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Abstract—Using different priors (e.g. shape and appearance)
have proven critical for robust image segmentation of different
types of target objects. Many existing methods for extracting
trees (e.g. vascular or airway trees) from medical images have
leveraged appearance priors (e.g. tubular-ness and bifurcation-
ness) and the knowledge of the cross-sectional geometry (e.g.
circles or ellipses) of the tree-forming tubes. In this work, we
present the first method for 3D tree extraction from 3D medical
images (e.g. CT or MRI) that, in addition to appearance and
cross-sectional geometry priors, utilizes prior tree statistics
collected from the training data. Our tree extraction method
collects and leverages topological tree prior and geometrical
statistics, including tree hierarchy, branch angle and length
statistics. Our implementation takes the form of a Bayesian tree
centerline tracking method combining the aforementioned tree
priors with observed image data. We evaluated our method on
both synthetic 3D datasets and real clinical CT chest datasets.
For synthetic data, our method’s key feature of incorporating
tree priors resulted in at least 13% increase in correctly
detected branches under different noise levels. For real clinical
scans, the mean distance from ground truth centerlines to the
detected centerlines by our method was improved by 12%
when utilizing tree priors. Both experiments validate that,
by incorporating tree statistics, our tree extraction method
becomes more robust to noise and provides more accurate
branch localization.

Keywords- segmentation; machine learning; statistical anal-
ysis; tree structure; centerline tracking;

I. INTRODUCTION

Every year, millions of people are affected by circulatory
and respiratory system problems. According to the World
Health Organization, more than 3 million people died of
chronic obstructive pulmonary disease (COPD) in 2012,
which is equal to 6% of all deaths globally that year [1].
(Semi-)automatic tree structure segmentation from 3D im-
ages is important for both vasculature and airway analy-
sis [2], diagnosis and pre-operative planning [3]. However,
due to low contrast (especially in low-dose CT), similar
attenuation coefficients (i.e., CT voxel values) of air and
pulmonary parenchyma along with distorted tubular shapes
(e.g., narrowed airways with COPD) and imaging artifacts,
tree structure extraction becomes a challenging problem [4].

Many methods for segmenting tubular branching struc-
tures, such as airways and vasculature based on centerline

tracking and machine learning have been proposed in recent
years [4], but only a few were based on statistics and none of
them utilized topological priors from an anatomical point of
view, such as airway tree hierarchy, or geometrical statistics,
such as branch angles and lengths, like we do in this work.
We divide the existing literature on tree-extraction from 2D
and 3D images into the following six main classes.

(i) Region Growing and Active Contour: Most of the
airway extraction methods, mentioned in the comparative
study paper of Lo et al. [5], were based on region growing,
which makes it still hard to integrate statistical information
like tubular geometry or airway morphometry. For example,
Feuerstein et al. [6] proposed a region growing method to
extract the airways using LoG enhanced images. Graham
et al. first extracted the airways by region growing, then
filtered the segmentation into small airway segments, and
eventually removing spurious false airway tree branches by
optimizing a graph-partitioning problem [7]. As for active
contour methods, most still use information like the gradient
and Hessian, and it’s not obvious how to encode anatomical
tree topology in these frameworks. Wang et al. [8] proposed
to use 4D curves to extract tree structures, generalizing
snake contours with cylinder models and propagated the
front by gradient vector flow (GVF) force, the eigenvec-
tor of the Jacobian matrix and region intensity. Shang
et al. [9] adopted a combined approach, first segmenting
wider vessels by propagating the active contour front using
intensity information, then segmenting smaller vessels with
Hessian eigenvectors and eigenvalues and investigating the
characteristics of principal curvatures.

(ii) Trackers: These methods are typically initialized with
a seed at the root of the tree, then the tracker advances
from this seed down through the tree. To explore different
branches, these trackers either (a) explicitly locate bifurca-
tions and split accordingly into children branch trackers [10],
[11], [12], [13]; or (b) explore different possible paths thus
implicitly defining tree bifurcations, e.g., the particle filtering
based coronary vessel tracking method of Florin et al. [10].
A key computational module in such trackers is a search
for the next point along the tree branch to advance to. This
in turn typically requires two types of “regularization”: The
first is to regularize the path to avoid sudden abrupt turns by



the tracker, e.g., via Kalman filtering, as proposed in the 2D
retinal blood vessel tracking method of Chutatape et al. [14].
The other is to regularize the data via image de-noising and
tube (vesselness or ridge) filtering, as proposed by the 3D
tracking method of Kumar et al. [15], [16].

(iii) Minimal Paths: Here each branch of a tree-like
structure is one that “optimally” connects a pair of (start-
end) points. Typically, manual seeding combined with image
processing is used to detect likely start-end points. Op-
timality, on the other hand, is obtained using a potential
map that is constructed based on image evidence, e.g. paths
that pass through pixels with a strong vesselness (Frangi et
al. [17]), are more favourable, as proposed by Soleimanifard
et al. [18]. In their work, the energy functional satisfied the
Eikonal equation and was optimized using level sets. In the
work by Breitenreicher et al. [19] the potential map was
based on extracting Haar features at different scales.

(iv) Machine Learning: This class of method relies on
training machine learning systems to predict the class (or the
probability of the class) of each pixel or voxel, where the two
possible classes are tree (or branch) vs. background. Once
the prediction map is obtained, different methods are used to
join likely branch voxels into one contiguous tree segmen-
tation. A voxel-wise classification method was proposed by
Lo et al. [20], [21], in which they used a KNN classifier
to first generate an airway probability map followed by
vessel tracking using region growing. Probability Boosting
Tree (PBT) classifier was used in [22] instead to obtain the
coronary vessel paths. There are also other works proposing
novel features [23], [24] for classifying bifurcations.

(v) Graph based methods: A graph based method was
proposed in Bauer et al. [25], [26], detecting tube-like
structures in the beginning and then connecting them into
a tree graph. In the work of Hu et al. [27], graph-cut
was performed locally in a neighboring sphere, segmenting
vessel points by intensity differences. In [28], accurate
airway wall extraction was obtained by an optimal graph
construction method, which was based on an initial coarse
airway segmentation provided by an algorithm proposed by
Lo et al. [5].

(vi) Hybrid and others: Other methods which cannot
be divided into the categories above include, for example,
a differential geometry based method, proposed by Pu et
al. [29], that filters airway regions by calculating principal
curvature on isosurfaces. Tree structure optimization was
performed in the work of Zhu et al. [30], but the optimization
only prunes spurious branches and breaks loops, rather than
using hierarchical information. Aside from segmentation
purposes, there are existing works investigating tree statistics
extracted from binary segmentation results [31], [32].

Although in some of the works mentioned above, statis-
tical methods like Bayesian inference were applied, as in
the work of Wang et al. [11], no tree statistics were actually
used. In the work of Florin et al. [10], the inference rule was

simply applied on inferring parameters from the last tracking
step, so no global statistical information was embedded.
On the other hand, topological information like branching
types (in mice airways) has been analyzed in the work of
Grothausmann et al. [33], however, the aim of their work
is not about airway extraction and the information extracted
is yet unknown how to further help in airway (human’s,
especially) segmentation. In general, our key contribution in
this paper is fully utilizing tree topology information and
geometrical statistics to aid the segmentation process, while
none of the methods surveyed have explored.

Tree-like structures in living beings, like the Circle of
Willis in the brain, the airways in the lung and the abdominal
arteries (Figure 1), are not perfectly identical across a
population. Nevertheless, these trees conform to particu-
lar topological and geometrical patterns largely consistent
across the normal (non-pathological) adult population. In
particular, the first several generations of branching (e.g.
root, first two children, the four grandchildren) are known
to respect a well-defined hierarchy, which our approach is
designed to leverage.

In this paper, we propose a new tree tracking method
that incorporates, not only image features (or appearance
priors), but also, and for the first time, geometrical and
topological tree priors to improve tracking and bifurcation
detection of tree-structures in 3D medical images (such as
magnetic resonance imaging, MRI, or computed tomogra-
phy, CT). The geometrical priors include branch length and
angle statistics, which are learnt from segmented training
images. Our tracker conforms to a topological prior (i.e.
branching pattern, Figure 1), that enables leveraging the
appropriate branch- and level-specific geometrical statistics.
For example, the trachea always branches into left and right
main bronchi, while left main bronchus further develops
into superior and inferior lobar bronchus, and right main
bronchus into superior and intermediate lobar bronchus. We
implement our method by adopting a Bayesian formulation
that incorporates the aforementioned tree-priors. Quantita-
tive and qualitative results show that by using geometrical
and topological priors, the accuracy and stability of tree
extraction is significantly improved.

II. METHOD

A. Tree Extraction with Tree Priors

At a high level, we adopt a Bayesian formulation to
infer bifurcation locations while tracking tree centerlines,
with given topological and geometrical priors. The proposed
tracker works by continually advancing through the image
to map the airway/vessel centerlines, and bifurcating when
a branching point is detected. Branch length statistics play
the important role of weighting the probability to bifur-
cate, which is inferred from the image features (i.e., the
likelihood), by probabilities inferred from the geometrical
priors, via Bayes’ theorem. Branch angle statistics further



Figure 1: Different examples of tree structures in human
anatomy: Upper left: Abdominal aorta; Upper right: Circle
of Willis; Bottom: Bronchial tree.

help to locate daughter branches by giving lower penalties
to branching directions that agree with angular priors. The
tree topology, on the other hand, is embedded as follows: As
our tracker progresses from the tree root downward along the
branches into 3D images, we continuously update a tree data
structure with a crawler pointer or tag indicating where on
the tree model our tracker is, which branch (trachea, right
main bronchi, ...) or at which level (level 1, 2, 3, ...) is
currently actively being tracked. This allows us to pull the
corresponding level- and branch-specific geometrical priors.

To extract the full tree, a key decision of where, down
along a each tracked branch, the tracker must bifurcate
(e.g. where to bifurcate the root into children, or the each
child into grandchildren). Additionally, once the decision to
bifurcate is made, the initial tracking directions of the two
child branches must be resolved. The next two sections focus
on describing the details of these key modules.

B. Bifurcation Classification Criterion

We denote Bi as the occurrence of bifurcation at the
tree level i, I the image features, Li the random variable
representing the detected branch length, and l the prior level-
and branch-specific length value. We assume I and Li are
independent, since branch length is a global geometrical
property, while the image features are locally defined. P (I)

and P (Li ≤ l) are prior distributions, since they are not
relevant to Bi, they could be replaced by constant values
here. We also assume P (I|Bi) to be of uniform distribution.
Thus, the probability of finding a bifurcation at tree level i
with detected branch length Li is as follows:

P (Bi|I, Li ≤ li) =
P (Bi)P (Li ≤ li, I|Bi)

P (Li ≤ li, I)
(1)

= C ′
P (Bi|I)P (I)P (Li ≤ l|Bi)P (I|Bi)

P (Li ≤ li, I)
= CP (Li ≤ li|Bi)P (Bi|I).

The probability map P (Bi|I) could be generated by a
general bifurcation detection classifier. P (Li = l|Bi) can be
collected from training data or based on expert knowledge
of anatomy (see section III-A) and P (Li ≤ l|Bi) is its
cumulative density function (CDF). If we define weight
ω = CP (Li ≤ l|Bi), C is some constant, then:

P (Bi|I, Li ≤ li) = ωP (Bi|I). (2)

The intuition behind Equation (2) is that, when the tracked
branch length is much shorter than the mean length, it is
less likely to have a bifurcation detected (ω < 1); but as the
length of the tracked branch exceeds the mean length, the
probability of finding a bifurcation will increase nonlinearly
(up to the scale C (C > 1), since we expect a bifurcation
will eventually be found unless an end point is reached).

See Figure 2 as an example of where, ω ≥ 1 after reaching
mean branch length l = 60 and is non-linearly increasing
(at a rate dependent on the standard deviation, 15, in this
case).

C. Daughter Branches Detection Criteria

The probability P ∈ [0, 1] of bifurcating, given image
evidence and prior level- and branch-specific lengths, cal-
culated in section 2.2, will now be converted to a decision
to bifurcate. One naı̈ve approach is to bifurcate whenever
P > 0.5. However, this approach does not take into
account any evidence whether this candidate location x0
for a bifurcation will result in two plausible child branches.
To determine whether two branches can be identified at x0,
we follow the following procedure that leverages the branch
angular statistics (Figure 3).

1) Denote the parent branch direction at x0 as ~p. First
threshold the neighboring points so that any point y
behind x0 is discarded. This is computed by checking
whether cos (< y − x0, ~p >) ≤ 0.

2) Denote the mean direction and standard deviation of
each daughter branch as ~µi and ~θi (training of ~µi and
~θi is found in section III-A), respectively for branches
i = 1, 2. Then threshold the neighboring points to
be within 3 standard deviations θ (99.7% confidence



Figure 2: Probability of a parent branch to bifurcate given
prior distribution of the parent branch length. Branching
weight ω = CP (Li ≤ l|Bi) (as in Equation 2) increase
according to branch length, where C = 2, P (Li ≤ l|Bi)
is Gaussian cumulative density function, given mean branch
length l = 60, standard deviation 15.

interval) of the daughter branch angles. This is done
by checking:

cos ( ~µi + 3θi) ≤ cos (< y − x0, ~p >) (3)

cos ( ~µi − 3θi) ≥ cos (< y − x0, ~p >), i = 1, 2.

If the criterion in Equation (4) is satisfied, point y is
kept; otherwise y is discarded (Figure 3).

3) The remaining neighboring points are clustered into
two parts using k-means.

a) If at least one cluster is empty, then the current
point x0 is rejected as a bifurcation, since we
can’t find its two daughter branches. The tracker
will keep tracking the centerline of the current
branch.

b) Otherwise, there are two cluster centroids ci, i =
1, 2. Then we check if the following two criteria
are satisfied:
i) mean image intensity along the path x0 and
ci is within the given intensity threshold;

ii) mean image intensity along the path c1 and
c2 is beyond the intensity threshold, indicat-
ing there is a clear separation between the
daughter branches.

If both criteria above are satisfied, then x0 is
accepted a bifurcation and c1, c2 will be set as
starting points of tracking the daughter branches.

Figure 3: Illustration of daughter branches detection using
angle statistics. p is the current branch direction. The red
dashed circle is the neighborhood of X0 (current search
point). µ1 and µ2 are prior mean daughter directions, θ1
and θ2 their respective standard deviations. The pink areas
are filtered neighboring points; any point outside will be
discarded. C1 and C2 are the resulting clustered centroids
that act as roots for tracking the daughter branches.

III. EXPERIMENTAL RESULTS

A. Description of the datasets

Synthetic Data: We generated 330 binary volumes, each
of size 256*256*256 and containing a binary tree structure
with 4 levels. The tree statistics are illustrated in Figure 4
and include: mean and standard deviation (std) of branch
lengths that describe P (Li = l|Bi), as well as mean angles
~µi, and angle standard deviation (std) (~θi in section II-C),
all assuming Gaussian distribution (it’s worth to note the
trees are not symmetric). Spatially-variant Gaussian noise
was added to approximate low-dose CT acquisition [34],
with standard deviation γ ∗ e0.5(f+1)/3 (so that std is
nonlinearly proportional to image intensity and std ≤ 1 when
γ ≤ 1), where f is image intensity, and different noise levels
γ ∈ {0.6, 0.8, 1.0} (Figure 5).

Clinical Data: The clinical dataset was obtained from the
2009 MICCAI challenge [35], [36]. We used all 16 ground
truth segmentation results provided by the organizers to gen-
erate ground truth centerlines by running the fast marching
algorithm [37], [38], [39], and then calculate length and
angle priors from these centerlines. Seven branches: trachea,
right main bronchi (RMB), left main bronchi (LMB), right
superior lobar bronchus (RSB), right intermediate bronchus
(RIMB), left superior lobar bronchus (LSB) and left inferior
lobar bronchus (LIFB) were manually labeled by a graduate
student. See branch and angle statistics in Table I and Figure
6.



Level 1 Level 2 Level 3 Level 4

mean 80 60 40 30

std 5 5 5 5

Angle 1 Angle 2 Angle 3

mean 45◦ 45◦ 30◦

std 5◦ 5◦ 5◦

Figure 4: Top: Tree structure in a synthetic data; Middle
rows: Statistics of branch lengths; Bottom rows: Statistics
of angles.

Figure 5: Synthetic 3D data with noise. Noise level from
left to right, top to bottom: 0, 0.6, 0.8, 1.0.

Level 1 Level 2

Trachea RMB LMB

mean length 133.29 51.16 75.75

min length 83.28 26.63 35.98

max length 208.01 97.00 103.49

std length 36.40 19.32 18.61

Level 3

RSB RIMB LSB LIFB

mean length 30.41 33.17 24.73 47.58

min length 21.49 13.00 10.95 15.00

max length 56.61 49.00 44.57 99.00

std length 9.59 10.62 8.81 20.51

Table I: Length statistics (in units of voxels) of real data.

B. Preprocessing and Initialization
In this paper, we manually set the starting point for the

tracker in the synthetic data experiment. For the clinical
data experiment, we adopt an approach similar to [40], [41],
selecting a region of interest (ROI) by first choosing the
uppermost 3/4 slices and a 256*256 square region in the
center of each slice. The volume is then filtered by a 5*5
median filter on each slice. The 30th slice counting from the
top is used for detecting the seed point. By detecting dark
circles of radii between [5, 50] pixels, we choose the one
closest to the center of the slice as the seed point.

C. Testing Results
Synthetic Data: Performance on the synthetic data was

measured based on the number of detected branches not
leaking into background regions. The results are summarized
in Table II, which show that, even as the noise level increases
from 0.6 to 1.0, the overall performance using statistical
priors shows a steady improvement of at least 13% with
statistics.

Noise Level 0.6 0.8 1.0

WOS 976 948 878

WS 1250 1200 1000

Improvement 28.69% 26.58% 13.90%

Table II: Number of branches detected in synthetic data.
WOS: method without statistics. WS: method using statis-
tics.

Clinical Data: Evaluation was performed using leave-
one-out cross-validation. Accuracy was measured by calcu-



A1 A2 A3

mean 144.71◦ 128.71◦ 97.01◦

std 7.94◦ 9.82◦ 17.16◦

A4 A5 A6

mean 168.86◦ 158.16◦ 106.77◦

std 5.79◦ 20.30◦ 9.54◦

Figure 6: Angle statistics (in degrees) of real data. Top:
Trachea is labeled in yellow, RMB and LMB are labeled
in blue, the rest are labeled in black; all the mean angles
are labeled in red dashed arcs; dashed black lines represent
standard deviations. Bottom: Angle statistics.

lating the shortest Euclidean distances from the centerlines
of the given ground truth segmentations (i.e. ground truth
centerlines) to the detected centerlines. Qualitative results
in Figure 7 show improved bifurcation detection and tree
topology representation when using tree statistics. Quan-
titative results in Table III show that the mean distance
from ground truth centerlines to detected centerlines (i.e.
the error) is reduced by 12% by adding statistical priors. By
running a paired t-test, we show that the result is of statistical
significance with p ≤ 0.05. Overall, we noted that by
adding statistic priors, the tracking accuracy is significantly

improved.
In both synthetic and clinical data experiments, we replace

P (Bi|I) in equation 2 by the Random Forest classifier
as described in [24] with the same image features. The
classifier is trained on synthetic samples in the synthetic
data experiment and on real samples in the clinical data
experiment.

Figure 7: Centerline detected in real data. The pink surface
is the binary segmentation of the volumes provided by the
EXACT challenge. The yellow centerline corresponds to
trachea (1st level), blue centerlines correspond to RMB and
LMB (2nd level) and black centerlines correspond to RSB,
RIMB, LSB and LIFB (3rd level). Figures in the bottom
row are the zoomed-in cyan regions in the top row. Note the
missing bifurcation highlighted by cyan and green circles in
the left vs. properly detected in the right.

Mean Distance Standard Deviation

WOS 10.49 20.06

WS 9.36 19.46

Improvement 12.07% 3.08%

Table III: Distance (in units of voxels) from ground truth
centerline in real clinical data to detected centerlines. WOS:
method without statistics. WS: method using statistics. The
improvement is of statistical significance with p ≤ 0.05.

IV. CONCLUSION

In this work, we presented the first method in the medical
image analysis field that incorporates prior and statistics
of anatomical trees into a tree extraction algorithm. We
developed a Bayesian based algorithm for tracking tree cen-
terlines, utilizing statistical geometry priors as well as tree
topology priors (including tree hierarchy, branch angle and



length statistics). By testing on synthetic images of different
noise levels and real CT chest scans, the proposed method
showed a clear improvement in terms of both stability and
accuracy. This is supported in our experiments over real
clinical data. While in our diagrams (e.g., Figure 4 and 6)
and the results, we adopted a binary tree representation (con-
taining only bifurcations), known to constitute the majority
of real anatomical branchings patterns, our approach could
be naturally extended to trees with trifurcations and more
generations (levels) of branching. Future works will involve
training and applying our method to tree-like vasculature
with other tree topologies, such as the Circle of Willis in
the brain to highlight areas of pathology, e.g. aneurysms. A
possible weakness of our approach is that the tracking is
limited by the adoption of a myopic, local decision making
process; a multi-hypothesis extension, allowing the tracker
to explore different paths, may yield further robustness to
noise.
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