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Abstract

Many feature detection algorithms rely on the choice
of scale. In this paper, we complement standard scale-
selection algorithms with spatial regularization. To this
end, we formulate scale-selection as a graph labeling prob-
lem and employ Markov random field multi-label optimiza-
tion. We focus on detecting the scales of vascular struc-
tures in medical images. We compare the detected vessel
scales using our method to those obtained using the selec-
tion approach of the well-known vesselness filter (Frangi et
al 1998). We propose and discuss two different approaches
for evaluating the goodness of scale-selection. Our results
on 40 images from the Digital Retinal Images for Vessel Ex-
traction (DRIVE) database show an average reduction in
these error measurements by more than 15%.

1. Introduction

Many feature detection algorithms rely on the choice of
scale. The importance of the scale-selection originates from
the basic observation that real-world objects are composed
of different structures at different scales. For example, the
concept of atree is appropriate at the scale of meters, while
concepts such as leaves and molecules are more appropriate
at finer scales.

For a computer vision system analyzing an image with-
out a priori knowledge of the scales of interesting structures,
it is reasonable to consider image descriptions at multiple
scales, in order to capture the unknown scale variations that
may occur. Taken to the limit, a scale-space representation
considers an image at all possible scales.

The most common scale-space representation of an im-
age I(x, y) is achieved by convolving the image with a
Gaussian kernelgs of a given width or scales:

gs(x, y) =
1

2πs
exp(−(x2 + y2)/2s) (1)

The scale-space representation of the image is then given
by:

L(x, y; s) = gs(x, y) ∗ I(x, y) (2)

The application of local derivative operators to the image
at any scale in scale-space is given by:

Lxmyn(x, y; s) = ∂xmynL(x, y; s) (3)

which is equivalent to convolving the original imageI(x, y)
with Gaussian derivative operators, i.e.

Lxmyn(x, y; s) = ∂xmyngs(x, y) ∗ I(x, y) (4)

These Gaussian derivative operators can in turn be com-
bined linearly or non-linearly into a larger variety of dif-
ferent types of feature detectors. For example, edge, blob,
corner, and ridge multi-scale feature detectors expressed
through first and second order spatial derivatives in scale-
space [21, 33]. Of particular interest in this work is the
detection of tube-like structures through the analysis of the
Hessian matrix at multiple scales (section2.2).

Selecting the appropriate scales for the various features
in an image is an important problem with many applications
in computer vision and image processing [21, 10, 27, 30].
Further, a strong link between scale-space/scale-selection
theory and biological vision has been demonstrated in many
earlier works [8, 9].

The standard scale-selection approach typically em-
ployed is simply to choose, at every pixel in the image, the
scale with the highest feature detector response at that pixel.
However, since the goal is to assign a scale to each feature
of interest in the image, and given that any feature will typi-
cally occupy multiple neighboring pixels, it is reasonableto
assume that most neighboring pixels in the images should
be assigned equal scales. In other words, we expect the
scale-selection to give a regularized scale field.

Since the early work of Geman and Geman in 1993 [13],
Markov Random Field (MRF) theory has proven useful for
encoding neighborhood properties in images. Many com-
puter vision tasks now rely on an underlying MRF model
and graph representations encoding spatial relationshipsbe-
tween pixels. The computer vision task is subsequently
transformed into a MRF multi-label optimization problem,
where the goal is to optimally assign one of many labels to
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each of the vertices of the graph, which in turn provides the
solution for image segmentation [35, 4, 6, 3], image regis-
tration [23, 38], stereo matching [32] or object recognition
problems [22].

In this paper, we adopt the MRF multi-label optimiza-
tion approach to address the spatial regularization require-
ment in scale-selection problems. Our work benefits from
the large body of research into MRF optimization e.g.
[5, 19, 6, 18, 15] (see [37] for a recent survey).

Given the importance of vasculature in understanding,
diagnosing, and treating diseases [7, 26], the particular fo-
cus of this work is the analysis of medical images of vas-
culature through the automatic detection of vessel scales
[12, 20]. Multi-scale approaches to vessel enhancement
have been proposed in the past, including cores [2], steer-
able filters [17], and assessment of local orientation via
eigenvalue analysis of the Hessian matrix [24, 33]. A well-
known multiscale vessel enhancement filtering method has
been proposed by Frangi et al. [12] and has gained large
popularity for the analysis of medical angiographic images
[25, 28, 31, 39].

To the best of our knowledge, the proposed method is the
first to incorporate an MRF-based spatial regularization in
scale-selection. We evaluate our MRF-based vessel scale-
selection method on synthetic data as well as 40 2D-retinal
images from the Digital Retinal Images for Vessel Extrac-
tion (DRIVE) database [36]. The experimental results show
that we obtain improved scale estimates compared to the
maximum likelihood scale estimates at each pixel as per-
formed in [12].

2. Method

We solve the scale-selection problem by MRF multi-
label optimization, where the goal is to assign to each pixel
in the image a ‘scale label’ out of several possible scale
labels, while taking into account label-interaction between
neighbouring pixels. We begin by summarizing the MRF
labeling formulation and the multi-scale vesselness filter.

2.1. MRF Multi-Label Optimization

We represent the pixel connectivity in imageI via a
graphG(V , E), in which verticesv ∈ V correspond to the
pixels of I and edgesevpvq

= epq ∈ E ⊆ V × V connect
two neighbouring pixels(p, q) and are assigned nonnegative
weightwpq. In MRF-optimization, we seek the labelingfp

of each vertexvp that minimizes an energy of the form:

E (f) = (1 − η)
∑

p∈V

ϕp (fp) + η
∑

(p,q)∈E

ϕpq (fp, fq) (5)

whereϕp is the unary data (or image fidelity) term, which
measures the likelihood of labeling a pixel with a specific
label, disregarding the labels of any of the neighbors,ϕpq

is the binary spatial regularization term penalizing different
label configurations of neighboring vertices, andη controls
the trade-off between the two terms.

There are different possible choices for the label inter-
action termϕpq in (5). ϕpq can be seen as a metric on the
space of labelsϕpq = ϕpq (fp, fq) or may be chosen to
depend on the underlying dataϕpq = ϕpq (I(p), I(q)), or
both ϕpq = ϕpq (I(p), I(q), fp, fq). Often it is preferred
that neighboring pixels are assigned similar or equal labels.
Various label interaction penalties have been proposed, in-
cluding linear (|fp − fq|), quadratic ((fp − fq)

2), truncated
(min {T, |fp − fq|} or min{T, (fp − fq)

2
}) [14, 34]), or

data-dependent, e.g. Gaussian (exp(− (I(p) − I(q))2)).
Setting the regularization weightη in (5) can be found em-
pirically using training data.

2.2. Multi-Scale Vesselness

According to Frangi et al. [12], the vesselness measure
at pixelx = (x, y) is obtained by:

ν(x, s) =







0 λ2 (x, s) > 0

e
−

R2
B

(x,s)

2β2

(

1 − exp(−S2(x,s)
2c2 )

)

o/w

(6)
with:

RB (x, s) =
λ1 (x, s)

λ2 (x, s)
(7)

S (x, s) =

√

∑

i≤2

λ2
i (x, s) (8)

whereλi(x, s), i = 1, 2 (|λ1| 6 |λ2|) are the eigenvalues
of the Hessian matrix of imageI computed at scales, i.e.
H(L(x; s)). RB andS are measures of blobness and sec-
ond order structureness, respectively.

GivenK different possible scales, i.e.s ∈ {s1, ..., sK},
equation (6) can be evaluated at each of theK scales. Frangi
et al. estimate the vesselnessν at every pixelx using:

ν(x) = max
s∈{s1,...sK}

ν(x, s) (9)

which implies that the selected scalêsMV R, giving the
maximum vesselness response (MVR) atx, is given by:

ŝMV R(x) = arg max
s∈{s1,...sK}

ν(x, s) (10)

Clearly, this pixel-wise choice ignores the desired regu-
larization in the scale field. In the next section, we formu-
late vessel scale-selection as a graph labeling problem and
solve it using MRF multi-label optimization.

Figure 1 shows an example retinal image from the
DRIVE database [36] and the vessel analysis results accord-
ing to the method of Frangi et al. [12].
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Figure 1. Frangi et al.’s approach to vessel image analysis.(a)
Retinal image from the DRIVE database [36]. (b) Expert vessel
segmentation. (c) The vessel enhanced image with pixel inten-
sity set to the maximum-vesselness across all scales, calculated
according to (9). (d) The selected scales that give maximal ves-
selness response found using (10) (different scales represented in
different colors). (e-h) Frangi et al. [12] vesselness images calcu-
lated at different scales, according to (6).

2.3. Vessel Scale-Selection using MRF Labeling

The goal is to assign to each pixel a suitable scales ∈
{s1, s2, · · · , sK}. To this end, we construct a graph, as de-
scribed in section2.1, representing the 2D imageI, with
graph edges representing the 4-connectedness of pixels. We
adopt Frangi et al.’s vesselness response at different scales,
i.e. {ν(x, s1), ν(x, s2), ..., ν(x, sK)}, as the likelihood of
choosing the corresponding scale at a particular pixelx.
However, since background pixels do not contain any ves-
sels, it is not meaningful to assign any of these vessel scale
labels{s1, ..., sK} to background pixels. Therefore, we de-
fine an additional label for the background, denotedsbg,
with the following likelihood term:

ν(x, sbg) = ξexp(−
ν̄(x)

σ2
) (11)

whereξ is a normalization constant ensuring fair compari-
son between the newly defined data term forsbg and those
for the previous scales{si}

K
i=1. We setξ to:

ξ = max
s∈{s1,...,sK}

ν(x, s) (12)

andν̄(x) is the average vesselness across scales

ν̄(x) =
1

K

K
∑

i=1

ν(x, si) (13)

Consequently, pixels with low vesselness responses will
have a high likelihood of belonging to the background, i.e.
highν(x, sbg), and vice versa.

The unary penalty term in (5) is then set as:

ϕp

(

fp = si
)

= max
sj∈{s1,...,sK,sbg}

ν(p, sj) − ν(p, si) (14)

We adoptϕpq(fp, fq) = min{1, |fp − fq|}, i.e. Pott’s
model [1], as the regularization penalty. We useα-
expansion graph cuts [1] to find the optimal MRF labeling.
This will assign a scales ∈ {s1, s2, · · · , sK , sbg} to every
pixel in the image.

3. Results

3.1. Evaluation Approaches

Let ŝMV R(p), ŝMRF (p), and s∗(p) denote the esti-
mated scale using Frangi et al.’s maximum vesselness re-
sponse (MVR) (10), our MRF-based method, and the cor-
rect (ground truth) scale, respectively, at pixelp of image
I.

In order to calculate the ground truth vessel scales∗(p) at
each pixelp, we first calculate the Euclidean distanced(b)
between each vessel boundary pixelb and the closest vessel
centreline pixel (utilizing the distance transform of the ves-
sels’ skeleton image). Then, the pixelp is assigneds∗(p)
equal tod(b) of the nearest boundary pixel top (see Figure
2 for an illustration of this procedure). This approach as-
sumes the same ground truth scale along all pixels perpen-
dicular to the vessel centerline. An alternative approach is
to restrict the vessel’s ground truth scale and the subsequent
error analysis to only the vessel centrelines. This ground
truth scale calculation approach is used for both syntetic im-
ages (Section3.2) and real retinal images (Section3.3).

Given the ground truth scales∗, we propose and calcu-
late two types of scale-selection error at a pixelp:

eδ(p) = 1 − δ(ŝ(p) − s∗(p)) (15)

e∆(p) = (ŝ(p) − s∗(p))2 (16)

The erroreδ returns 0 if the estimated scaleŝ is equal to the
ground truth scales∗ and 1 if the scales are different, regard-
less of how much different they are. The errore∆, on the
other hand, considers the difference between the estimated
and ground truth scales. We further distinguish between two
sets of pixels: pixels that reside inside the linear structures
of interest i.e. foreground or vessel pixels, and those that
do not, i.e. background pixels. We denote these two sets
of pixels asPfg andPbg. P = Pfg ∪ Pbg is the set of all
pixels in the imageI. The following four error measures
are used to evaluate the scale-selection in the subsequent
experiments:

eδ =
1

|P |

∑

p∈P

eδ(p) (17)

efg
δ =

1

|Pfg|

∑

p∈Pfg

eδ(p) (18)
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Figure 2.Calculating the ground truth vessel thickness. (a) Binary vessel mask. (b) Skeleton of (a). (c) Distance transform of (b) denoted byIdt. (d) and
(e) are close-ups of (c) and (a), respectively. (f) The scaleof each pixelp ∈ Pfg inside the vessel is set to the value of theIdt(q), whereq is the closest
edge pixel top, i.e. s∗(p) = Idt(q). (g) Quantized version ofs∗.

(a)

 

 

0

5

10

15

20

25

(b)

Figure 3.(a) Generated synthetic image (tubular structures with thedif-
ferent scales). (b) The ground-truth for the thickness (different thickness
values are represented by different colors).

e∆ =
1

|P |

∑

p∈P

e∆(p) (19)

efg
∆ =

1

|Pfg|

∑

p∈Pfg

e∆(p) (20)

Note thate∆ and efg
∆ are defined fors∗ (Figure2(f)),

whereas calculatingeδ or efg
δ , requires that we first quantize

s∗ into K + 1 different values (Figure2(g)).

3.2. Synthetic Data

To evaluate our proposed MRF-based scale-selection, we
generate a synthetic binary image containing several lines
with different thicknesses (Figure3) and measure the scale-
selection errors by (17)-(20) for different Gaussian noise
levels added to the image (Figure4). Figure5 showsefg

∆

andefg
δ for both ŝMV R(p) and ŝMRF (p) for theK label-

ing problem (s ∈ {s1, s2, ..., sK}). The different colored
curves correspond to different spatial regularization values
η ∈ [0, 1] in (5). It can be noted that we obtain improved
scale estimates compared to MVR. We also note the local
minima in the error curves of the MRF approach (Figures
5(c)-5(d)). The reason for these minima is that the amount
of spatial regularization should ideally be related the level
of noise in the image [5, 29], i.e. for a given noise level, a
specific choice ofη will give the least error.

Figure6 illustratese∆ andeδ, the scale-selection error
for the set of all pixels in the image (p ∈ Pfg ∪Pbg), for the
K + 1 labeling problem (s ∈ {s1, s2, ..., sK , sbg}), i.e. the
case in which we include the additional background label
mentioned in section2.3. It can be seen that our proposed
MRF approach yields lower error (e∆ and eδ) compared
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Figure 4.Results on synthetic data. The different columns (from leftto
right) correspond to increasing levels of noise added to theimage. The
rows (from top to bottom) show: The noisy image, estimated scale based
on MVR, MRF, MVR with a background (BG) label, and MRF with a BG
label

to MVR. Also, we obtain lowerefg
∆ and efg

δ (error mea-
sured for the pixels inside the vessels) compared to MVR.
These results are omitted as they are similar to those in Fig-
ures5(a) and 5(b). In Figure 6(a), and in particular for
σn ∈ [0, 0.4], we observe a decrease in error as the noise
level increases. Surprising at first, this is explained again
by the fact that a specific spatial regularization levelη is
ideal for a certain noise level. So, for a fixedη, if the noise
is negligibly small, then the error will be high since it is fa-
vorable to avoid regularization in this case. However, as the
noise increases, the regularization matches the noise and the
error will decrease.
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Figure 5.Scale-selection error based on MVR and MRF (K labeling
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, respectively. The dashed
curve corresponds to MVR error and the other colored curves correspond
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shown as dashed lines. Different colors correspond to different noise lev-
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Figure 6.(a-b) Showe∆ and eδ (similar to Figure5) when we define
a label for the background (K + 1 labeling problem). Different colors
correspond to different regularization levels.

Figure7 shows lower scale-selection error for pixels in-
side the vessels (p ∈ Pfg) for theK labeling problem com-
pared to theK + 1 labeling (when we add a background la-
bel). This behavior is expected because this additional back-
ground label would decrease the chances of assigning the
correct scale to a vessel pixel. In other words, adding the
background label increases the accuracy of assigning scale
sbg to background pixels (i.e. identifying the background
pixels) at the expense of decreasing the scale-selection ac-
curacy of the foreground vessel pixels.

In summary, the results for synthetic data show an aver-
age reduction in error measuresefg

∆ andefg
δ of about 14%

and 17% , respectively, over all noise levels. We also eval-
uated the scale-selection for only the centreline pixels and
obtained, respectively, 14% and 18% reduction in error.
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3.3. Real Data

We evaluate our method on 40 2D-retinal images from
the DRIVE database [36], in which expert binary segmen-
tations of the images are available. Using the same method
shown in Figure2, we calculate the ground truth scale (ves-
sel radii)s∗(p) at each pixel of each image. Figure8 shows
the values ofs∗ for a set of sample retinal images.

A comparison between the scale-selection error based on
MVR and based on our MRF method for the retinal images
is shown in Figure9. Our approach decreases the scale-
selection errorsefg

∆ andefg
δ on average by 18% and 15%,

respectively. Limiting the evaluation to the centerline pix-
els only results in 4% and 11% reduction in error. Note that
for the DRIVE database, the best results are achieved for
η = 0.2.

4. Conclusion

We formulated scale-selection as a graph labeling prob-
lem and employed Markov random field multi-label op-
timization. Due to the clinical importance of measuring
vessel thickness, e.g. for detecting stenoses, we focused
on scale-selection in vascular images. Nevertheless, we
foresee MRF optimization being utilized for other scale-
dependent features. Although we only showed the devel-
opment of our technique for 2D data, this algorithm can be
easily generalized to handle 3D images (e.g. magnetic res-
onance or computed tomography angiography), since 3D
vesselness functions [12] and MRF optimization methods
are readily available for 3D.

In this work, even with the regularization weight set to a
constant, we achieved improved results over Frangi et al.’s
scale-selection method. However, a single value may not
be optimal for all regions of the image. Spatially adapting
the regularization weights may improve the scale-selection
even further, similar to improvements obtained in spatially
adaptive regularization for image segmentation and denois-
ing applications [11, 16, 29].

Although we adopted the Pott’s penalty andα-expansion
graph cuts in our implementation, other label interaction
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Figure 8.Some examples ofs∗ (ground truth vessel thickness) for images
from the DRIVE database [36]. (top) fuzzy and (bottom) quantizeds∗.

penalties (e.g. those mentioned in section2.1) and a vari-
ety of alternative optimization methods can be used instead
[37].
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