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Abstract 

 
Noise confounds present serious complications to 

accurate data analysis in functional magnetic resonance 
imaging (fMRI). Simply relying on contextual image 
information often results in unsatisfactory segmentation 
of active brain regions. To remedy this, we propose a 
novel Group Markov Random Field (Group MRF) that 
extends the neighborhood system to other subjects to 
incorporate group information in modeling each 
subject’s brain activation. Our approach has the distinct 
advantage of being able to regularize the states of both 
intra- and inter-subject neighbors without having to 
create a stringent one-to-one voxel correspondence as in 
standard fMRI group analysis. Also, our method can be 
efficiently implemented as a single MRF, hence enabling 
activation maps of a group of subjects to be 
simultaneously and collaboratively segmented. We 
validate on both synthetic and real fMRI data and 
demonstrate superior performance over standard 
analysis techniques. 
 

1. Introduction 
Image noise remains a major challenge to accurate 

segmentation. In scenarios with only a moderate level of 
sparsely distributed noise, regularization approaches that 
exploit contextual image information, such as Markov 
Random Fields (MRF), typically perform well in 
segmenting the objects of interest [1]. However, if the 
majority of image voxels are corrupted by strong noise, 
MRFs may not be effective due to the lack of reliable 
neighbors. The heart of the problem is that, in certain cases, 
there may simply be insufficient information within a 
single image to enable reliable segmentation. Additional 
information is thus needed in these situations. If multiple 
images containing objects of the same class are available, 
one can exploit common features shared among the images 
to enhance the segmentation of each image. This general 
idea of incorporating group information is widely used in 
many areas including recognition [2], registration [3], and 
reconstruction [4]. A popular approach is to build a model 

or template from a set of training images that is then used 
to segment new images [2]. Alternatively, one may use 
multiple templates to generate candidate labels that are 
subsequently reconciled using e.g. majority voting to fuse 
these labels into a single segmentation [5]. Generating 
representative models, however, can be quite difficult for 
certain applications, such as medical imaging where even 
experts oftentimes cannot provide consistent, accurate 
ground truth segmentations. Under such circumstances, 
unsupervised approaches are needed.  

 A few recent unsupervised approaches have alluded to 
the importance of aggregating information over a set of 
candidate segmentations. A notable approach called 
“ensemble clustering” that combines outputs from multiple 
clustering algorithms has shown superior performance over 
using each algorithm separately [6]. In [7], Ward and 
Hamarneh proposed extracting skeletons from a group of 
images and applied majority voting to prune each skeleton 
with robust results demonstrated. In this work, we extend 
this fundamental idea of drawing consensus across images 
to the analysis of functional magnetic resonance imaging 
(fMRI) data, where the highly complex noise structure and 
the lack of ground truth segmentation render group-wise 
unsupervised approach particularly attractive.  

In a typical fMRI experiment, multiple subjects (usually 
10-15) are recruited to perform a certain task, e.g. finger 
tapping, while three dimensional (3D) MRI scans of their 
brains are acquired at regular time intervals. Neurons 
within brain regions involved will fire in response to task 
stimulus, which alters the oxygenation level in nearby 
tissues, resulting in an intensity change in the MR signal. 
This induced signal contrast is referred to as blood oxygen 
level dependent (BOLD) contrast, which is widely used as a 
basis for inferring brain activation. However, confounds 
such as scanner noise, head motion, and oxygen level 
changes arising from the cardiac and respiratory cycles have 
perplexing effects on the BOLD signal, which greatly 
complicates accurate analysis of fMRI data. 

The standard way of analyzing fMRI data involves 
examining the intensity changes of each voxel over time 
and statistically comparing each voxel’s intensity time 
course against a hypothesized response. A general linear 
model (GLM) is typically used for this purpose, where 
statistics reflecting the degree of similarity between the 
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stimulus and voxel time courses are generated and 
assembled into an activation statistics map [8]. A threshold 
is then applied to identify the activated voxels. Since each 
voxel is analyzed independently, voxel interactions are 
ignored despite that each voxel is unlikely to function in 
isolation. Therefore, some have proposed modeling 
activation statistics maps as MRFs to incorporate 
contextual image information [9], while others employed 
Bayesian approaches to directly integrate neighborhood 
information into the activation statistics estimates [10]. 
Encouraging neighboring voxels to have similar labels (e.g. 
active or non-active) helps reduce the number of isolated 
voxels falsely declared as active. However, solely relying 
on contextual image information is often inadequate to 
deal with the inherently low signal-to-noise (SNR) of fMRI 
data. Thus, pooling additional information from other 
subjects may prove beneficial [11]. 

In most fMRI studies, the standard approach for 
aggregating information across subjects is to first non-
rigidly register the anatomical image of each subject onto a 
common brain template with the same transform applied to 
the activation statistics map. Statistical testing is then 
applied to activation statistics assembled across subjects to 
delineate the commonly active voxels. The resulting group 
map is then taken as representative of all subjects. The 
implicit assumption is that a one-to-one correspondence 
exists between the active voxels across subjects and that the 
voxels are perfectly aligned in the template space. 
However, due to the large anatomical inter-subject 
variability, rarely can the anatomical images be perfectly 
aligned to the template. Hence, registration errors pose 
major limitations to the standard analysis approach. In fact, 
even if one manages to align the anatomical images 
perfectly, whether a one-to-one functional correspondence 
exists between voxels is debatable. The considerable 
functional inter-subject variability observed in past studies 
[12] suggests that such voxel correspondence does not 
likely exist. Nevertheless, active voxels within brain 
regions involved with the experimental tasks are often 
consistently found across subjects, though the exact 
locations are usually different [12]. The question thus 
becomes whether the observed functional variability is due 
to noise or true inter-subject differences. If the observed 
variability mainly arises from noise, incorporating group 
information to segment each subject’s activation statistics 
map may better reveal inter-subject commonalities.  

In this paper, we propose exploiting group information 
in fMRI analysis by modeling the activation map of each 
subject as an MRF with the neighborhood system extended 
to other subjects. Our approach thus jointly accounts for 
the states of both intra- and inter-subject neighbors in 
estimating the state of each voxel. Also, by incorporating 
group information in segmenting each subject’s activation 
map, as opposed to estimating a group map, both inter-
subject commonalities as well as differences can be 

studied. In our proposed formulation, MRFs of all subjects 
can be jointly and cooperatively solved as a single MRF. 
We thus refer to our proposed method as ‘Group MRF’. 

2. Proposed method 
Our proposed method mimics a neurologist’s expertise 

deployed in deciding if a voxel is active. Specifically, to 
determine if voxel j in subject i is active, one may first 
examine the spatial neighbors of voxel j. However, if the 
neighboring voxels are found to be too noisy or unreliable, 
one may have to consider voxels of other subjects located 
in proximity to voxel j. Since only voxels proximal to each 
other are hypothesized to be in a similar state, the stringent 
requirement for a one-to-one voxel correspondence is 
alleviated. Instead, a relaxed condition of requiring only the 
brain structures of the subjects to be approximately aligned 
is in place. Based on this intuition, we propose to model 
each subject’s activation statistics map as an MRF whose 
neighborhood system extends to other subjects (Fig. 1). 
Since the vast anatomical variability in real fMRI data 
renders accurate whole-brain registration difficult, we 
employ an alternative approach, where we define regions of 
interest (ROIs) and perform alignment at the regional level. 
This approach ensures that no brain structures will be 
mistakenly declared as part of another structure as often 
encountered with whole-brain registration. 
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Fig. 1. Proposed Group MRF. Each subject’s ROI activation 
map is modeled as an MRF with its neighborhood system 
extended to other subjects to incorporate group information. 

2.1. Group MRF 
Let Gi = (Vi,Ei) be a graph, where Ei = εi U ε~i, Vi and εi 

are the sets of voxels and edges within subject i’s ROI, and 
ε~i is the set of edges between subject i and other subjects. 
Also, let jpεi be the intra-subject edge between voxels j 
and p and jqε~i be the inter-subject edge between voxel j 
and q. Delineation of subject i’s ROI activation statistics 
map can be formulated as the following MRF energy 
minimization problem: 
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where xr
mL = {1…K} is the label assigned to voxel r, m 

indicates the experimental task, θj
m(xj

m) denotes a unary 
potential, and ),( m

p
m
j

m
jp xx and ),( m

q
m
j

m
jq xx  are intra- and inter-

subject pairwise potentials. α is used to adjust the 
contribution of the pairwise potentials while γ balances the 
contribution of intra- and inter-subject pairwise potentials. 

2.2. Unary potential 
Let tj

m be the activation statistic of voxel j. If voxel j has 
a low probability of being activated during task m, we 
penalize labeling xj as active, and vice versa. Our unary 
potential is thus defined as: 

)|(1)( m
j

m
j

m
j

m
j tkxpkx  , (2) 

where p(xj
m

  = k |tj
m) is the probability of xj

m being assigned 
label k given tj

m, estimated using a constrained Gaussian 
mixture model (CGMM) [13], as detailed in Section 2.4.   

2.3. Pairwise potentials 
The proposed extended neighborhood system consists of 

an intra- and an inter-subject component. For the intra-
subject component, we use the Pott’s model potential: 
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where δ(y) = 1 if y = 0 and 0 otherwise, and edges are 
added between the 4- and 6-connected spatial neighbors for 
the 2D and 3D case, respectively. For the inter-subject 
component, we also use the Pott’s model potential: 
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j

m
jq xxxx   . (4) 

Edges are added between voxel j of subject i and its c 
nearest inter-subject neighbors for every subject pair. 

2.4. Algorithm implementation 
The proposed method can be implemented as a single 

MRF by treating the voxels of all subjects as a single set 
and adding edges within and between all subjects in the 
manner described in Section 2.3. Since we are labeling the 
voxels as either active or non-active (i.e. K = 2) as in [13], 
globally optimal labels for this Group MRF’s energy 
function (5) can be estimated using binary graph cut [14]. 
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where Ns is the number of subjects and 0.5 is introduced to 
avoid penalizing each inter-subject edge twice. By using 

this implementation strategy, activation statistics maps of 
all subjects can be jointly and collaboratively segmented.  

We set α in (5) to 1/Ns to scale the cumulative 
contribution of the subjects to a level similar to that of a 
single subject, and thus ensures that the pairwise potentials 
will not dominate over the unary potential. The choice of γ 
depends on the degree of inter-subject variability, which is 
unknown a priori. We have thus set γ to 0.5 to weight 
subject i’s own information more than that of other 
subjects. Nevertheless, varying γ by ±0.2 (i.e. ±40%) did 
not significantly affect the results. To compute p(xj

m
 = 

k|tj
m) in (2), we first estimate tj

m using a GLM [8]: 
jjj Xy   , (6) 

)(/ m
j

m
j

m
j set  , (7) 

where yj is the intensity time course of voxel j, ωj is 
assumed to be white Gaussian noise, βj is a vector 
containing the estimated effects βj

m for the various tasks, 
and se(βj

m) is the standard error of βj
m [15]. X is a design 

matrix with boxcar functions (time-locked to task stimuli) 
convolved with the hemodynamic response (HDR) as 
regressors [8]. Based on tj

m, p(xj
m = k|tj

m) can be estimated 
using a CGMM [13], as shown graphically in Fig. 2.  
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Fig. 2. Graphical depiction of constrained GMM for computing 
the unary potential θj

m(xj
m).  

 

In CGMM, tj
m is assumed to be generated from a mixture 

of K Gaussian distributions with mixing coefficients πk
m, 

means µk
m, and variance 2m

k . Conjugate priors are used to 

constrain the model parameters µk
m, 2m

k , and πk
m: 
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where IG(a,b) and Dir(α) denote inverse Gamma and 
Dirichlet distributions. Adding priors mitigates the 
singularity problem in maximum likelihood solutions, i.e. 
µk

m collapsing onto tj
m with 2m

k  approaching 0, thus 
assigning infinite probability at tj

m. Also, having priors 
allows us to encode our knowledge of µk

m into the model. 
Specifically, we know that tj

m of non-active voxels should 
theoretically be 0 and the threshold used for delineating the 
active voxels given tj

m is roughly between 3 and 4 based on 
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Gaussian Random Field (GRF) theory [8]. This prior 
knowledge is encoded into η with τ2 set to 1. As for 2m

k , 
we use an uninformative prior by setting both a and b to 
0.5 [13], since little is known about this parameter. α is set 
to 1/K assuming equal prior probabilities of being assigned 
any one of the K labels. Gibbs sampling is employed to 
compute p(xj

m = k | tj
m) [13]: 
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where Nv is the number of voxels in subject i’s ROI and 
zj

m,k is an indicator variable set to 1 if voxel j during task m 
is estimated to be in state k, and 0 otherwise.  For the inter-
subject pairwise potential, we have empirically set c to 3, 
but increasing c to 4 or 5 had little effects on the results. 

3. Synthetic data experiments 
To validate our proposed method, we generated 500 

synthetic datasets, each consisting of ten subjects. The 
activation pattern comprised three clusters (Fig. 3). The 
signal intensity of the active voxels (marked with circles in 
Fig. 3) was set to decrease exponentially as a function of 
distance from the respective activation centroid of each 
cluster. The smaller cluster was added to test whether 
Group MRF can detect spatially isolated active voxels that 
are consistently present across subjects. The synthetic time 
courses of active voxels were generated by convolving a 
box-car function, having the same stimulus timing as in 
our experiment (Section 4.1), with a canonical HDR [8] 
and adding Gaussian noise. We introduced additional inter-
subject variability to emulate two potential cases. In the 
first case, which we refer to as the common cluster 
location (CCL) case (Fig. 3(a)-(d)), the location of the 
clusters were fixed but the placement of the activation 
centroids (i.e. location away from which the signal of the 
active voxels decrease) were varied across subjects and 
permitted to be anywhere within the clusters. This case 
emulates the situation where the active regions completely 
overlap between subjects but the location at which the 
BOLD signal concentrates varies. Hence, it will appear 
that there is little overlap between the active regions of the 
subjects. In the second case, which we refer to as the 

varying cluster location (VCL) case (Fig. 3(e) & (f)), we 
randomly varied the locations of the two larger clusters 
across subjects. This case models the situation where the 
active regions of the subjects do not completely overlap. 
The maximum cluster misalignment was set to two voxels 
(~30% of the cluster width) in both the vertical and 
horizontal directions. The maximum SNR was set as 0.5 
for both cases in Fig. 3, i.e. voxels near the activation 
centroids had an SNR close to 0.5, whereas voxels away 
from the activation centroids had an SNR below 0.5. 

For comparisons, we also tested the following methods: 
(i) GLM with Gaussian smoothing and a threshold based 
on GRF theory for a p-value of 0.05 [8], (ii) MRF 
separately applied to each subject’s tj

m map, and (iii) 
second level GLM (i.e. substituting spatially smoothed βj

m 
of all subjects into yj in (6) and setting X as a column of 
ones) with a GRF threshold [8]. We refer to methods (i), 
(ii), and (iii) as individual GLM (iGLM), individual MRF 
(iMRF), and group GLM (gGLM), respectively. 

3.1. Common cluster location 
Fig. 3(a)-(d) shows the qualitative results for the CCL 

case.  Only results from four of the ten subjects in one of 
the synthetic datasets are plotted due to space limitations. 
Using iGLM missed most of the active voxels away from 
the activation centroids, whereas using iMRF resulted in 
more active voxels identified, although active voxels with 
tj

m below 3 were largely undetected. Also, the smaller 
cluster was missed due to lack of intra-subject active 
neighbors. Using gGLM detected more mildly activated 
voxels, but the spatial smoothing required for using GRF 
threshold resulted in many false positives. Using Group 
MRF detected most of the active voxels, including those 
with tj

m well below 3. Also, Group MRF consistently 
detected the smaller cluster in all subjects. To quantify the 
performance, we computed the average Dice similarity 
coefficient (DSC) over the 500 synthetic datasets (Fig. 4). 

FNFPTP
TPDSC




2
2 , (16) 

where TP, FP, and FN denote the number of true positives, 
false positives, and false negatives, respectively. 

As evident from the low DSC for iGLM and iMRF, a 
single subject’s information may be insufficient to obtain 
satisfactory segmentation at low SNR, even when 
contextual information is considered. This result confirms 
our argument for incorporating additional information. 
Solely relying on group information, however, can also be 
problematic as apparent from the gGLM results, where 
increasing SNR reduced DSC. This counter-intuitive 
finding can be explained as follows. Since the locations of 
the activation centroids are randomly varied across 
subjects, βj

m at each voxel location will thus be different 
between subjects. Considering that the range of βj

m values 
is governed by the SNR, increasing SNR will increase
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(a) iGLM with Gaussian spatial smoothing and threshold estimated based on GRF theory (common cluster location) 
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(b) iMRF separately applied to each subject (common cluster location) 
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(c) gGLM with Gaussian spatial smoothing and threshold estimated based on GRF theory (common cluster location) 
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(d) Proposed Group MRF (common cluster location) 
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(e) gGLM with Gaussian spatial smoothing and threshold estimated based on GRF theory (varying cluster location) 
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(f) Proposed Group MRF (varying cluster location) 

Fig. 3. Synthetic data results. tjm plotted with dots and circles indicating detected and ground truth active voxels. tjm maps along each 
column correspond to the same subject’s activation map for each test case, but appears different due to spatial smoothing employed in 
GLM. For the CCL case, Group MRF (d) detected the majority of active voxels, whereas iGLM (a) and iMRF (b) failed to obtain such 
delineation. gGLM (c) also detected most of the active voxels, but included many false positives. For the VCL case, Group MRF (f) was 
able to adapt to the cluster variations, whereas the single group map approach of gGLM (e) does not facilitate such adaptation. 
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Fig. 4. DSC of the four contrasted methods for the CCL case at 
various SNR levels. Group MRF consistently outperformed all 
the other methods. Note: DSC of iGLM = 0 at SNR = 0.25. 
 

inter-subject variability in βj
m, which decreases TP, hence a 

reduction in DSC. In contrast, using Group MRF resulted 
in higher DSC for all SNR levels compared to the other 
methods. Also, unlike gGLM, the DSC of Group MRF 
increased with increasing SNR. The reason is that Group 
MRF does not directly compare tj

m across subjects. Instead, 
group information is integrated by first assigning a label to 
each voxel and then estimating the state of a voxel based on 
consensus of labels between the intra- and inter-subject 
neighbors. Note that at higher SNR where more reliable 
information is available within each subject, adding group 
information still improved results over using iGLM and 
iMRF alone. Moreover, increasing the number of subjects 
increased DSC as shown in Fig. 5. 
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Fig. 5. DSC vs. number of subjects for the CCL synthetic test 
using Group MRF at varying levels of SNR. Increasing the 
number of subjects consistently increased DSC. 

3.2. Varying cluster location 
Qualitative results for the VCL test case are shown in Fig. 
3(e)-(f). iGLM and iMRF resulted in similar performance 
as in the CCL case, since neither method depends on group 
information. Therefore, we omitted these results from Fig. 
3. Using gGLM, many active voxels near the cluster 
borders were missed due to cluster misalignments. In 
contrast, Group MRF was able to adapt to the inter-subject 
differences with more active voxels identified and fewer 
false positives declared. This adaptability arises from the 
fact that, unlike gGLM, Group MRF does not solely rely 
on group consensus but also uses subject-specific 
information to segment each subject’s tj

m map. Thus, the 
more pronounced inter-subject differences were preserved. 
Quantitative results show that Group MRF again 

outperformed all other methods (Fig. 6). We note that 
increasing the number of subjects did not increase DSC 
initially (Fig. 7), since when the number of subject is low, 
it is difficult to draw consensus with the added cluster 
misalignments. Nevertheless, after adding seven subjects, 
DSC began and continued to increase, thus demonstrating 
Group MRF’s robustness to inter-subject variability. 
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Fig. 6. DSC of the four contrasted methods for the VCL case at 
various SNR levels. Group MRF again outperformed all other 
methods. Note: DSC of iGLM = 0 at SNR = 0.25. 
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Fig. 7. DSC vs. number of subjects for VCL case using Group 
MRF. DSC decreased initially due to cluster misalignments, but 
eventually increased when enough subjects were deployed. 

4. Real data analysis 
4.1. Materials 

After obtaining informed consent, fMRI data were 
collected from 10 healthy subjects (3 men, 7 women, mean 
age 57.4  14 years). Each subject used their right hand to 
squeeze a bulb with sufficient pressure to maintain a bar 
shown on a screen within an undulating pathway. The 
pathway remained straight during baseline periods and 
became sinusoidal at a frequency of 0.25 Hz (slow), 0.5 Hz 
(medium) or 0.75 Hz (fast) during time of stimulus. Each 
session lasted 260 s, alternating between baseline and 
stimulus of 20 s duration. Functional MRI was performed 
on a Philips Gyroscan Intera 3.0 T scanner (Philips, Best, 
Netherlands) equipped with a head-coil. T2*-weighted 
images with BOLD contrast were acquired using an echo-
planar (EPI) sequence with an echo time of 3.7 ms, a 
repetition time of 1985 ms, a flip angle of 90°, an in plane 
resolution of 128×128 pixels, and a pixel size of 1.9×1.9 
mm. Each volume consisted of 36 axial slices of 3 mm 
thickness with a 1 mm gap. A 3D T1-weighted image 
consisting of 170 axial slices was further acquired to 
facilitate anatomical localization of activation. Slice timing 



 

 

and motion correction were performed using Brain 
Voyager (Brain Innovation B.V.). Further motion 
correction was performed using motion corrected 
independent component analysis (MCICA) [16]. The voxel 
time courses were high-pass filtered to account for 
temporal drifts and temporally whitened using an 
autoregressive AR(1) model. No whole-brain registration 
or spatial smoothing was performed. For testing our 
proposed method, we selected the left primary motor 
cortex (M1) as the region of interest, since the left M1 is 
known to activate during right-hand motor movements 
(Fig. 8). Anatomical delineation of the left M1 was 
performed by an expert based on anatomical landmarks and 
guided by a neurological atlas. The segmented ROIs were 
resliced at fMRI resolution for extracting preprocessed 
voxel time courses within each ROI. The anatomical ROIs 
were rigidly aligned (Fig. 8) using a method that models 
each ROI point cloud as a Gaussian mixture and registers 
the ROIs by aligning the mixture distributions [3]. 
Enhanced robustness to noise and outliers was shown with 
this method over standard techniques [3]. 

 
Fig. 8. Homunculus. Hand area of M1 is circled in Homunculus 
diagram. Approximate corresponding area in the rigidly aligned 
ROIs is indicated. Homunculus courtesy of thebrain.mcgill.ca. 

4.2. Results and discussion 
Results obtained with Group MRF applied to real data 

are shown in Fig. 9. Again for comparisons, we tested 
iGLM, iMRF, and gGLM. For gGLM, we took the union 
of the ROI point clouds (Fig. 8) to create an ROI template, 
interpolated βj

m in the template space, spatially smoothed 
the βj

m with a 8mm full-width half-maximum Gaussian 
kernel, and applied a second level GLM to compute tj

m [8]. 
For both iGLM and gGLM, a GRF threshold at a p-value 
of 0.05 was used. [8]. Note that activation changes in M1 
may be very subtle between the task and baseline 
conditions, since both required motor squeezing. We thus 
expect a low SNR for the tj

m maps. Only tj
m of the fast 

condition is plotted due to space limitations. 
Due to low SNR, iGLM missed most voxels in the hand 

region (Fig. 8). In contrast, iMRF detected many voxels in 
the hand region, but also falsely declared wide areas 
adjacent to the hand region as active. We suspect these 
falsely detected areas arose from insufficient information 
in each subject’s tj

m map to correctly determine which 
voxels were truly active. For gGLM, we interpolated the 
group map back onto each subject’s ROI to facilitate 
clearer comparisons. gGLM detected the hand region in 

general. However, closely comparing the tj
m maps (Fig. 

9(a)) with the thresholded maps (Fig. 9(d)) showed that a 
number of voxels directly adjacent to the detected region 
had tj

m above some of the voxels within the detected region 
but were falsely declared as non-active. These voxels, in 
addition to the hand region, were correctly detected using 
Group MRF despite the apparent high degree of inter-
subject variability (Fig. 9(a)). Thus, the results again 
demonstrate that Group MRF has the highly desired 
capability of identifying inter-subject commonalities, while 
preserving the more pronounced inter-subject differences. 

5. Conclusions 
We proposed a novel method that incorporates group 

information for accurate segmentation of fMRI activation 
maps. By modeling activation maps of a group of subjects 
as a Group MRF, all subjects’ information is jointly 
exploited. Also, our presented formulation enables all 
subjects’ activation maps to be simultaneously segmented 
using binary graph cut, which guarantees global optimality. 
Moreover, our proposed approach permits group 
information to be integrated without having to establish a 
one-to-one voxel correspondence as in conventional fMRI 
group analysis. Applying Group MRF to synthetic data for 
a range of SNR showed superior performance over 
standard techniques. On real data, Group MRF was able to 
consistently detect active voxels in regions known to be 
involved with the experimental task employed, whereas 
techniques relying on single subject failed. Our results thus 
indicate great promise for the proposed group-wise 
approach in handling noisy data. 
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(a) Non-smoothed t-maps separately estimated for each subject using GLM 
 

          
(b) iGLM with Gaussian smoothing and threshold estimated based on GRF theory 

 

         
 

(c) iMRF separately applied to each subject 
 

                   
(d) gGLM with Gaussian smoothing and threshold estimated based on GRF theory 

 

                     
(e) Proposed Group MRF 

 

Fig. 9. Real data results for all 10 subjects. Blue in (b)-(d) indicates detected active voxels in the left M1. iGLM(b) failed to detect the hand 
region shown in Fig. 8, whereas iMRF(c) detected the hand region but also falsely declared adjacent areas as active. gGLM (d) detected 
the hand region, but neglected several adjacent voxels that were moderately active. Examples of such voxels (that can be easily identified in 
the ROI orientation shown) are indicated with a red arrow. Group MRF (e) correctly detected the hand region including the moderately 
active voxels neglected by gGLM, thus demonstrating Group MRF’s ability to adapt to inter-subject differences. 
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