a) the skin condition labels and (b) the
Fitzpatrick skin type (FST) labels in the Fitzpatrick17K dataset. Notice that the
number of images across different skin conditions is not uniformly distributed.
Moreover, the number of images is considerably lower for darker skin types.

skin condition labels and skin type labels based on the Fitzpatrick scoring sys-
tem [21]. The dataset includes 114 conditions with at least 53 images (and a max-
imum of 653 images) per skin condition, as shown in Figure 3 (a). The images
in this dataset are annotated with (FST) labels by a team of non-dermatologist
annotators. Figure 2 shows some sample images from this dataset along with
their skin types. The Fitzpatrick labeling system is a six-point scale originally
developed for classifying sun reactivity of skin and adjusting clinical medicine
according to skin phenotype [21]. In this scale, the skin types are categorized in
six levels from 1 to 6, from lightest to darkest skin types. Although Fitzpatrick
labels are commonly used for categorizing skin types, we note that not all skin
types are represented by the Fitzpatrick scale. [55].
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In the Fitzpatrick17K dataset, there are significantly more images of light
skin types than dark skin. There are 11,060 images of light skin types (FSTs 1,
2, and 3), and 4,949 images of dark skin types (FSTs 4, 5, and 6), as shown in
Figure 3 (b).

3.2 Implementation Details

Dataset Construction Details. We randomly select 70%, 10%, and 20% of
the images for the train, validation, and test splits, where the random selection
is stratified on skin conditions. We repeat the experiments with five different
random seeds for splitting the data. A series of transformations are applied
to the training images which include: resize to 128 × 128 resolution, random
rotations in [−15◦, 15◦], and random horizontal flips. We also use ImageNet [18]
training partition’s mean and standard deviation values to normalize our images
for training and evaluation.

Feature Extractor and Classifier’s Details. We choose VGG-16 [52] pre-
trained on ImageNet as our base network. We use the convolutional layers of
VGG-16 as the feature extractor ϕE . We replace the VGG-16’s fully-connected
layers with a fully connected 256-to-114 layer as the classifier ϕC . We train
the network for 100 epochs with plain stochastic gradient descent (SGD) using
learning rate 1e-3, momentum 0.9, minibatch size 16, and weight decay 1e-3. We
report the results for the epoch with the highest accuracy on the validation set.

StarGAN Details. StarGAN [12] implementation is taken from the authors’
original source code with no significant modifications. We train StarGAN on the
same train split used for training the classifier. As for the training configurations
we use a minibatch size of 16. We train the StarGAN for 200,000 iterations
and use the Adam [30] optimizer with a learning rate of 1e-4. For training the
StarGAN’s discriminator, we use cross entropy loss.

Model Training and Evaluation Setup. We use the PyTorch library [45] to
implement our framework and train all our models on a workstation with AMD
Ryzen 9 5950X processor, 32 GB of memory, and Nvidia GeForce RTX 3090
GPU with 24 GB of memory.

3.3 Metrics

We aim for an accurate and fair skin condition classifier. Therefore, we assess
our method’s performance using metrics for both accuracy and fairness. We
use the well-known and commonly-used recall, F1-score, and accuracy metrics
for evaluating our model’s classification performance. For fairness, we use the
equal opportunity difference (EOD) metric [25]. EOD measures the difference in
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true positive rates (TPR) for the two protected groups. Let TPRz denote true
positive rate of group z and z ∈ {0, 1}. Then EOD can be computed as:

EOD = |TPRz=0 − TPRz=1|. (5)

A value of 0 implies both protected groups have equal benefit. Given that the
above metric (and other common fairness metrics in the literature [8, 19, 25])
are defined for two groups: privileged and under-privileged, w.r.t the protected
attribute, we adopt the light (FSTs 1, 2, and 3) versus dark (FSTs 4, 5, and 6)
as the two groups.

Additionally, to measure fairness in the model’s accuracy for multiple groups
of skin types, we assess the accuracy (ACC) disparities across all the six skin
types by proposing the Normalized Accuracy Range (NAR) as follows:

NAR =
ACCmax −ACCmin

mean(ACC)
, (6)

where ACCmax and ACCmin are the maximum and minimum accuracy achieved
across skin types and mean(ACC) is the mean accuracy across skin types, i.e.:

ACCmax = max{ACCi : 1 ≤ i ≤ N},
ACCmin = min{ACCi : 1 ≤ i ≤ N},

mean(ACC) =
1

N

N∑
i=1

ACCi

(7)

A perfectly fair performance of a model would result in equal accuracy across
the different protected groups on a test set, i.e. ACCmax = ACCmin, leading
to NAR = 0. As the accuracies across protected groups diverge, ACCmax >
ACCmin, NAR will change even if the mean accuracy remains the same, thus
indicating that the model’s fairness is also changed. Moreover, NAR also takes
into account the overall mean accuracy: this implies that in cases where the
accuracies range (ACCmax − ACCmin) is the same, the model with the overall
higher accuracy leads to a lower NAR, which is desirable. In our quantitative
results, we report EOD for completeness; however, it is not an ideal measure,
given it is restricted to only two protected groups whereas we have six. Therefore,
we focus our attention on NAR.

3.4 Models

Baseline. For evaluating our method, we compare our results with the method
proposed by Groh et al. [23], which has the current state-of-the-art performance
on the Fitzpatrick17K dataset. We call their method the Baseline. To obtain a
fair comparison, we use the same train and test sets they used.
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Table 1: Comparing the model capacities and computational requirements of
different backbones evaluated. For all the six backbones, we report the number
of parameters and the number of multiply-add operations (MulAddOps). All
numbers are in millions (M). Note how the six backbones encompass several
architectural families and a large range of model capacities (∼ 2M to ∼ 135M
parameters) and computational requirements (∼ 72M MulAddOps to ∼ 5136M
MulAddOps).

MobileNetV2 MobileNetV3L DenseNet-121 ResNet-18 ResNet-50 VGG-16

Parameters (M) 2.55 4.53 7.22 11.31 24.03 135.31

MulAddOps (M) 98.16 72.51 925.45 592.32 1335.15 5136.16

Improved Baseline (Ours). In order to evaluate the effectiveness of the color-
invariant representation learning process, we perform an ablation study, in which
we remove the regularization loss Lreg from the learning objective of the model
and train the classifier with only the classification objective. We call this model
the Improved Baseline.

CIRCLe (Ours). The proposed model for unbiased skin condition classifica-
tion, CIRCLe, is composed of two main components: the feature extractor and
classifier, and the regularization network (Fig. 1).

Multiple Backbones. To demonstrate the efficacy of our method, we present
evaluation with several other backbone architectures in addition to VGG-16 [52]
used by Groh et al. [23]. In particular, we use MobileNetV2 [49], MobileNetV3-
Large (referred to as MobileNetV3L hereafter) [27], DenseNet-121 [28], ResNet-
18 [26], and ResNet-50 [26], thus covering a wide range of CNN architecture
families and a considerable variety in model capacities, i.e. from 2.55 million
parameters in MobileNetV2 to 135.31 million parameters in VGG-16 (Table 1).

For all the models, we perform an ablation study to evaluate if adding the
regularization loss Lreg helps improve the performance.

4 Results and Analysis

4.1 Classification and Fairness Performance.

Table 2 shows the accuracy and fairness results for the proposed method in
comparison with the baseline. From the table, we can see that our Improved
Baseline method recognizably outperforms the baseline method in accuracy and
fairness. By using a powerful backbone and a better and longer training process,
we more than doubled the classification accuracy on the Fitzpatrick17K dataset
for all the skin types. This indicates that the choice of the base classifier and
training settings plays a significant role in achieving higher accuracy rates on the
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Table 2: Classification performance and fairness of CIRCLe for classifying 114
skin conditions across skin types as assessed by the mean (std. dev.) of the
metrics described in Section 3.3. We compute the overall accuracy based on the
micro average accuracy across all skin types. Values in bold indicate the best
results. CIRCLe yields the best performance while also improving fairness.

Model Recall F1-score
Accuracy

EOD ↓ NAR ↓
Overall Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Baseline 0.251 0.193 0.202 0.158 0.169 0.222 0.241 0.289 0.155 0.309 0.652

Improved

Baseline (Ours)

0.444

(0.007)

0.441

(0.009)

0.471

(0.004)

0.358

(0.026)

0.408

(0.014)

0.506

(0.023)

0.572

(0.022)

0.604

(0.029)

0.507

(0.027)

0.261

(0.028)

0.512

(0.078)

CIRCLe

(Ours)

0.459

(0.003)

0.459

(0.003)

0.488

(0.005)

0.379

(0.019)

0.423

(0.011)

0.528

(0.024)

0.592

(0.022)

0.617

(0.021)

0.512

(0.043)

0.252

(0.031)

0.474

(0.047)

Fitzpatrick17K dataset. Moreover, we can see that CIRCLe further improves the
performance of our Improved Baseline across all the skin types, as well as the
overall accuracy. This significant improvement demonstrates the effectiveness of
the color-invariant representation learning method in increasing the model’s gen-
eralizability. This observation shows that when the model is constrained to learn
similar representations from different skin types that the skin condition appears
on, it can learn richer features from the disease information in the image, and
its overall performance improves. In addition, CIRCLe shows improved fairness
scores (lower EOD and lower NAR), which indicates that the model is less bi-
ased. To the best of our knowledge, we set a new state-of-the-art performance
on the Fitzpatrick17K dataset for the task of classifying the 114 skin conditions.

Different model architectures may show different disparities across protected
groups [46].

We can see in Table 3 that the color-invariant representation learning (i.e.
with the regularization loss Lreg activated) significantly improves the accuracy
and fairness results in different model architecture choices across skin types,
which indicates the effectiveness of the proposed method independently from
the backbone choice and its capacity. We can see that while the regularization
loss does not necessarily improve the EOD for all the backbones, EOD is not
the ideal measure of fairness for our task since as explained in Section 3.3, it can
only be applied to a lighter-versus-darker skin tone fairness assessment. However,
employing the regularization loss does improve the NAR for all the backbone
architectures.

4.2 Domain Adaptation Performance

For evaluating the model’s performance on adapting to unseen domains, we per-
form a “two-to-other” experiment, where we train the model on all the images
from two FST domains and test it on all the other FST domains. Table 4 shows
the performance of our model for this experiment. CIRCLe recognizably im-
proves the domain adaptation performance in comparison with the Baseline and
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Table 3: Evaluating the classification performance improvement contribution of
the regularization loss Lreg with multiple different feature extractor backbones.
Reported values are the mean (std. dev.) of the metrics described in Section
3.3. Best values for each backbone are presented in bold. EOD reported (for
two groups of light and dark FSTs) for completeness but evaluation over all
the 6 FSTs uses NAR (see text for details). Observe that Lreg improves the
classification accuracy and the fairness metric NAR for all backbones.

Model Lreg Recall F1-score
Accuracy

EOD ↓ NAR ↓
Overall Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

MobileNetV2
✗ 0.375 0.365 0.398 0.313 0.364 0.409 0.503 0.491 0.333 0.280 0.472

✓ 0.404 0.397 0.434 0.354 0.357 0.471 0.559 0.544 0.421 0.258 0.455

MobileNetV3L
✗ 0.427 0.403 0.438 0.357 0.388 0.449 0.543 0.560 0.413 0.271 0.449

✓ 0.425 0.412 0.451 0.369 0.400 0.464 0.565 0.550 0.444 0.275 0.420

DenseNet-121
✗ 0.425 0.416 0.451 0.393 0.397 0.452 0.565 0.522 0.500 0.278 0.364

✓ 0.441 0.430 0.462 0.413 0.406 0.473 0.561 0.550 0.452 0.294 0.324

ResNet-18
✗ 0.391 0.381 0.417 0.355 0.353 0.431 0.538 0.516 0.389 0.263 0.430

✓ 0.416 0.410 0.436 0.367 0.380 0.458 0.543 0.538 0.389 0.282 0.395

ResNet-50
✗ 0.390 0.382 0.416 0.337 0.363 0.422 0.549 0.506 0.389 0.257 0.497

✓ 0.440 0.429 0.466 0.384 0.402 0.502 0.580 0.569 0.421 0.283 0.411

Table 4: Classification performance measured by micro average accuracy when
trained and evaluated on holdout sets composed of different Fitzpatrick skin
types (FSTs). For example, “FST3-6” denotes that the model was trained on
images only from FSTs 1 and 2 and evaluated on FSTs 3, 4, 5, and 6. CIRCLe
achieves higher classification accuracies than Baseline (Groh et al. [23]) and
Improved Baseline (also ours) for all holdout partitions and for all skin types.

Holdout

Partition
Method Overall Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

FST3-6

Baseline 0.138 - - 0.159 0.142 0.101 0.090

Improved Baseline 0.249 - - 0.308 0.246 0.185 0.113

CIRCLe 0.260 - - 0.327 0.250 0.193 0.115

FST12 and FST56

Baseline 0.134 0.100 0.130 - - 0.211 0.121

Improved Baseline 0.272 0.181 0.274 - - 0.453 0.227

CIRCLe 0.285 0.199 0.285 - - 0.469 0.233

FST1-4

Baseline 0.077 0.044 0.055 0.091 0.129 - -

Improved Baseline 0.152 0.078 0.111 0.167 0.280 - -

CIRCLe 0.163 0.095 0.121 0.177 0.293 - -

Improved Baseline, demonstrating the effectiveness of the proposed method in
learning a color-invariant representation.

4.3 Classification Performance Relation with Training Size

As CIRCLe’s performance improvement and effectiveness in comparison with
the baselines is established in Section 4.1, we further analyze the relation of
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Fig. 4: Classification performance of CIRCLe on the test set as the number of
training images of the FST groups increases. Each FST group line plot indicates
the series of experiments in which the percentage of number of training images
of that FST group changes as the rest of the training images remain idle. The
rightmost point in the plot, with 100%, is identical for all the FST groups, which
is the overall accuracy achieved by CIRCLe in Table 2. The std. dev. error band,
illustrated in the figure, is computed by repetition of experiments with three
different random seeds.

Table 5: Total number of training images for each experiment illustrated in
Figure 4. Note that the test set for all these experiments is the original test split
with 3,205 images (20% of the Fitzpatrick17K dataset images), and the number
of training images for experiments with 100% of each FST group is the same for
all three groups, and is equal to the original train split with 11,934 images (70%
of the Fitzpatrick17K dataset images).

0% 20% 40% 60% 80%

FST12 5,964 7,073 8,183 9,293 10,403

FST34 7,088 7,973 8,858 9,743 10,628

FST56 9,974 1,0281 10,589 10,897 11,205

CIRCLe’s classification performance with the percentage of images of the FST
groups in the training data. To this end, we consider the FST groups of light
skin types (FSTs 1 and 2) with 5,549 images, medium skin types (FSTs 3 and
4) with 4,425 images, and dark skin types (FSTs 5 and 6) with 1,539 images
in the training set. For each FST group, we gradually increase the number of
images of that group in the training set, while the number of training images in
other groups remains unchanged, and report the model’s overall accuracy on the
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test set. The total number of training images for each of these experiments is
provided in Table 5. As we can see in Figure 4, as the number of training images
in a certain FST group increases, the overall performance improves, which is
expected since DL-based models generalize better with larger training datasets.
However, we can see that for the least populated FST group, i.e., dark skin types
(FST56) with 13% of the training data, our method demonstrates a more robust
performance across experiments, and even with 0% training data of FST56, it
achieves a relatively high classification accuracy of 0.443. In addition, note that
in these experiments, FST groups with lower number of images in the dataset,
would have a larger number of total training images, since removing a percentage
of them from the training images will leave a larger portion of images available
for training (see Table 5). This indicates that when the number of training images
is large enough, even if images of a certain skin type are not available, or are
very limited, our model can perform well overall. This observation signifies our
method’s ability to effectively utilize the disease-related features in the images
from the training set, independently from their skin types, as well as the ability
to generalize well to minority groups in the training set.

5 Discussion and Future Work

In order to develop fair and accurate DL-based data-driven diagnosis methods
in demotology, we need annotated datasets that include a diversity of skin types
and a range of skin conditions. However, only a few publicly available datasets
satisfy these criteria. Out of all the datasets identified by the Seventh ISIC
Skin Image Analysis Workshop at ECCV 2022 (derm7pt [29], Dermofit Image
Library [6], Diverse Dermatology Images (DDI) [17], Fitzpatrick17K [23], ISIC
2018 [13], ISIC 2019 [14, 15, 54], ISIC 2020 [48], MED-NODE [22], PAD-UFES-
20 [44], PH2 [39], SD-128 [53], SD-198 [53], SD-260 [58]), only three datasets
contain Fitzpatrick skin type labels: Fitzpatrick17K with 16,577, DDI with 656,
and PAD-UFES-20 with 2,298 clinical images. The Fitzpatrick17K dataset is
the only dataset out of these three which covers all the 6 different skin types
(with over 600 images per skin type) and contains more than 10K images, suit-
able for training high-capacity DL-based networks and our GAN-based color
transformer. It also contains samples from 114 different skin conditions, which
is the largest number compared to the other two. For these reasons, in this
work, we used the Fitzpatrick17K dataset for training and evaluating our pro-
posed method. However, skin conditions in the Fitzpatrick17K dataset images
are not verified by dermotologists and skin types in this dataset are annotated
by non-dermatologists. Also, the patient images captured in the clinical settings
exhibit various lighting conditions and perspectives. During our experiments,
we found many erroneous and wrongly labeled images in the Fitzpatrick17K
dataset, which could affect the training process. Fig. 5 shows some erroneous
images in the Fitzpatrick17K dataset. Therefore, one possible future work can
be cleaning the Fitzpatrick17K dataset and verifying its skin conditions and skin
types by dermatologists.
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Fig. 5: Sample erroneous images from the Fitzpatrick17K dataset that are not
clinical images of skin conditions, but are included in the dataset and are wrongly
labeled with skin conditions.

In addition, as we can see in Section 4.3 and Figure 4, the number of training
images plays a significant role in the model’s performance across different skin
types. Although in this paper we proposed a method for improving the skin
condition classifier’s fairness and generalizability, the importance of obtaining
large and diverse datasets must not be neglected. Mitigating bias in AI diagnosis
tools in the algorithm stage, as we proposed, can be effective and is particularly
essential for the currently developed models, however, future research at the
intersection of dermatology and computer vision should have specific focus on
adding more diverse and annotated images to existing databases.

6 Conclusion

In this work, we proposed CIRCLe, a method based on domain invariant repre-
sentation learning, for mitigating skin type bias in clinical image classification.
Using a domain-invariant representation learning approach and training a color-
invariant model, CIRCLe improved the accuracy for skin disease classification
across different skin types for the Fitzpatrick17K dataset and set a new state-
of-the-art performance on the classification of the 114 skin conditions. We also
proposed a new fairness metric Normalized Accuracy Range for assessing fair-
ness of classification in the presence of multiple protected groups, and showed
that CIRCLe improves fairness of classification. Additionally, we presented an
extensive evaluation over multiple CNN backbones as well as experiments to
analyze CIRCLe’s domain adaptation performance and the effect of varying the
number of training images of different FST groups on its performance.
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