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Abstract

Watershed transform is widely used in image segmenta-
tion. However, its shortcomings such as over-segmentation
and sensitivity to noise often make it unsuitable as an
automatic tool for segmenting medical images. Utilizing
prior shape knowledge has been demonstrated to improve
robustness of medical image segmentation algorithms. In
this paper, we propose a novel method for incorporating
prior shape and appearance knowledge into watershed seg-
mentation. Our method is based on iteratively aligning a
shape-histogram with the result of an improved k-means
clustering algorithm. No human interaction is needed in
the whole process. We demonstrate the robustness of our
method through segmenting the corpora callosa from a set
of 51 brain magnetic resonance (MR) images. Numerical
validation of the results is provided.

1. Introduction

The concept of watersheds is well known in topogra-
phy. It was considered as a potential method for image seg-
mentation in [1]. In [2] parallel watershed segmentation
was developed as a practical segmentation tool which gen-
erated complete contours offering a clear partition of the
image. Watershed has been recognized as a popular seg-
mentation algorithm with its simplicity, speed and com-
plete division of the image. However, drawbacks such as
over-segmentation and sensitivity to noise prevent water-
shed transform from being used extensively especially for
medical imaging data. Typically, watershed transform is
computed on the gradient magnitude of the original image.
Over segmentation typically occurs when fluctuation in the
gradient image lead to additional catchment basins and sub-
sequently a large number of undesired segments. Further-
more, each negative impulse noise can be considered as a
local minimum resulting in an additional labelled segment.
In order to overcome these drawbacks several methods have
been proposed. Among the most notable is the use of region

markers [3, 9, 10]. With region markers, certain desired lo-
cal minima are selected as markers then geodesic recon-
struction is applied to fill all the others to non-minimum
plateaus. In this way, the image is segmented into a de-
sired number of segments. However, automatic marker se-
lection is a tedious process requiring human interaction. In
addition, geodesic reconstruction can cause important im-
age features to be overlooked if markers are selected inap-
propriately, changing the final result dramatically. In medi-
cal image analysis, an active area of research involves the
modeling and analysis of normal and pathological struc-
tural shape variability. It has been demonstrated in several
medical image segmentation techniques that improved con-
vergence and robustness can be obtained when prior shape
knowledge is utilized [4, 5, 6, 7, 8].

In this paper we propose a novel method for incorpo-
rating prior shape and appearance knowledge into the wa-
tershed segmentation technique. The method is composed
of a training stage and a segmentation stage. In the train-
ing stage, a shape histogram and intensity statistics are used
to model prior knowledge. The segmentation stage is a fully
automatic iterative procedure and relies on four main steps:
classical watershed transform, improved k-means cluster-
ing, shape aligning, and refinement.

The rest of the paper is organized as follows. Section
2 discusses the details of the algorithm including mod-
elling prior knowledge (2.1), watershed segmentation (2.2),
improved k-means clustering (2.3), current estimate align-
ment (2.4) and refinement (2.5). In section 3, we apply our
method to segmenting the corpora callosa from a set of 51
brain MR images and provide numerical validation of the
results. Concluding remarks are given in section 4.

2. Methods

2.1. Modeling shape and appearance knowledge

A training set of gray level images containing the ob-
ject of interest is collected. Additionally, binary images of
expert-segmented results identifying the shape of the ob-
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ject of interest are also provided. Fig.1.a shows a subset
of expert-segmented corpora callosa from mid-sagittal MRI
slices. The binary shape images are aligned by applying a
translation, a rotation, and a scaling, in order to normalize
the location of the centroid, the direction of the principle
axis, and the area of each of the binary shapes, respectively.

A suitable shape model should represent the detailed
shape information and be able to model possible shape vari-
ations. To this end we provide a modification to the idea of
a probabilistic atlas by incorporating additional information
derived from the distance transform. Firstly, a shape his-
togram is obtained by adding the values of corresponding
pixels of the set of aligned binary shape images. The value
at pixel p in the shape histogram, denoted by SH(p), reflects
the number of shapes containing p. The shape histogram of
a set of aligned corpora callosa is shown in Fig.1.b.

Figure 1. (a) A subset of the training set
of corpora callosa binary shape images ex-
tracted from mid-sagittal MRI brain slices. (b)
The shape histogram of aligned binary im-
ages.

Secondly, by overlapping and aligning the shape his-
togram with the instance of the target structure in a new
test image, we can construct a probability map in which the
value of each pixel represents the probability that the un-
derlying pixel p belongs to the target. Alignment details are
described in section 2.4. The probability map is denoted by
PM(p) and defined as

PM(p) =

{
s2 + s1 · SH(p) if p ∈ �;

s2 ·
[
1 − Dist(p)

]
if p �∈ �.

(1)

where � is the set of nonzero pixels in the shape histogram.
Dist(p) is the normalized two-dimensional Euclidean dis-
tance transform for the binary image having � as fore-
ground [13]. The two scalars, s1 and s2, satisfy s1 + s2 = 1
and determine the weight of shape information when con-
structing the probability map. An example of the probabil-
ity map is shown in Fig.2.a and Fig.2.b plots PM(p) of the

pixels along the straight line across the probability map in
Fig.2.a.

Figure 2. (a) Probability map. (b) Probability
profile along the line ABCD in (a).

In addition to capturing shape variation information from
the expert-segmented binary images, we model the appear-
ance knowledge from the intensity patch of the object of
interest in the training set of gray level images. In medi-
cal images, anatomical structures have characteristic inten-
sity features that can be utilized when locating similar struc-
tures in new images. Histogram equalization is first applied
to the training set of gray level images and then the mean,
Mapp, and variance, Vapp, of the intensity patches are cal-
culated and used as two appearance descriptors.

2.2. Watershed transform

By utilizing prior knowledge our method will be able to
cope with the over segmentation problems of the standard
watersheds transform. In this section we present a review
of the standard watershed segmentation algorithm and fol-
low the notations of [11] for the discrete case using topo-
graphical distance. The reader is referred to [11] for a de-
tailed treatment.

The lower slope, LS(p), is the maximum slope connect-
ing pixel p in the input image f , with its neighbors of lower
altitude, which can be written as

LS(p) = max
q∈N(p)∪p

(
f(p) − f(q)

d(p, q)

)
(2)

N(p) is the set of neighbors of pixel p and d(p, q) is the Eu-
clidean distance between p and q. Note that when q = p,
the right hand side of (2) is forced to be zero; thus we have
a lower slope value even when p is a local minimum. Con-
sequently, the cost for moving from pixel p to q is defined
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as

cost(p, q)=




LS(p) · d(p, q) if f(p)>f(q);

LS(q) · d(p, q) if f(p)<f(q);

1
2 [LS(p)+LS(q)] · d(p, q) if f(p)=f(q).

(3)
If there exists a path π = (p0, · · · , pl) from p0 = p to

pl = q, the topographical distance along π between the two
pixels p and q is expressed as

T π
f (p, q) =

l−1∑
i=0

d(pi, pi+1)cost(pi, pi+1) (4)

T π
f (p, q) is the minimum of the topographical distances of

all paths linking p and q. Following similar definition, the
catchment basin CB(mi) of a local minimum mi is defined
as the set of pixels which have smaller topographical dis-
tances to mi than any other local minimum. Finally, the set
of pixels which do not belong to any catchment basin are
referred to as the watershed pixels. Note that, in practice,
the watershed transform is usually computed on the gradi-
ent magnitude image instead of the gray value image. An
example of watershed transform is shown in Fig.3.c

2.3. Improved k-means clustering

After performing a standard watershed transform, we
make use of the k-means clustering algorithm to assign the
resulting segments into different classes. K-means is a clus-
tering algorithm that assigns N data points to k disjoint sub-
sets, Sj , j = 1, 2, · · · , k, each containing Nj data points, by
minimizing the sum-of-squares criterion given by

J =

k∑
j=1

∑
n∈Sj

√
|xn − µj |2 (5)

where xn is the value of nth data point and µj is the mean
value of the data points within the cluster Sj .

K-means clustering algorithm can effectively assign the
watershed segments into several clusters according to dif-
ferent features. In our algorithm, we jointly utilize two kinds
of features for each segment; (i) the mean normalized inten-
sity and (ii) the spatial centroid position of each segment.
For the nth segment, these features are denoted by In and
Cn, respectively. Accordingly, we design an improved k-
means clustering scheme with a modified sum-of-squares
criterion, given by

J ′ =

k∑
j=1

∑
n∈Sj

√
|In − ηj |2 + α |Cn − µj |2 (6)

where ηj and µj denote the average values of In and Cn,
respectively, ∀ n belonging to the jth cluster. By minimiz-
ing (6), each resulting cluster of watershed segments will

contain segments with similar intensity. Furthermore, the
watershed segments within each cluster tend to be in close
proximity and the likelihood of assigning non-neighboring
segments to the same cluster is reduced. The parameter α
determines the weight for penalizing distant segments when
clustering. The value of α is chosen to be inversely pro-
portional to the average distance between the two farthest
points of an object in the training set (zooming). An exces-
sively large α, for example, can hinder segments belonging
to a long, thin structure from being grouped together.

To overcome the sensitivity of the k-means algorithm to
different initializations, we order the segments according to
their mean intensities and assign the same number of seg-
ments to each of the k clusters.

After clustering, we locate an initial estimate of the tar-
get structure by selecting the cluster whose intensity pro-
file is most similar to the appearance knowledge obtained
from the training set (section 2.1). Specifically, after his-
togram equalization, we calculate the mean and variance
of the intensity for each cluster. We then choose the clus-
ter having the most similar intensity statistics to those cal-
culated in the training. This is expressed as finding the jth
cluster that minimizes

DF(j) =
√

(mj − Mapp)2 + (vj − Vapp) (7)

where mj and vj denote the mean and variance of the inten-
sity of the jth cluster, respectively. The set of all watershed
pixels belonging to this selected cluster is considered to be

Figure 3. Calculating the initial estimate of
the corpora callosa segmentation. (a) Origi-
nal mid-sagittal MR image. (b) Gradient mag-
nitude image. (c) Watershed transform. (d)
Result of improved k-means clustering and
initial segmentation estimate.
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the initial segmentation estimate and will be iteratively im-
proved (section 2.4). Fig.3 demonstrates initializing the first
estimate of the corpora callosa segmentation by applying
our improved k-means clustering to a watershed segmenta-
tion of an MR image. Note how the watershed segmentation
is characterized by excessive over-segmentation (Fig.3.c).

Note also how the clustering algorithm detects a good
approximation of the corpora callosa (Fig.3.d) with some
undesired segments (upper right corner of Fig.3.d).

2.4. Iterative shape alignment

In this section we iteratively merge segments and elim-
inate undesired ones by aligning the current estimate with
the shape histogram. Initially however, we perform morpho-
logical closing operation on the initial estimate (obtained
in section 2.3) to join the segments separated by watershed
pixels, the result of which is called target T . Now, in the
ith iteration of the shape alignment step, the area, orien-
tation and centroid of the current target Ti are calculated.
Then the shape histogram is scaled, rotated and translated
(using bi-cubic interpolation) to be aligned with Ti, and a
probability map is constructed accordingly. Finally the pix-
els in Ti with the lowest probabilities are removed, result-
ing in an updated target Ti+1. The ith iteration of this pro-
cedure can be expressed by the following steps:

Step 1. Align: Resize, rotate and translate the shape his-
togram to align it with the target

SHi = R
[
(ATi

/A�) · SH
]
+ (CTi

− C�);

Step 2. Probability map: Construct the probability map
PMi based on SHi according to (1);

Step 3. Remove: The pixels in target Ti having the lowest
probability are removed.

Ti+1 =
{
p|p ∈ Ti∩

PMi(p)>σ max
q∈Ti

(
PMi(q)

)
+(1−σ) min

q∈Ti

(
PMi(q)

)}

In the above procedure, SH represents the shape his-
togram obtained from the training set of images. A� and
C� are the area and centroid of the nonzero region � of the
shape histogram, respectively. Similarly, ATi

and CTi
are

the area and centroid of the target Ti, respectively. By mul-
tiplying the rotation matrix R, the shape histogram will ro-
tate by a degree of Θ = θTi

− θ�. (θTi
and θ� are the ori-

entations of the principle axes of Ti and �, respectively). σ
is the step size associated with pixel removal for each itera-
tion. A small σ generates a more accurate result but requires
more iterations for the algorithm to converge.

The algorithm converges when all the remaining pixels
have probabilities larger than s2, which indicates that the

Figure 4. Iterative shape alignment. (a) Initial
alignment, (b) 1st iteration, (c) 3rd iteration,
and (d) the algorithm converges after the 5th
iteration. The gray intensity values represent
the values of the probability map.

Figure 5. Iterative shape alignment. (a) Initial
alignment, (b) 1st iteration, (c) 2nd iteration,
and (d) the algorithm converges after the 4th
iteration.

shape of the current target is similar enough to the shape
histogram and the desired structure is well segmented. Two
sets of intermediate results are shown in Fig.4 and Fig.5.
We can see some difference between the two initializations,
however both cases generated good alignments. The two
cases converge after five and four iterations, respectively.
Using the target obtained in the final iteration, we can de-
termine which segments should be kept. These segments are
merged together to form the segmented result of the desired
organ.
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Figure 6. Some example segmentation results.

2.5. Refining segmentation results

If the input image data is noisy, the edge of the final seg-
mented result acquired in section 2.4 may be not smooth.
In fact, some small marginal segments may get lost during
the clustering step since their mean intensities are not sim-
ilar enough to the segments inside the organ. Hence, it was
found useful to merge some of the one ring segments if they
are covered by � and have the similar mean intensities as
that of the target structure.

3. Results

Our proposed algorithm has been tested on 51 brain MR
images [12]. Expert-segmented corpora callosa for all im-
ages in the data set were provided. To ensure cross valida-
tion, when segmenting an image, the corresponding expert-
segmented result and appearance information were not in-
cluded in the training set, i.e. a leave-on-out scheme was ap-
plied in which 50 MR images with the corresponding expert
segmentation were used as the training set for segmenting
the remaining one image. The shape histogram is obtained
by aligning and adding the expert segmented results. Each
test image contains a brain region cropped from the origi-
nal image with a dimension of 91×141. The cropped brain
parts of the 51 MR images mostly cover the region begin-

ning at the calvaria, reach the upper part of the pons and
have a fixed aspect ratio. The intensity and contrast of these
images vary from one to another and the shape variation
of corpora callosa is considerably large. The original image
has been preprocessed by a median filter prior to comput-
ing the gradient.

A constant value of α = 0.5 for all the MR images was
used. By selecting α < 1, we actually put more empha-
sis on intensity information and use spatial position as addi-
tional constraints when clustering the segments. We choose
σ = 2.5% as the removal step size in each iteration. In
general, for the less noisy images, σ can be larger since
there will not be many small segments spreading around the
structure. However, to ensure the accuracy of the results, it
should be no larger than 5%. On the other hand, for the im-
ages with much more noise, σ should be smaller and the al-
gorithm will require more iterations to get converged. In our
experiment, most cases converged in less than 5 iterations.
The two scalars s1 and s2 in (1) are selected to be s1 = 0.7
and s2 = 0.3. We always use s1 > s2 since shape informa-
tion is the dominant factor.

All 51 brain MR images were automatically segmented.
The results are compared with the corresponding expert seg-
mented ones in the original data set. To demonstrate the ac-
curacy of our method, the maximum, average and standard
deviation of Hausdorff distance [14] are calculated and re-
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ported for all the cases (Table 1). It can be seen that our re-
sults differ very slightly from the expert segmented results.
Fig.6 presents some of the segmented corpora callosa out-
lined by a white boundary.

However, we report two failure cases in which a satis-
factory result can not be generated automatically. One fail-
ure case is image No.22. The problem is traced-back to the
intrinsic limitation of k-means algorithm, namely the diffi-
culty in determining the optimal number of clusters k. For-
tunately, in our method, two factors helped in finding a ro-
bust k for all the remaining images. The first factor is the
similar zooming (as descried in 2.3). The second is that all
images of the brain have identical components; white mat-
ter, gray matter and CSF. As a result, the intensity distribu-
tion of all brain MR images is concentrated around certain
intensity ranges. We used an experimental value of k = 7
and obtained satisfactory results for all the images except
image No.22, which had very low contrast. Consequently,
k-means algorithm did not successfully classify the seg-
ments belonging to the corpora callosa into the same clus-
ter. For that case only, we adjust k and a good result could
still be obtained with k = 4. In Table 1, this case is marked
with * and the maximum, average and standard deviation of
Hausdorff distance are all calculated using k = 4.

Another failure case is image No.31. The middle part of
the corpora callosa in this image is very thin and noisy as
shown in Fig.7.a. The watershed transform was unable to
distinguish this part as a separate segment. Consequently,
only the two ends of corpora callosa were well segmented
and the result is hence broken in the middle, as shown in
Fig.7.b.

Figure 7. A failure case. (a) Original image
No.31. (b) Segmentation result.

4. Conclusions

In this paper we propose a new approach to improve
watershed segmentation by incorporating shape and ap-
pearance knowledge. The method overcomes some intrinsic
problems with watershed transform. The over-segmentation

MRI No. Max error Mean error SD error
(pixels) (pixels) (pixels)

1 3.6056 0.4451 0.6340
2 4.0000 0.6514 0.7902
3 3.1623 0.5835 0.5784
4 2.0000 0.5212 0.5737
5 2.2361 0.4004 0.5269
6 2.2361 0.5205 0.5441
7 2.0000 0.5148 0.5427
8 2.0000 0.5994 0.5286
9 3.0000 0.4962 0.5723
10 3.6056 0.5975 0.6183
11 2.2361 0.3973 0.5350
12 3.1623 0.6404 0.6677
13 2.8284 0.5402 0.7000
14 2.0000 0.4812 0.5288
15 1.4142 0.3367 0.4777
16 3.6056 0.5143 0.6551
17 4.0000 0.4762 0.6633
18 1.4142 0.4034 0.4954
19 2.0000 0.5200 0.5258
20 1.4142 0.3430 0.4794
21 2.0000 0.4075 0.5302

22* 2.0000 0.5234 0.5495
23 2.8284 0.6127 0.6517
24 2.2361 0.4324 0.5364
25 2.2361 0.5491 0.5530
26 3.0000 0.5519 0.6029
27 3.6056 0.5179 0.6969
28 2.0000 0.5019 0.5279
29 2.0000 0.5335 0.5694
30 3.0000 0.5929 0.6114
31 – – –
32 2.0000 0.3944 0.5164
33 2.2361 0.4308 0.5503
34 2.0000 0.4907 0.5152
35 1.4142 0.4407 0.5118
36 3.1623 0.5894 0.5674
37 2.8284 0.5002 0.6280
38 3.6056 0.4650 0.6325
39 1.4142 0.4198 0.5035
40 1.4142 0.3758 0.4930
41 2.0000 0.4346 0.5231
42 2.0000 0.4231 0.5252
43 1.4142 0.4716 0.5155
44 2.0000 0.4516 0.5485
45 2.0000 0.5768 0.5212
46 3.6056 0.5109 0.6629
47 1.0000 0.3304 0.4704
48 2.0000 0.3650 0.4889
49 1.4142 0.4785 0.5131
50 2.8284 0.3875 0.5538
51 1.4142 0.5364 0.5319

Average 2.3716 0.4856 0.5648

SD 0.7927 0.0806 0.0678

Table 1. The mean, maximum, and standard
deviation of the Hausdorff distances between
our result and expert segmented corpora cal-
losa boundaries.(*k=4)

problem is handled by clustering and merging the watershed
segments. The effect of noise is suppressed by computing
the mean intensity of each segment. As a result, even when
the input image has a relatively low resolution and low con-
trast, our algorithm achieves relatively accurate result. Our
method is marginally affected by some of the limitations of
the k-means clustering algorithm and a failure case is re-
ported. However, this case can be detected by comparing
the segmentation result with the shape histogram and ad-
justing the number-of-clusters parameter in k-means to ob-
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tain a satisfactory result.
Future work includes applying our method to other data

sets as well as extending it to 3D. Given that the main build-
ing blocks of our method (watershed, k-means) are well de-
veloped in 3D, we foresee no major difficulties. Addition-
ally, more advanced appearance models may be used when
the intensity variations within the target structures are more
complex as in active appearance models [15]. This was not
an issue for the corpora callosa segmentation application.
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