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Abstract The application of local derivative operators to the image
at any scale in scale-space is given by:

Many feature detection algorithms rely on the choice
of scale. In this paper, we complement standard scale- Lamyn (2, y;8) = Opmyn L(,y; 5) ©)
selection algorithms with spatial regularization. To this
end, we formulate scale-selection as a graph labeling prob-
lem and employ Markov random field multi-label optimiza-
tion. We focus on detecting the scales of vascular struc- Loymyn (2,95 8) = Ogmyngs(z,y) * I(2,y) (4)
tures in medical images. We compare the detected vessel
scales using our method to those obtained using the selec- These Gaussian derivative operators can in turn be com-
tion approach of the well-known vesselness filter (Frangi et bined linearly or non-linearly into a larger variety of dif-
al 1998). We propose and discuss two different approachesferent types of feature detectors. For example, edge, blob,
for evaluating the goodness of scale-selection. Our result corner, and ridge multi-scale feature detectors expressed
on 40 images from the Digital Retinal Images for Vessel Ex- through first and second order spatial derivatives in scale-
traction (DRIVE) database show an average reduction in space P1, 33]. Of particular interest in this work is the

which is equivalent to convolving the original imager, v)
with Gaussian derivative operators, i.e.

these error measurements by more than 15%. detection of tube-like structures through the analysief t
Hessian matrix at multiple scales (sectidg).
1. Introduction Selecting the appropriate scales for the various features

_ _ . in an image is an important problem with many applications

Many feature detection algorithms rely on the choice of in computer vision and image processing,[10, 27, 3.
scale. The importance of the scale-selection origina@s fr  Further, a strong link between scale-space/scale-safecti
the basic observation that real-world objects are composegheory and biological vision has been demonstrated in many
of different structures at different scales. For examyple, t  earlier works g, 9.
concept of areeis appropriate at the scale of meters, Whilg The standard scale-selection approach typically em-
concepts such as leaves and molecules are more appropriaffoyed is simply to choose, at every pixel in the image, the
at finer scales. o _ _ ~ scale with the highest feature detector response at theit pix

For a computer vision system analyzmg an image with- However, since the goal is to assign a scale to each feature
outa priori knowledge of the scales of interesting stri&sur  of interest in the image, and given that any feature will typi
it is reasonable to consider image descriptions at multiple cally occupy multiple neighboring pixels, it is reasonatole
scales, in order to capture the unknown scale variationts thagssume that most neighboring pixels in the images should
may occur. Taken to the limit, a scale-space representatiome assigned equal scales. In other words, we expect the
considers an image at all possible scales. scale-selection to give a regularized scale field.

The most common scale-space representation of an im-  since the early work of Geman and Geman in 1993, [
age I(z,y) is achieved by convolving the image with a Markov Random Field (MRF) theory has proven useful for

Gaussian kerngl; of a given width or scale: encoding neighborhood properties in images. Many com-
gs(z,y) = Lexp(_(ﬁ +42)/2s) 1) puter vision tasks now rely on an underl_ying MRF mpdel
2ms and graph representations encoding spatial relationbeips
The scale-space representation of the image is then giveriween pixels. The computer vision task is subsequently
by: transformed into a MRF multi-label optimization problem,

L(z,y;s) = gs(z,y) * I(z,y) (2) where the goal is to optimally assign one of many labels to
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each of the vertices of the graph, which in turn provides the is the binary spatial regularization term penalizing diffet

solution for image segmentatiofi, 4, 6, 3], image regis-
tration [23, 38, stereo matchingdZ] or object recognition
problems P7].

label configurations of neighboring vertices, apdontrols
the trade-off between the two terms.
There are different possible choices for the label inter-

In this paper, we adopt the MRF multi-label optimiza- action termy,, in (5). ¢,, can be seen as a metric on the
tion approach to address the spatial regularization reguir space of labels,, = ¢,q (fp, fg) OF may be chosen to
ment in scale-selection problems. Our work benefits from depend on the underlying dajg,, = ¢,, (I(p),1(q)), or
the large body of research into MRF optimization e.g. bothy,, = ¢, (I(p),1(q), fp, f4). Often it is preferred
[5, 19 6, 18, 15] (see B7] for a recent survey). that neighboring pixels are assigned similar or equal &bel

Given the importance of vasculature in understanding, Various label interaction penalties have been proposed, in
diagnosing, and treating diseasésZ6], the particular fo- cluding linear (f, — f4|), quadratic (f, — fq)Q), truncated
cus of this work is the analysis of medical images of vas- (min {T,|fp — fql} or min{T, (f, — fq)Q}) [14, 34), or
culature through the automatic detection of vessel scalesjata-dependent, e.g. Gaussianp(— (I(p) — I1(q))?)).
[12, 20]. Multi-scale approaches to vessel enhancementsetting the regularization weightin (5) can be found em-

have been proposed in the past, including corgssteer- pirically using training data.
able filters [L7], and assessment of local orientation via

eigenvalue analysis of the Hessian matti®,[33]. A well- 2.2. Multi-Scale Vesselness
known multiscale vessel enhancement filtering method has
been proposed by Frangi et allZ] and has gained large
popularity for the analysis of medical angiographic images
[25, 28, 31, 39.

To the best of our knowledge, the proposed method is the

According to Frangi et al. 1[7], the vesselness measure
at pixelx = (z, y) is obtained by:

0 A2 (x,8) >0

e 2 xX,s
first to incorporate an MRF-based spatial regularization in v(x,s) = e T (1 _ exp(_%)) o/w
scale-selection. We evaluate our MRF-based vessel scale- ¢ 6)
selection method on synthetic data as well as 40 2D-retinal ... .
. . : with:
images from the Digital Retinal Images for Vessel Extrac- A1 (x,8)
tion (DRIVE) database?d]. The experimental results show Rp (x,s) = o (x.5) @)
that we obtain improved scale estimates compared to the '
maximum likelihood scale estimates at each pixel as per- ®)

S(x,8) = /Zx\f (x,8)

2. Method where);(x, s), i = 1,2 (JA\1] < |\z2|) are the eigenvalues
of the Hessian matrix of image computed at scale, i.e.

We solve the scale-selection problem by MRF multi- 7 (1,(x;s)). R andS are measures of blobness and sec-
label optimization, where the goal is to assign to each pixel onq order structureness, respectively.

in the image a ‘scale label' out of several possible scale  Gjyen K different possible scales, i.e.€ {s', ..., s5},

neighbouring pixels. We begin by summarizing the MRF gt 3. estimate the vesselnesat every pixelk using:
labeling formulation and the multi-scale vesselness filter

formedin [L2].

v(x,5) (9)

v(x) = max

se{st,...s%}

2.1. MRF Multi-Label Optimization

We represent the pixel connectivity in imadevia a
graphg(V, &), in which verticesv € V correspond to the
pixels of I and edges.,,,, = ey € £ C V x V connect
two neighbouring pixelép, ¢) and are assigned nonnegative
weightw,,. In MRF-optimization, we seek the labelirfg
of each vertex, that minimizes an energy of the form:

E(f):(l_n)ZWP(fp)‘Fn Z Ppq (fp: fq) (5)

peEV (p,q)€E

which implies that the selected scalg;y r, giving the
maximum vesselness response (MVRXxats given by:

Smver(x) = argmax v(x,s) (10)
se{st,...s¥}

Clearly, this pixel-wise choice ignores the desired regu-
larization in the scale field. In the next section, we formu-
late vessel scale-selection as a graph labeling problem and
solve it using MRF multi-label optimization.

wherey, is the unary data (or image fidelity) term, which
measures the likelihood of labeling a pixel with a specific
label, disregarding the labels of any of the neighbats,

Figure 1 shows an example retinal image from the
DRIVE databasedf] and the vessel analysis results accord-
ing to the method of Frangi et all }].



The unary penalty term irbj is then set as:

©p (fp = sl) = max v(p, sj) —v(p, sl) (14)

sTe{st,...,s% sP9}

We adopty,, (fp, fq) = min{1,|f, — f4|}, i.e. Pott’s
model [i], as the regularization penalty. We use

expansion graph cut€]to find the optimal MRF labeling.
This will assign a scale € {s',s%,--- s, s} to every
pixel in the image.

3. Results

3.1. Evaluation Approaches

. ) . . Let Spvr(p), Smrr(p), and s*(p) denote the esti-
Figure 1. Frangi et als approach to vessel image analy@$.  mated scale using Frangi et al’'s maximum vesselness re-
Retinal image from the DRIVE databas&i]. (b) Expert vessel sponse (MVR) 10), our MRF-based method, and the cor-

segmentation. (c) The vessel enhanced image with pixehdinte . . .
sity set to the maximum-vesselness across all scales,latdu rect (ground truth) scale, respectively, at pixedf image

according to 9). (d) The selected scales that give maximal ves- ~*

selness response found usidg)((different scales represented in In or_derto calc_ulate the ground truth.vessel ?Gé‘(@) at

different colors). (e-h) Frangi et al1]] vesselness images calcu- €ach pixelp, we first calculate the Euclidean distant(®)

lated at different scales, according &).( between each vessel boundary pixahd the closest vessel
centreline pixel (utilizing the distance transform of thesv
sels’ skeleton image). Then, the pixels assigned*(p)

2.3. Vessel Scale-Selection using MRF Labeling equal tod(b) of the nearest boundary pixel to(see Figure
The goal is to assign to each pixel a suitable seate 2 for an illustration of this procedure). This approach as-
{s!,s2,--. s}, To this end, we construct a graph, as de- Sumes the same ground truth scale along all pixels perpen-

scribed in sectior.1, representing the 2D image with dicular to the vessel centerline. An alternative approach i

graph edges representing the 4-connectedness of pixels. W restrict the vessel's ground truth scale and the subsique
adopt Frangi et al.’s vesselness response at differeresscal ©€rror analysis to only the vessel centrelines. This ground
ie. {v(x,s'),v(x,s2),...,v(x,s%)}, as the likelihood of truth scale calculation approach is used for both syntetic i
choosing the corresponding scale at a particular pixel —agdes (Sectio.2) and real retinal images (SectiGrB).
However, since background pixels do not contain any ves- ~ Given the ground truth scale’, we propose and calcu-
sels, it is not meaningful to assign any of these vessel scaldate two types of scale-selection error at a pixel

labels{s!, ..., s} to background pixels. Therefore, we de- . -
fine aé a’ddi7tion<}all label f%r the gackground, denotéd es(p) = 1= 0(3(p) = 5" (p) (15)
with the following likelihood term: ea(p) = (3(p) — s*(p))? (16)
. 7(x) The errores returns 0 if the estimated scalés equal to the
v(x, ") = Lexp(~—57) (11)  groundtruth scale* and 1 if the scales are different, regard-

_ o _ _ _less of how much different they are. The eregy, on the
where¢ is a normalization constant ensuring fair compari- other hand, considers the difference between the estimated
son between the newly defined data termstirand those  and ground truth scales. We further distinguish between two

for the previous scales; } /. We set to: sets of pixels: pixels that reside inside the linear stmestu
£=  max  u(x.s) (12) of interest i.e. foreground or vessel pixels, and those that
se{sh, sy do not, i.e. background pixels. We denote these two sets
of pixels asPy, and P,,. P = Py U Dy is the set of all
andr(x) is the average vesselness across scales pixels in the imagel. The following four error measures
X are used to evaluate the scale-selection in the subsequent
P(x) = 1 Z v(x, 5) (13) experiments: .
K i=1 €s = m Z es(p) (17)
peP

Consequently, pixels with low vesselness responses will
have a high likelihood of belonging to the background, i.e. eg'g _ Z es(p) (18)
highv(x, s%9), and vice versa.



-

15

10

0

(d) (©)

Figure 2.Calculating the ground truth vessel thickness. (a) Binassel mask. (b) Skeleton of (a). (c) Distance transform pdémoted byl ;. (d) and
(e) are close-ups of (c) and (a), respectively. (f) The solteach pixelp € Py, inside the vessel is set to the value of fyg(q), whereq is the closest
edge pixel tp, i.e. s*(p) = I4:(q). () Quantized version of*.

(b)

Figure 3.(a) Generated synthetic image (tubular structures witrdifie
ferent scales). (b) The ground-truth for the thicknesddréht thickness
values are represented by different colors).

1
ea = 15 > ealp) (19) -
peP iZ
. 1 '
en = P > ealp) (20)
| f!7| pEP;,

Note thaten andel? are defined fors* (Figure 2(f)),

whereas calculatings oregg, requires that we first quantize
s* into K + 1 different values (Figur(g)).

3.2. Synthetic Data — L. [e— ]l [e—=]l s

To evaluate our proposed MRF-based scale-selection, we oy e oy e 'y o e
generate a synthetic binary image containing several lines : : ; :
with different thicknesses (FiguB) and measure the scale- (e) MRF"9

selection errors byl(7)-(20) for different Gaussian noise _ _ ,

| Is added to the image (Figu# Figure5s showse’ 9 Figure 4.Results on synthetic data. The different columns (from tizft
eve ) g 9 g9 A right) correspond to increasing levels of noise added tarttege. The
and cég for both $),v r(p) andéyrr(p) for the K label- rows (from top to bottom) show: The noisy image, estimateaesbased

ing problem ¢ € {817 52’ SK})_ The different colored on MVR, MRF, MVR with a background (BG) label, and MRF with a BG
curves correspond to different spatial regularizatiomeal label

n € [0,1] in (5). It can be noted that we obtain improved

scale estimates compared to MVR. We also note the localto MVR. Also, we obtain Ioweregq and e-(’;” (error mea-
minima in the error curves of the MRF approach (Figures sured for the pixels inside the vessels) compared to MVR.
5(c)5(d)). The reason for these minima is that the amount These results are omitted as they are similar to those in Fig-
of spatial regularization should ideally be related theslev ures5(a) and 5(b). In Figure6(a), and in particular for

of noise in the imaged 29, i.e. for a given noise level,a o, € [0,0.4], we observe a decrease in error as the noise

specific choice of) will give the least error. level increases. Surprising at first, this is explained mgai
Figure6 illustratesea andes, the scale-selection error by the fact that a specific spatial regularization leyas

for the set of all pixels in the image € Py, U P,), for the ideal for a certain noise level. So, for a fixedif the noise

K + 1 labeling problem{ € {s!, 52, ..., 5% s%9}), i.e. the is negligibly small, then the error will be high since it is fa

case in which we include the additional background label vorable to avoid regularization in this case. However, as th
mentioned in sectio.3. It can be seen that our proposed noise increases, the regularization matches the noisénand t
MRF approach yields lower erroef andes) compared  error will decrease.



0.7
20§
5

0.5\ -

0.4

Figure 5.Scale-selection error based on MVR and MRE (abeling
problem) for increasing levels of additive Gaussian neigeand differ-
ent regularization,. (a-b) shOWe£9 and egg, respectively. The dashed
curve corresponds to MVR error and the other colored cureespond
to MRF error for differenty. (c-d) ShOWeng andegg versusy with MVR
shown as dashed lines. Different colors correspond tordiffenoise lev-
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Figure 6.(a-b) Showe andes (similar to Figure5) when we define
a label for the backgroundi{ + 1 labeling problem). Different colors
correspond to different regularization levels.

Figure7 shows lower scale-selection error for pixels in-
side the vesselg(e Py,) for the K labeling problem com-
pared to the + 1 labeling (when we add a background la-
bel). This behavior is expected because this additiond-bac
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Figure 7.Red (respectively blue) represestd when we use (respec-
tively, do not use) the background label. @f resulting from MVR. (b)
e(j;g resulting from MVR.

3.3. Real Data

We evaluate our method on 40 2D-retinal images from
the DRIVE database3[], in which expert binary segmen-
tations of the images are available. Using the same method
shown in Figure?, we calculate the ground truth scale (ves-
sel radii)s*(p) at each pixel of each image. Figl8shows
the values o&* for a set of sample retinal images.

A comparison between the scale-selection error based on
MVR and based on our MRF method for the retinal images
is shown in Figured. Our approach decreases the scale-
selection errorg’’ ande/? on average by 18% and 15%,
respectively. Limiting the evaluation to the centerling-pi
els only results in 4% and 11% reduction in error. Note that
for the DRIVE database, the best results are achieved for
n=0.2.

4. Conclusion

We formulated scale-selection as a graph labeling prob-
lem and employed Markov random field multi-label op-
timization. Due to the clinical importance of measuring
vessel thickness, e.g. for detecting stenoses, we focused
on scale-selection in vascular images. Nevertheless, we
foresee MRF optimization being utilized for other scale-
dependent features. Although we only showed the devel-
opment of our technique for 2D data, this algorithm can be
easily generalized to handle 3D images (e.g. magnetic res-
onance or computed tomography angiography), since 3D

ground label would decrease the chances of assigning th&/esselness functions J] and MRF optimization methods
correct scale to a vessel pixel. In other words, adding theare readily available for 3D.

background label increases the accuracy of assigning scale n this work, even with the regularization weight set to a
Y9 to background pixels (i.e. identifying the background constant, we achieved improved results over Frangi et al.’s
pixels) at the expense of decreasing the scale-selection acscale-selection method. However, a single value may not

curacy of the foreground vessel pixels. be optimal for all regions of the image. Spatially adapting
the regularization weights may improve the scale-selactio

In summary, the results for synthetic data show an aver-even further, similar to improvements obtained in spatiall
age reduction in error measuref&g andef;g of about 14%  adaptive regularization for image segmentation and denois
and 17% , respectively, over all noise levels. We also eval-ing applications1, 16, 29].
uated the scale-selection for only the centreline pixets an  Although we adopted the Pott’s penalty an@xpansion
obtained, respectively, 14% and 18% reduction in error.  graph cuts in our implementation, other label interaction



Figure 8.Some examples af* (ground truth vessel thickness) for images
from the DRIVE database3[]. (top) fuzzy and (bottom) quantizedt.

penalties (e.g. those mentioned in sectil) and a vari-

ety of alternative optimization methods can be used instead
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