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Abstract. Image segmentation techniques typically require proper weight-
ing of competing data fidelity and regularization terms. Conventionally,
the associated parameters are set through tedious trial and error pro-
cedures and kept constant over the image. However, spatially varying
structural characteristics, such as object curvature, combined with vary-
ing noise and imaging artifacts, significantly complicate the selection
process of segmentation parameters. In this work, we propose a novel
approach for automating the parameter selection by employing a ro-
bust structural cue to prevent excessive regularization of trusted (i.e.
low noise) high curvature image regions. Our approach autonomously
adapts local regularization weights by combining local measures of im-
age curvature and edge evidence that are gated by a signal reliability
measure. We demonstrate the utility and favorable performance of our
approach within two major segmentation frameworks, graph cuts and
active contours, and present quantitative and qualitative results on a
variety of natural and medical images.

1 Introduction

Regularization plays a crucial role in improving the robustness and applicability
of image segmentation techniques. Through the use of weighted regularization
terms in conjunction with data fidelity terms, images plagued by high levels of de-
terioration, i.e. noise or poor edge contrast, are prevented from causing excessive
irregularities and inaccuracies in the resultant segmentation. The vast majority
of existing segmentation methods are predominantly based on parameter-laden
optimization procedures designed to produce ‘optimal’ segmentations at their
minimum. These methods commonly involve a highly sensitive tradeoff between
the aforementioned regularization (smoothing) terms and data fidelity terms.
Depending on how differently these competing energy terms are weighted, the
resulting segmentation can greatly differ. Examples of widely used optimization-
based segmentation methods with this sensitive tradeoff include active contours
techniques [1–4], graph cut methods [5], optimal path approaches [6] and nu-
merous variations thereof. In fact, addressing the issue of how to best balance
competing cost terms is of great importance to many related algorithmic for-
mulations in computer vision. More generally, this tradeoff is seen in likelihood
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versus prior in Bayesian methods [7] and loss versus penalty in machine learn-
ing [8].

Determining the optimum balance between regularization and adherence to
image content has predominantly been done empirically and in an ad-hoc man-
ner. However, natural and medical images commonly have objects which exhibit
complicated and spatially varying boundary behavior, and often suffer from sig-
nificant inhomogeneous image artifacts, e.g. the spatially varying bias field com-
monly observed in magnetic resonance (MR) images [9]. Compensating for such
image deteriorations by uniformly increasing the level of regularization, until the
most degraded region of the image is properly regularized, may result in exces-
sive smoothing in those regions that do not require that much regularization.
Subsequently, this results in a loss in segmentation accuracy, particularly for
objects with highly curved boundaries. This commonly results in a painstaking
and unreliable parameter-tweaking process.

Most reported approaches to segmentation keep a uniform level of regular-
ization across the image or along an object boundary, i.e. one that does not
vary spatially and is determined empirically. As addressed in McIntosh and
Hamarneh [10], adapting the regularization weights across a set of images is
necessary for addressing the variability present in real image data. Although
an optimal regularization weight can be found for a single image in a set [10],
the same weight may not be optimal for all regions of that image. In [11], a
max-margin approach is used to learn the optimal parameter setting. In [12],
Kolmogorov et al. solved the optimization problem for a range of parameters.

In recent years, spatially adaptive regularization has been acknowledged as a
necessary requirement for improving the accuracy of energy-minimizing segmen-
tations. In an earlier work [13], we proposed an adaptive regularization frame-
work based on estimating the level of image reliability through local data cues
reflecting both structure gradient and noise. Our approach in [13] demonstrated
a clear advantage to spatially adaptive reliability-based regularization when com-
pared to standard uniform regularization methods. Erdem and Tari [14] proposed
a method for modulating diffusivity for Mumford-Shah segmentation approaches
through the use of data-driven local cues and contextual feedback, specifically
focusing on edge (gradient) consistency, edge continuity, and texture cues. Kokki-
nos et al. [15] proposed a spatially adaptive texture estimation measure through
an amplitude/frequency modulation model of images that allows for a proba-
bilistic discrimination between edges, textured and smooth regions. In [15], a
texture cue, a loosely defined context-based classifier cue, and an intensity cue
were used to distinguish between texture edges and edges between different ob-
jects. Only the latter edges were then used to dampen the curve evolution and
define the segmentation boundary. Malik et al. [16] proposed Normalized Cuts
to regularize segmentation in textured regions through the use of local texture
and orientation cues. Gilboa et al. [17] presented a graph-cut based segmenta-
tion framework with spatially varying regularization through edge weights in the
graph using a gradient magnitude-based cue.
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These previous spatially adaptive methods focused on modulating regular-
ization through local gradient direction and magnitude, texture, and noise esti-
mation cues. In this paper, we advocate the need to integrate, for the first time,
curvature cues into a spatially-adaptive regularization scheme. Object bound-
aries typically exhibit details of various scales, i.e. parts of the boundary can
be smooth while other parts exhibit highly curved features. It is therefore inap-
propriate to enforce the same level of regularization in these different regions of
varying degrees of curvature. In [18–20], for example, it was observed that high
curvature points are anatomically and structurally important and thus form a
good basis for feature matching over a set of data for image registration. There-
fore, such high curvature parts of an object boundary should not be excessively
regularized, otherwise important geometrical details are lost. The key idea of our
approach is to decrease the regularization in reliable high curvature regions of
the object to be segmented. To this end, we propose a new regularization scheme
where structural curvature information calculated from the image is used to con-
trol the regularization and to better preserve the object shape in the presence
of poor image quality.

It is important to distinguish our proposed curvature based spatial modu-
lation of regularization from earlier works incorporating curvature, which fall
under one of two classes. One class uses the curvature of an evolving contour as
an internal energy to locally control the contour evolution in order to smoothen
high curvature contour segments, e.g. [1, 21]. The other class treats image cur-
vature as an external energy in order to attract the evolving contour to high
curvature regions in the image, e.g. [1, 18]. In contrast, our proposed method
uses estimates of local image curvature to modulate the spatial regularization by
adaptively balancing the relative contributions of internal vs. external energies
in the optimization process.

In summary, we propose a local image curvature-based structural cue that is
robust to noise, is computed automatically, and does not require any prior knowl-
edge or preprocessing steps. In order to showcase the utility of our approach,
we incorporate this structural cue into two popular segmentation frameworks,
graph cuts [22, 23] and active contours [24]. We validate our method on real
natural and medical images, and compare its performance against two alter-
native approaches for regularization: using the best possible spatially uniform
(fixed) weight, and using a curvature-oblivious spatially adaptive regularization
cue based on a signal reliability approach [13]).

2 Methods

Our regularization technique focuses on energy-minimizing segmentation, where
the objective is to find a segmentation C(x, y) that labels every pixel p in an
image I(x, y) : Ω ⊂ R2 → R, e.g., object vs. background. We use an adaptive
regularization weight w(x, y) ∈ [0, 1] that varies across the image, and incorpo-
rate this weight into a general-form energy functional as follows:

E(C(x, y), w(x, y)) = w(x, y)Eint(C(x, y)) + (1− w(x, y)) Eext(C(x, y)|I) (1)
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where Eint is the internal cost term contributing to the regularization of the
segmentation in order to counteract the effects of image artifacts. Eext is the
external cost term contributing to the contour’s attraction to desired image
features, e.g. edges.

Our novel approach to balancing internal and external energy terms employs
data cues that autonomously gauge and adapt the required level of regularization
in local image regions. This required level of regularization should be different
in two distinct scenarios: (a) high curvature boundary, and (b) poor image qual-
ity. The first situation requires low regularization to prevent loss of structural
details, and the second situation requires high regularization to prevent erratic
segmentation behavior due to noise. We set w(x, y) in (1) such that reliable high
curvature regions will have less regularization.

2.1 Local Image Curvature Cue

Let I(x, y;σ) = Gσ(x, y) ∗ Io(x, y) be a smoothened image where Io(x, y) is the
original image and σ is the Gaussian scale parameter. The unit vector tangent to
the iso-intensity contour CI(x, y;σ) and passing through a point (x, y) is given
as:

t(x, y;σ) =
1�

I2
x,σ(x, y) + I2

y,σ(x, y)

�
Iy,σ(x, y)
−Ix,σ(x, y)

�
(2)

where Ix,σ and Iy,σ are the image derivatives along x and y, respectively, at
scale σ. Denoting the Hessian matrix of I(x, y;σ) by Hσ(x, y), the local image
curvature K(x, y;σ) can be calculated as [25, 26]:

K(x, y;σ) =
��tT

Hσt
�� . (3)

Note that we used the absolute value on the right hand side of (3) since we are
not concerned with differentiating between convex and concave curvature. We
follow the method in [27] where equation (3) is enhanced to have a stronger
response near edges by multiplication with the gradient magnitude raised to
some power, which we chose as 2. The enhanced curvature estimate becomes

K̃(x, y;σ) =

������

I
2
y,σIxx,σ − 2Ix,σIy,σIxy,σ + I

2
x,σIyy,σ�

I2
x,σ + I2

y,σ

������
. (4)

To determine the curvature values of differently sized structures in the image, we
automate the scale selection process by using the normalized scale coordinates
of [27]. As the amplitude of the image spatial derivatives decreases with increas-
ing scale, to compare the curvature values across different scales, the curvature
must be scale-normalized. K̃norm is determined through scale-normalized coor-
dinates ξ = x/σ. The normalized derivative operator with respect to ξ becomes
∂ξ = σ∂x. Substituting the scale normalized coordinates into (4) results in the
following normalized rescaled curvature:

K̃norm(x, y;σ) = σ
3
K̃(x, y;σ). (5)
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After the curvature values at each scale have been normalized, the final curvature
cue at every pixel is determined by selecting the scale at which K̃norm assumes
a maximum value [27]:

Km(x, y) = max
σ

K̃norm(x, y,σ). (6)

The curvature measure (6) is sensitive to noise and might inaccurately give rise
to a strong response at non-structure, high-noise regions of the image. Following
the concept of cue gating, as proposed in [16], where gradient information is
suppressed in high texture regions, we thus define a noise-gated curvature cue,
KG(x, y), that suppresses our curvature cue in high noise regions as follows:

KG(x, y) = (1−N(x, y)) Km(x, y). (7)

N(x, y) is a noise measure calculated using local image spectral flatness as fol-
lows [13]:

N(x, y) =
exp

�
1

4π2

� π
−π

� π
−π lnS (ωx, ωy) dωxdωy

�

1
4π2

� π
−π

� π
−π S (ωx, ωy) dωxdωy

(8)

where S(ωx, ωy) = |F (ωx, ωy)|2 is the power spectrum of the image, F (ωx, ωy)
is the Fourier transform of the image and (ωx, ωy) are the two spatial radian
frequencies. N(x, y) and Km(x, y) are normalized to the range [0, 1]. This noise
measure responds best to white noise-like patterns (i.e. occupying a very wide
and flat spectrum).

2.2 Curvature-Based Regularization

Our noise-gated curvature cue in (7) is used to augment our noise-gated edge
evidence EG(x, y) (proposed in [13]), which we also normalize to [0, 1]:

EG(x, y) = (1−N(x, y)) |∇I(x, y)| . (9)

Both noise-gated, local image cues, curvature KG and edge EG, are now used
to control w(x, y) in (1). A meaningful way for setting w(x, y) should satisfy the
following requirements: (i) in highly trusted (noise-gated) edge evidence, little
regularization is needed, regardless of the curvature strength; and (ii) in regions
with low edge evidence, we set the regularization to be inversely proportional
to the trusted (noise-gated) curvature, such that high curvature regions are not
overly regularized. Note that ‘high’ curvature or edge evidence means a value
close to 1 as all our cues are normalized. Thus, we form the adaptive weight as
follows:

w(x, y) = 1− EG(x, y)(1−KG(x,y))
. (10)

If EG(x, y) is large (approaching 1), the exponent has little effect on the re-
sulting weight, and requirement (i) is satisfied. If EG(x, y) is low and KG(x, y) is
non-zero, the noise-gated edge evidence will be raised to a power (1−KG(x, y)) ≈
0, resulting in a lower w(x, y), satisfying requirement (ii). Note that the detri-
mental effects from noise are handled by this model through the noise-gating
of the cues. We refer to EG(x, y)(1−KG(x,y)) as the curvature-modulated image
reliability measure.
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2.3 Incorporation of Texture Cue

In many natural images, large gradients and large curvature values can arise
from texture edges rather than from edges representing object boundaries. To
prevent texture edges from being included in the final edge set of the image,
we must ensure greater regularization occurs in textured regions. We employ a
texture measure T (x, y) from Erdem and Tari [14] that estimates the probability
of a pixel being near a texture edge:

T (x, y) = 1− exp
�
−γ(min(ρ1(x, y), ρ2(x, y)))

�
(11)

where γ is a decay rate parameter and ρ
1(x, y) and ρ

2(x, y) represent the p-values
returned from the Wilcoxon Mann-Whitney test for sampled distributions lying
between regions to the left and right of (x, y), and above and below of (x, y).
If texture exists around (x, y), the differences between the distributions will be
large and the resulting minimum p-values will be low, producing a low T (x, y).

We incorporate the texture cue into our framework by modifying (9) to form
the noise- and texture-gated edge evidence term as follows:

EG,T (x, y) = T (x, y) (1−N(x, y)) |∇I(x, y)| . (12)

Incorporating (12) into our spatially adaptive weight produces:

w(x, y) = 1− EG,T (x, y)(1−KG(x,y))
. (13)

2.4 Structural Cue Modulated Graph Cuts Segmentation

We first incorporated our adaptive weights1 w(p) into a graph cuts (GC) based
segmentation [22, 23]. The segmentation energy in this case becomes:

E(f) =
�

p,q∈N
w(p)Eint(fp, fq) +

�

p∈P

(1− w(p))Eext(fp) (14)

where f ∈ L is the labeling for all pixels p ∈ P , L is the space of all possible
labellings, and P is the set of pixels in image I. In GC, Eint is the interaction
penalty between pixel pairs (i.e. the penalty of assigning labels fp and fq to
neighboring pixels p and q), Eext measures how well label fp fits pixel p given
the observed data, and N is the set of interacting pairs of pixels. Eext(fp) is
proportional to the difference between the intensity of p and the mean intensity
of seeds labelled with fp. Eint(fp, fq) = 0 if fp = fq and 1 otherwise.

2.5 Structural Cue Modulated Active Contours Segmentation

We also implemented our proposed adaptive regularization within the popu-
lar active contours without edges (AC) segmentation framework by Chan and
Vese [24]. The segmentation C(x, y) in (1) is represented here via a Lipschitz
1 We use p to reflect graph vertices representing an image pixel at (x, y).
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function, φ(x, y) : Ω → R, where pixels interior to the zero-level set of φ are
labeled as object and exterior pixels as background. The segmentation energy,
E(φ) is given by:

E(φ(x, y)) = µ

�

Ω
δ (φ(x, y)) |∇φ(x, y)| dxdy+

+λ1

�
Ω |I(x, y)− c1|2 H (φ(x, y)) dxdy +

+λ2

�
Ω |I(x, y)− c2|2 (1−H (φ(x, y))) dxdy (15)

where the first term is the internal (regularization) energy equal to the contour
length, δ(z) is the dirac function and H(z) is the Heaviside function. The latter
two terms in (15) are external (data) terms, and c1 and c2 are the averages of
I(x, y) inside and respectively outside the zero-level set of φ [24]. λ1, λ2 and µ

are constants that control the balance between smoothing and data adherence
of the contour. We modified (15) to incorporate spatially adaptive regularization
by replacing λ1, λ2 and µ with an adaptive convex weighting as follows:

E(φ(x, y)) =
�

Ω
w(x, y)δ(φ(x, y)) |∇φ(x, y)| dxdy+

+
�

Ω (1− w(x, y) + �) |I(x, y)− c1|2 H(φ(x, y))dxdy +

+
�

Ω (1− w(x, y) + �) |I(x, y)− c2|2 (1−H (φ(x, y))) dxdy (16)

where � prevents a zero data force term (i.e. to prevent impeding curve evolution).
We selected � = 0.1.

We minimize (16) with respect to φ(x, y) to determine the corresponding
Euler-Lagrange equation for φ(x, y), which is derived in the supplementary ma-
terial (see also [28]). We then solve for φ(x, y) iteratively by parameterizing the
gradient descent with an artificial time t ≥ 0 to produce the PDE for φ(t, x, y)
as

∂φ

∂t
= δ(φ(x, y))∇w(x, y) · ∇φ(x, y)

|∇φ(x, y)| + w(x, y)δ(φ(x, y))div
�
∇φ(x, y)
|∇φ(x, y)|

�

−(1− w(x, y) + �)δ(φ(x, y))
�
|I(x, y)− c1|2 − |I(x, y)− c2|2

�
= 0

(17)

where φ(0, x, y) represents the initial contour provided to the method.

3 Results and Discussion

Using MATLAB code on a PC with 3.6 GHz Intel Core Duo processor and 2GB
of RAM, we ran a series of tests using a GC wrapper [22], and an implementa-
tion of AC [29], both of which were modified as proposed in Sections 2.4 and 2.5.
We tested various natural images where structural features play an important
role and which are available at the McGill Calibrated Color Database [30]. We
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (color figure) Segmentation of grey object in synthetic image corrupted by
AWGN with increasing standard devation. (a), (b), (c) Original images with std. dev.
of 0.05, 1.05, and 1.90, respectively. (d), (e), (f) Corresponding segmentations from
the proposed adaptive weight (green) and the least-error fixed weight (red) where
yellow regions are where the segmentations overlap. At the high noise level of (c), the
segmentation (f) begins to form holes and inaccuracies.

also tested on magnetic resonance imaging (MRI) data from BrainWeb [31]. To
demonstrate the advantage of our method, we compared against segmentation
results from using the least-error fixed regularization weight, and against seg-
mentation results from using a spatially adaptive regularization weight solely
based in image reliability without any curvature-modulation [13]. For quantita-
tive analysis, we used a set of 18 coronal brain MRI slices with ground truth
segmentations and performed ANOVA to ascertain the improvements in segmen-
tation accuracy afforded by our method. Computationally, the proposed method
required less than a minute to calculate the regularization weights for a 768 ×
576 image. For GC, a low number of random seeds (0.3% of image pixels for each
label) were selected automatically by using the ground truth. For AC, we used
an initial contour of a 50 × 50 square placed in the center of images, and used
the same intial contour for comparison tests against the alternate methods.

We first analyze the robustness of the spatially adaptive regularization weight
(Section 2.2). Figs. 1(a), 1(b), and 1(c) show synthetic images corrupted by
increasing levels of average white Gaussian noise (AWGN). The GC adaptive
weight segmentation for the images corrupted by noise levels of 0.05 and 1.05
std. dev. (Figs. 1(d) and 1(e), respectively) adheres to the corners of the object
and does not leak outside of the object, unlike the fixed weight segmentation
in red. At an extremely high noise level of 1.90 std. dev. shown in Fig. 1(c),
the resulting adaptive weight segmentation (Fig. 1(f)) begins to show holes and
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(a) (b) (c) (d)

Fig. 2. (color figure) Segmentation of MR data from BrainWeb using GC with
curvature-modulated regularization. (a) T1 slice with 20% intensity non-uniformity.
(b) Curvature-modulated reliability calculated by our proposed method. Black inten-
sities corresponds to 0 (low reliability/high regularization) and white to 1. Note higher
reliability in cortical folds. (c) Comparison of segmentations from the proposed adap-
tive weight (green) to the least-error fixed weight (red), and (d) to the non-structural
image reliability weight (blue). Yellow regions are where the segmentations overlap,
and ground truth contour is shown in black. Proposed weights result in better seg-
mentation of high curvature cortical folds (see green) with minimal leakage into the
background, unlike other methods (see red and blue leakage regions).

degradation. Analysis of the Dice similarity coefficient between the adaptive
weight GC segmentations and the the ground truth, for the synthetic image of
Fig. 1 over various noise levels, showed that segmentation accuracy begins to
drop at noise levels greater than 1.75 std. dev.

We next present results of GC segmentation with our proposed regularization
framework on MR images from BrainWeb [31]. Fig. 2(a) shows a T1 image with
an intensity inhomogeneity of 20%. High curvature-modulated reliabilty in the
cortical folds (Fig. 2(b)) results in lower regularization in these regions. The
overlayed GC segmentations (Fig. 2(c)) using the adaptive regularization weight
versus the least-error fixed weight shows greater segmentation accuracy in high
curvature regions. Additionally, the proposed method shows improvements over
the existing non-structural image reliability framework (Fig. 2(d)).

Fig. 3(a) shows the same T1 image of Fig. 2(a) but with a noise level of 7%.
The resulting curvature-modulated reliability map (Fig. 3(b)) is not corrupted
by the noise and still enforces greater regularization in high curvature cortical
folds, as seen in the resultant segmentation comparisons of Fig. 3(c) and Fig.
3(d). At higher noise levels, our proposed curvature modulation results in a more
accurate segmentation than the standard least-error uniform weight, and even
more accurate than the noise-cue image reliability approach.

We also tested GC with our proposed regularization framework on a series
of natural images, such as the flower shown in (Fig. 4(a)), where this image has
been corrupted by AWGN with a standard deviation of 0.3. From this image, we
produced the curvature-modulated reliability mapping in (Fig. 4(b)). The higher
curvature-modulated reliability in the petal tip regions allows for a more accu-
rate segmentation when compared to the least-error fixed weight segmentation
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(a) (b) (c) (d)

Fig. 3. (color figure) Segmentation of noisy MR data from BrainWeb using GC with
curvature-modulated regularization. (a) T1 slice with 7% noise level. (b) Curvature-
modulated reliability. (c) Comparison of segmentations from the proposed adaptive
weight (green) to the least-error fixed weight (red), and (d) to the non-structural image
reliability weight (blue). Even in a high noise case, cortical folds are correctly segmented
with proposed weights.

(a) (b) (c) (d)

Fig. 4. (color figure) GC segmentation of flower image . (a) Original image with AWGN
of standard deviation 0.3. (b) Curvature-modulated reliability (higher in petal tip and
crevice regions) (c) Comparison of segmentations from the proposed adaptive weight
(green) to the least-error fixed weight (red), and (d) to the non-structural image relia-
bility weight (blue) with overlapping regions in yellow. The proposed weights provided
the best segmentation of the petal tips and had the least amount of leakage.

(Fig. 4(c)) and the non-structural image reliability weight segmentation (Fig.
4(d)) which, as expected, required higher regularization in the detailed petal tip
regions, resulting in leakage into the background.

We demonstrate the AC segmentation with our regularization framework on
the dandelion image of Fig. 5(a). Iterations were run until the contour evolu-
tion converged (at most 700 iterations). The low curvature-modulated reliability
(Fig. 5(b)) in regions outside the flower prevents the resulting segmentation from
including objects in the background, unlike the fixed weight segmentation (Fig.
5(c)) which leaked into the background of the image (see the red region). Addi-
tionally, the proposed method segments the petal tips more correctly than the
non-structural image reliability segmentation as shown in Fig. 5(d) (where our
segmentation in green captures all petal tips).
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(a) (b) (c) (d)

Fig. 5. (Color figure, refer to e-copy). Active Contours segmentation of a natural image.
(a) Original image. (b) Curvature-modulated reliability calculated by our proposed
method. (c) Comparison of segmentations from the proposed adaptive weight (green) to
the least-error fixed weight (red), and (d) to the non-structural image reliability weight
(blue). Yellow regions are where segmentations overlap. In (c), high regularization in
the background prevents the segmentation from the proposed weights from leaking,
unlike the fixed-weight method in red. In (d), only our segmentation in green captures
all petal tip details.

(a) (b) (c) (d)

Fig. 6. (color figure) GC segmentation of natural image (a) Original image corrupted by
AWGN with standard deviation of 0.3. (b) Curvature-modulated reliability calculated
by our proposed method. (c) Comparison of segmentations from the proposed adaptive
weight (green) to the least-error fixed weight (red), and (d) to the non-structural image
reliability weight (blue) with overlapping regions in yellow. Proposed method provides
best segmentation of high curvature petal tips and crevices with minimal leakage into
the background.

We segmented the same dandelion again but with corruption by AWGN of
standard deviation 0.3 (image values normalized to range between 0 and 1),
as shown in Fig. 6(a). The curvature-modulated reliability (Fig. 6(b)) produces
lower regularization weights in the petal tips and petal crevices. In Fig. 6(c), the
fixed-weight segmentation excessively regularizes in the petal region, resulting
in leakage (shown in red). Our method does not leak into the background and
is able to capture the petal tips (shown in green). Similarly, in Fig. 6(d), the
non-structural image reliability segmentation misses a few petal tips, which our
method captured.

We demonstrate the ability of the texture-modulated weight defined in (13)
(Section 2.3) to segment the textured image of Fig. 7(a) where we set the parame-
ter γ in (11) to 0.1. The curvature modulated reliability (Fig. 7(b)) is erroneously
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(a) (b)

(c) (d)

Fig. 7. (color figure) GC segmentation of textured natural image using the curvature-
and-texture modulated weight. (a) Original image. (b) Curvature-modulated reliability
calculated by our proposed method with no texture gating. (c) Curvature-and-texture
modulated reliability. (d) Comparison of segmentations from the proposed adaptive
weight (green) to the least-error fixed weight (red) with overlapping regions in yellow.
Incorporation of a texture cue reduces leakage into the background, and proposed
curvature cue reduces regularization in the protrusion region of the plant.

large for regions with texture. The curvature-and-texture modulated reliability
shown in Fig. 7(c) is lower for the texture edges. The resulting GC segmentation
is shown in Fig. 7(d). The higher curvature regions of the plant seedlings are
accurately segmented by the adaptive weight due to lower regularization in these
regions.

Quantitatively, we found significant improvements with the proposed method
on the set of 18 brain MRI slices. Using the AC segmentation method with our
proposed regularization framework to segment for cortical white matter, and
validating with ground truth data, we found our method to produce an average
Dice similarity of 78.4% (standard deviation of 0.0402) compared to 72.52% for
the least-error fixed weight segmentation (std of 0.0728) and 60.68% for the non-
structural image reliability segmentation (std of 0.1481). Our proposed method
was significantly more accurate than the alternate methods with p-values �
0.05. We performed GC segmentations of the cortical white matter on the same
dataset and found an average Dice similarity of 89.91% (std of 0.0317) from
our proposed method, compared to 86.20% (std of 0.0486) for the least-error
fixed weight segmentation and 88.90% (std of 0.0331) for the non-structural
image reliability segmentation. Again, our proposed method was significantly
more accurate with all p-values � 0.05. For each slice, we averaged 25 GC
segmentations with random seed selections to determine the Dice similarity for



Adaptive Regularization using Image Curvature Cues 13

that slice. In addition, we investigated the effect of removing the noise-gating
of the curvature measure. We found the resulting segmentation to be 25% less
accurate when tested on the image of Fig. 6(a).

4 Conclusion

The key goal of our proposed method was to prevent excessive regularization
of structurally important regions in energy minimization based segmentation.
We presented a novel local curvature-based structural cue for modulating reg-
ularization. This cue was made robust to noise through gating by local signal
reliability. Unlike current methods that employ curvature either as an internal or
an external energy term, we use curvature to balance the competing internal and
external energy terms. Accordingly, highly curved yet reliable boundary regions
are spared from regularization.

We incorporated our proposed regularization framework into graph cuts and
active contours for image segmentation. We demonstrated superior performance
when compared to non-contextual regularization weights, as well as to adaptive,
but curvature-oblivious, regularization cues. Quantitative and qualitative tests
demonstrated that curvature-controlled regularization improves accuracy since
it is common for image data to contain object boundaries of varying degrees
of curvature. Future work will focus on extending our proposed cues and regu-
larization framework to 3D image data, as well as adopting measures for other
types of noise, e.g. spatially correlated non-Guassian noise.
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A Appendix: Derivation of Evolution Equations for
Active Contours without Edges

We implemented our proposed adaptive regularization within the popular Active

Contours Without Edges(AC) segmentation framework by Chan and Vese [1].

The segmentation is represented here via a Lipschitz function,φ(x, y) : Ω → R,

where pixels p interior to the zero-level set of φ(x, y) are labeled as objects and

exterior pixels as background. We use (x, y) to reflect the location of a pixel p.

In the original formulation [1], the segmentation energy, E(φ) is given by:

E(φ(x, y)) = µ

�

Ω
δ (φ(x, y)) |∇φ(x, y)| dxdy +

+λ1

�

Ω
|I(x, y)− c1|2 H (φ(x, y)) dxdy +

+λ2

�

Ω
|I(x, y)− c2|2 (1−H (φ(x, y))) dxdy (A.1)

where the first term represents the contour length and is the internal energy

(regularizing) term, H(x) is the Heaviside function, and I(x, y) is the original

image. The latter two terms in (A.1) are external (data) terms, and c1 and c2

are the averages of I(x, y) inside and respectively outside the contour, as defined

in [1]. λ1, λ2 and µ are constants that control the balance between smoothing

and data adherence of the contour. Additionally, we use the notation

|∇φ(x, y)| =

��
∂φ

∂x

�2

+

�
∂φ

∂y

�2

(A.2)
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We modified (A.1) to incorporate spatially adaptive regularization by replacing

λ1, λ2 and µ with an adaptive convex weighting as follows:

E(φ(x, y)) =

�

Ω
w(x, y)δ(φ(x, y)) |∇φ(x, y)| dxdy

+

�

Ω
(1− w(x, y) + �) |I(x, y)− c1|2 H(φ(x, y))dxdy +

+

�

Ω
(1− w(x, y) + �) |I(x, y)− c2|2 (1−H (φ(x, y))) dxdy (A.3)

where � prevents a zero data force term (i.e. to prevent impeding curve evolution).

We selected � = 0.001.

We determine φ(x, y) that minimizes (A.3) by using the Euler-Lagrange equa-

tion to solve the gradient descent PDE :

∂φ

∂t
= −∂E

∂φ
= −

�
∂L

∂φ
− d

dx

∂L

∂φx
− d

dy

∂L

∂φy

�
= 0 (A.4)

where

L = w(x, y)δ(φ(x, y)) |∇φ(x, y)| +
+(1− w(x, y) + �) |I(x, y)− c1|2 H(φ(x, y)) +

+(1− w(x, y) + �) |I(x, y)− c2|2 (1−H(φ(x, y))) (A.5)

and where we use the notation φx =
∂φ
∂x .

We first determine the partial derivative
∂L
∂φ as follows:

∂L

∂φ
=

∂

∂φ
w(x, y)δ(φ(x, y)) |∇φ(x, y)| +

+
∂

∂φ
(1− w(x, y) + �) |I(x, y)− c1|2 H(φ(x, y)) +

+
∂

∂φ
(1− w(x, y) + �) |I(x, y)− c2|2 (1−H(φ(x, y))) (A.6)

which in expanded format is:

∂L

∂φ
=

∂

∂φ
w(x, y)δ(φ(x, y)) |∇φ(x, y)| +

+
∂

∂φ
(1− w(x, y) + �) |I(x, y)− c1|2 H(φ(x, y)) +

+
∂

∂φ
(1− w(x, y) + �) |I(x, y)− c2|2 − ∂

∂φ
(1− w(x, y) + �) |I(x, y)− c2|2 H(φ(x, y))

(A.7)

We use the property

∂

∂φ
H(φ(x, y)) = δ(φ(x, y)) (A.8)
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and the fact that

∂

∂φ
(1− w(x, y) + �) |I(x, y)− c2|2 = 0 (A.9)

to simplify (A.7) as follows:

∂L

∂φ
= w(x, y)δφ(φ(x, y)) |∇φ(x, y)| +

+(1− w(x, y) + �)δ(φ(x, y))

�
|I(x, y)− c1|2 − |I(x, y)− c2|2

�
(A.10)

We then determine
∂L
∂φx

by:

∂L

∂φx
=

∂

∂φx
w(x, y)δ(φ(x, y)) |∇φ(x, y)| +

+
∂

∂φx
(1− w(x, y) + �)δ(φ(x, y)) |I(x, y)− c1|2 H(φ(x, y)) +

+
∂

∂φx
(1− w(x, y) + �)δ(φ(x, y)) |I(x, y)− c2|2 (1−H(φ(x, y))) (A.11)

Note that

∂

∂φx
(1− w(x, y) + �)δ(φ(x, y)) |I(x, y)− c1|2 H(φ(x, y)) = 0 (A.12)

and

∂

∂φx
(1− w(x, y) + �)δ(φ(x, y)) |I(x, y)− c2|2 (1−H(φ(x, y))) = 0, (A.13)

Additionally, we note that

∂

∂φx
w(x, y)δ(φ(x, y)) |∇φ(x, y)|

= w(x, y)δ(φ(x, y))
∂

∂φx
|∇φ(x, y)|

= w(x, y)δ(φ(x, y))
2φx

2

��
∂φ
∂x

�2
+

�
∂φ
∂y

�2

= w(x, y)δ(φ(x, y))
φx

|∇φ(x, y)| (A.14)

Thus we can simplify (A.11) to

∂L

∂φx
= w(x, y)δ(φ(x, y))

φx

|∇φ(x, y)| (A.15)

Similarily, we obtain the following for
∂L
∂φy

:

∂L

∂φy
= w(x, y)δ(φ(x, y))

φy

|∇φ(x, y)| (A.16)
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We then take the derivative of (A.15) with respect to x as follows:

d

dx

�
∂L

∂φx

�
=

d

dx

�
w(x, y)δ(φ(x, y))

φx

|∇φ(x, y)|

�
(A.17)

Using the product rule

d(AB)

dx
= A

dB

dx
+ B

dA

dx
, (A.18)

and noting that due to the chain rule,

d

dx
δ(φ(x, y)) = δφ(φ(x, y))φx, (A.19)

we expand (A.17) as follows:

d

dx

�
∂L

∂φx

�
=

d

dx
(w(x, y))δ(φ(x, y))

φx

|∇φ(x, y)| +

+w(x, y)
d

dx
(δ(φ(x, y)))

φx

|∇φ(x, y)| + w(x, y)δ(φ(x, y))
d

dx

�
φx

|∇φ(x, y)|

�

= wx(x, y)δ(φ(x, y))
φx

|∇φ(x, y)| + w(x, y)δφ(φ(x, y))φx
φx

|∇φ(x, y)| +

+w(x, y)δ(φ(x, y))
d

dx

φx

|∇φ(x, y)|

= wx(x, y)δ(φ(x, y))
φx

|∇φ(x, y)| + w(x, y)δφ(φ(x, y))
φ

2
x

|∇φ(x, y)| +

+w(x, y)δ(φ(x, y))
d

dx

φx

|∇φ(x, y)|(A.20)

Similarily, we take the derivative of (A.16) with respect to y as follows:

d

dy

�
∂L

∂φy

�
= w(x, y)δφ(φ(x, y))

φ
2
y

|∇φ(x, y)| +

+wy(x, y)δ(φ(x, y))
φy

|∇φ(x, y)| + w(x, y)δ(φ(x, y))
d

dy

φy

|∇φ(x, y)| (A.21)

We then combine (A.20) and (A.21). We first note that

φ
2
x + φ

2
y

|∇φ(x, y)| = |∇φ(x, y)| (A.22)

and thus

w(x, y)δφ(φ(x, y))

�
φ

2
x

|∇φ(x, y)| +
φ

2
y

|∇φ(x, y)|

�
= w(x, y)δφ(φ(x, y)) |∇φ(x, y)|

(A.23)
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We also note that

wx(x, y)
φx

|∇φ(x, y)| + wy(x, y)
φy

|∇φ(x, y)| = ∇w(x, y) · ∇φ(x, y)

|∇φ(x, y)| . (A.24)

Additionally, using (A.18) we note that

d

dx

φx

|∇φ(x, y)| +
d

dy

φy

|∇φ(x, y)|

= φx
d

dx

�
1

|∇φ(x, y)|

�
+

1

|∇φ(x, y)|
d

dx
φx + φy

d

dy

�
1

|∇φ(x, y)|

�
+

1

|∇φ(x, y)|
d

dy
φy

=

�
φx

d

dx

�
1

|∇φ(x, y)|

�
+ φy

d

dy

�
1

|∇φ(x, y)|

��
+

1

|∇φ(x, y)|

�
∂

2
φ

∂x2
+

∂
2
φ

∂y2

�

= ∇φ ·∇ 1

|∇φ(x, y)| +
1

|∇φ(x, y)|div(∇φ)

(A.25)

Since the divergence of a scalar function γ and a vector F is as follows:

div(γF) = (∇γ) · F + γdiv(F), (A.26)

we can simplify (A.25) by using the substitution γ =
1

|∇φ(x,y)| and F = ∇φ as

follows:

d

dx

φx

|∇φ(x, y)| +
d

dy

φy

|∇φ(x, y)| = div

�
∇φ(x, y)

|∇φ(x, y)|

�
(A.27)

Thus, we note

w(x, y)δ(φ(x, y))

�
d

dx

φx

|∇φ(x, y)| +
d

dy

φy

|∇φ(x, y)|

�

= w(x, y)δ(φ(x, y))div

�
∇φ(x, y)

|∇φ(x, y)|

�
(A.28)

From (A.23), (A.24), and (A.28), we combine (A.20) and (A.21) as follows:

d

dx

�
∂L

∂φx

�
+

d

dy

�
∂L

∂φy

�
= w(x, y)δφ(φ(x, y)) |∇φ(x, y)| +

+δ(φ(x, y))∇w(x, y) · ∇φ(x, y)

|∇φ(x, y)| + w(x, y)δ(φ(x, y))div

�
∇φ(x, y)

|∇φ(x, y)|

�
(A.29)

We substitute (A.10) and (A.29) into the Euler-Lagrange (A.4) to obtain the

final evolution equation that corresponds to the functional (A.3).

∂φ

∂t
= δ(φ(x, y))∇w(x, y) · ∇φ(x, y)

|∇φ(x, y)| + w(x, y)δ(φ(x, y))div

�
∇φ(x, y)

|∇φ(x, y)|

�
+

−(1− w(x, y) + �)δ(φ(x, y))

�
|I(x, y)− c1|2 − |I(x, y)− c2|2

�

(A.30)
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