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1 Diffusion Weighted Image Acquision

Diffusion MRI (dMRI) is a powerful imaging protocol that allows for the assessment of the orga-

nization and integrity of fibrous tissue. The imaging works by measuring the diffusion of water

molecules within the body. This diffusion is restricted by cell membranes and as a result, rates

of diffusion are far less across tissue fibers than parallel to them. With enough diffusion mea-

surements along different directions in 3D, we can non-invasively obtain a model of the diffusion

pattern at different points within an imaged subject.

The diffusion patterns measured using dMRI have had a significant impact on the analysis of

neural connectivity within the white matter of the brain. Neural pathways, dubbed fiber tracts, can

be traced out from the directional information from the diffusion patterns. This process is known as

tractography and due to noise, motion artifacts, and partial voluming effects, is a computationally

difficult problem.

We present here an examination of the current state of tractography and diffusion MRI1. In

particular, we look at the computational challenges inherent in this area and the open problems

that remain.

1.1 Biological Basis for Diffusion MRI

The biological basis for diffusion MRI dates back to 1828 when botanist Robert Brown noticed

the continuous and random motion of pollen grains suspended in water [39]. What Robert Brown

had discovered was later determined to be the motion of water molecules due to thermal agita-

tion [69]. This motion, now known as Brownian motion or diffusion, was later characterized by

Albert Einstein [51], resulting in Einstein’s equation:

r2 = 6dt. (1)

What Einstein’s equation characterized was that the square of the average displacement of

molecules (r) with a given diffusion rate (d) is proportional to the observation time (t). If we can

measure this molecular displacement over a fixed time, we can obtain the diffusion rate of different

substances under different conditions.

As the majority of the human body is water [57], the diffusion phenomenon occurs within us

as well. While the diffusion process is random, our cell structures can restrict or hinder the the

motion of water molecules [20]. As such, the diffusion of water molecules in our body depends on

the microstructure of our tissues. Fast molecular diffusion occurs within and around a cell as there

are few microstructures to inhibit motion. Diffusion though the cell however is slower as the cell

membrane and other structures (e.g., myelin sheaths in the brain white matter) restrict molecular

motion.

Since the diffusion of water within the body is dependent on local cell structure, we can discuss

how different organizations of these structures affect diffusion rates. Consider for example the hu-

man brain where functional regions (gray matter) are connected by a collection of neural pathways

(white matter). Figure 1 presents diffusion measures for the brain’s corticospinal fluid (CSF), gray

matter, and white matter respectively. When the cell structure is minimal as in CSF, we see fast

1This chapter is an updated version of the one we published in [34].
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Figure 1: Synthetic examples of the diffusion seen in Corticospinal fluid (left), gray matter (mid-

dle), and white matter (right) within the brain. The diffusion rates for various directions are shown

in red. Adapted from [4].

isotropic diffusion. More complex cell structure that is not consistently organized, such as gray

matter, shows slower, but still isotropic, diffusion. Yet if the local cell structure is organized along

a consistent orientation, as it is in white matter, the diffusion rates become anisotropic, i.e., they

vary with regards to direction [20].

These diffusion differences within the brain are potentially useful cues in analyzing brain struc-

ture and function. For example, measuring the average diffusion rate or the anisotropy of a tissue

can give us significant information about the tissue’s organization and integrity [91]. Diffusion

measurements would be most informative in white matter regions where the orientation of the mi-

crostructure can be inferred from the diffusion. This microstructural orientation within the brain’s

white matter is, in turn, known to describe the direction of neural pathways in the brain [21]. As

a result, by measuring the diffusion using Einstein’s equation, we could infer the orientational

structure of the brain’s white matter and ultimately, map out the brain’s neural pathways. This is

precisely what diffusion MRI is used to accomplish.

1.2 Diffusion Weighted Image Acquisition

To understand how diffusion can be measured through magnetic resonance imaging, we must first

address the basic concepts on nuclear magnetic resonance. The most fundamental of those con-

cepts is the physical property of spin (s) that all elementary particles possess. An example of

a particle’s spin is shown in Figure 2. The spin property rotates the particle around its nucleus,

thereby giving the particle a magnetic moment (m). This magnetic moment can then be manipu-

lated using magnetic fields like those generated by an MRI scanner. As the body is mostly water,

the spins of hydrogen atoms within water molecules become a good candidate for MR imaging.

1.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging manipulates the magnetic moments of hydrogen atoms in a specific

pattern in order to generate an image of tissue measurements. This pattern consists of three princi-

pal steps: precession, resonance, and relaxation. We consider each in turn.

3



Figure 2: Nuclear spin s generating a magnetic moment m. The particle spins around a rotational

axis shown here in gray. Adapted from [79].

Precession: A static magnetic field B0 is applied to the body. This magnetic field aligns the

rotational axis of each spin with its field direction. These spins now rotate (i.e., precess) around the

same magnetic axis. Note that roughly an equal number of spins will be aligned with the positive

direction of the magnetic axis as with the negative direction and the overall signal generated during

precession will be negligible.

Resonance: With the magnetic field B0 in place, a second, weaker, magnetic pulse is applied

to the body in the direction g. This second field results in the magnetic moment m of each spin

aligning with the pulse direction g. The spin’s axis of rotation remains aligned with B0. The

result of the resonance phase is to cause the net magnetism of the spin to veer away from the main

magnetic field B0.

Relaxation: The second magnetic pulse is removed and the magnetic moments of the hydrogen

atoms realign with B0. As this realignment occurs, the changing magnetic field generated by the

realignment of the spins induces a current in the coil of the MRI scanner. From this current, two

common measurements can be taken:

1. Spin-spin relaxation time (T2): The amount of time it takes for the magnetism in the direction

of g to reduce to 37% of its maximum value.

2. Spin-lattice relaxation time (T1): The amount of time it takes for the magnetism in the direc-

tion of B0 to recover 63% of the magnetism it lost when the second gradient was applied in

the direction g.

These relaxation times can be visualized at multiple locations in the brain, resulting in what are

known as T1 and T2 weighted images.

1.2.2 Diffusion Weighted Imaging

Since MR imaging depends on the magnetic moments of hydrogen atoms, it is possible to develop

a sequence of precession, resonance, and relaxation periods that allow MRI to measure the move-

ment of hydrogen atoms over time, and in turn the water molecules of which they are a part. Such
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Figure 3: The Stejkall-Tanner diffusion weighted imaging sequence. Adapted from [120].

a imaging sequence was initially described by Stejskal and Tanner [110], and later adapted to the

scanning of the human body by Le Bihan and Breton [26]. This imaging sequence is summarized

in Figure 3 for a given diffusion direction g.

The sequence in Figure 3 assumes the magnetic field B0 has been applied and that the spins

are precessing around B0. In this state, a magnetic pulse is applied at an angle of 90◦ from the

direction of B0. This pulse aligns the spins that were separately aligned to either the positive or

negative B0 axis. Once the spins are aligned, the 90◦ pulse is removed an a second pulse, known

as a gradient pulse, is applied in the direction g. This gradient pulse senses the induced current to

a specific angular direction.

A third magnetic pulse in the direction 180◦ from B0 follows the gradient pulse and then the

gradient pulse is reapplied. The 180◦ pulse plays a key role in that it flips the spin direction of

the atoms to the opposite of what they were during the precession phase. As a result of this flip,

the current induced by stationary atoms during the application of the second gradient pulse will

cancel out the current induced by the same atoms during the first gradient pulse [79]. Therefore, the

resulting signal measured after all gradient pulses have been applied relates solely to the molecules

experiencing motion in the direction g.

The T2 relaxation time is then measured from this final signal for multiple locations in the brain

and visualized in what are known as diffusion weighted images. Figure 4 displays a conventional

T2 image next to sample diffusion weighted images (DWIs) for various gradient directions g.

Note here that rapid diffusion results in fast T2 relaxation times, resulting in a low intensity in

the diffusion weighted image. Further note the different rates of diffusion for different directions

within the brain’s white matter as pointed out by the white arrows in Figure 4.

From the diffusion weighted image for gradient direction g, the diffusion rate (d) can be com-

puted using the Stejskal-Tanner equation:

S = S0 exp(−bd) (2)

where S is the diffusion weighted image intensity, S0 is the standard T2 image intensity, and b is

the diffusion weighting [110]. The diffusion weighting b is in turn proportional to the strength and

duration of the gradient pulse. The T2 image used in (2) is typically referred to in this context as a

B0 image as it is acquired without the application of the gradient pulses (i.e., b = 0). The scalar d

is commonly referred to as the apparent diffusion coefficient (ADC).
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(a) B0 Image (b) Diffusion Weighted Images

Figure 4: Axial slices of (left to right) (a) standard T2 image and (b) its corresponding diffusion

weighted images from gradient pulses in the horizontal, vertical, and out of plane directions. Note

the differences in measured diffusion in the Splenium due to gradient direction (highlighted by the

white arrows). Adapted from [69].

1.3 Correction of Image Artifacts

While dMRI provides us with measurements of diffusion, it must be acknowledged that the quality

of the diffusion weighted images is affected and limited by the image acquisition process. All

further analysis is going to depend on the accuracy of these diffusion measurements and as such, we

must address the presence of noise and imaging artifacts within these diffusion weighted images.

Diffusion MRI is susceptible to various artifacts, the three most common being eddy currents,

subject motion, and Rician noise [14]. Let us consider each in turn.

1.3.1 Eddy Currents

As seen in the diffusion imaging sequence in Figure 3, multiple magnetic gradient pulses are

applied in rapid succession. Switching between these gradients can result in fluctuations in the

scanner’s magnetic field. These fluctuations induce what are known as eddy currents in the coil

of the MRI scanner. The eddy currents interfere with the currents induced by the scanned subject,

thereby distorting the resulting diffusion weighted images [14].

Much is known of eddy currents, namely that they are dependent on the magnitude of the

gradient pulse, independent of the subject being scanned, and that they result in related geometric

and intensity distortions in diffusion weighted images [62]. The geometric distortion produced

from eddy currents has been shown to consist of a translation, scale and shear of the resulting image

and is commonly rectified using affine registration [62, 84, 29]. The diffusion weighted images

are corrected by registering them to a T2 weighted image with the mutual information similarity

measure providing the best results [84]. As the T2 image is acquired without gradient pulses

that produce eddy currents, it is assumed to be free of geometric distortion, thereby making it an

appropriate template to which we can register the DWIs. Intensity corrections are then calculated

directly from the magnitudes of the shear, scaling, and translations of the affine warp [62, 84].

One benefit of eddy currents being independent of the subject scanned is that the affine warp
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used in the correction can be obtained by imaging a physical phantom with known ground truth [44].

This warp can then be applied to later subject scans.

1.3.2 Subject Motion

Depending on the number of diffusion weighted images being acquired, the length of a diffusion

MRI scan can range from a couple of minutes [88] to a few hours [119]. During that time, the

subject may move both voluntarily or involuntarily (e.g., breathing). As a result, the same voxel

location in two diffusion weighted images is not guaranteed to correspond to the same anatomical

location in the subject.

While correcting for subject motion in a single image has been well studied (see [114] for a

survey), the problem of correcting motion between separate diffusion weighted images has yet to

receive a strong theoretical treatment [14]. Even so, two main approaches have been proposed to

correct for subject motion between diffusion weighted images, both involving image registration.

First, we can, as with eddy current correction, align the diffusion weighted images to a T2 weighted

image with the mutual information similarity measure [84, 105]. The alternative approach is to

model the diffusion at each voxel (as discussed further in Section 2) and to align images so as to

minimize the residual of the model fit [7, 11]. A recent quantitative comparison of these approaches

suggests that both methods are equally capable of correcting for subject motion [106].

Note however that if the rotational motion of the subject is large, the directions of the applied

gradient pulses would need to be corrected for any further model fitting or analysis [78, 105].

1.3.3 Rician Noise

Any environment is going to contain a certain amount of background noise. In the case of diffusion

MRI, this noise has been well modeled using a Rician distribution [17] given as

p(x|µ, σ) = x

σ2
exp

(

−x
2 + µ2

2σ2

)

I0

(xµ

σ2

)

(3)

where x is the observed image intensity, µ is the noise-free signal, σ is the standard deviation

of the noise, and I0 is the zeroth-order Bessel function of the first kind. At high signal to noise

ratios, the Rician distribution is occasionally approximated using a Gaussian distribution [54]. This

additive noise can have an adverse effect on the diffusion rates calculated using the Stejskal-Tanner

equation, particularly for images taken at a high diffusion weighting [71].

Historically, variational methods have been applied to remove this Rician noise, with anisotropic

filtering [99] and total variation regularization [17, 54] both showing success. Weighted mean

filtering approaches have also been used [22, 113, 122]. The main conceptual difference in de-

noising algorithms for diffusion weighted images is whether to denoise one image at a time (the

scalar approach) or all images at once (the vector approach) [54]. Recent results suggest that the

vector-based algorithms improve signal-to-noise ratio to a greater extent [113].
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2 Modelling Local Diffusion Patterns

Since the introduction of diffusion MRI, two key advancements have propelled the field to where

it is today: first, the introduction of the diffusion tensor by Basser et al. [15] and second, the

introduction of higher angular resolution diffusion imaging (HARDI) [116]. The introduction of

the diffusion tensor brought forth the concept of modeling the diffusion rates from the DWIs as a

three dimensional function within each voxel. HARDI, on the other hand, allowed us to increase

the complexity of these models to better represent the local diffusion properties. This section will

show how these two contributions underlie the ability to perform brain connectivity analysis.

2.1 The Diffusion Tensor Model

While the Stejskal-Tanner equation (2) relates diffusion rates to the diffusion weighted image in-

tensities, we can consider a more general formulation of the diffusion properties at a voxel. Since

water molecules undergo random Brownian motion, we can consider a probability density function

(PDF) pt(x) describing the probability of a water molecule experiencing a displacement x over the

observation time t. It has been shown that the distribution pt is related to the diffusion weighted

image intensities via the Fourier transform [5]:

S(g)

S0
=

∫

x∈R3

pt(x) exp (−ibgx) dx (4)

As earlier, S(g) represents the diffusion weighted signal for the gradient direction g, S0 is the

unweighted B0 image signal, and b is the diffusion weighting. With enough diffusion weighted

images S(g), the Fourier transform can be inverted to obtain pt. This is known as q-space imag-

ing [119]. In practice however, the number of diffusion weighted images required to accurately

perform the inversion leads to scanning times on the order of hours [64] which is generally not

available in a clinical setting. As a result, it has become common to assume a model for pt, the

simplest model being a zero-mean Gaussian:

pt(x) =
1

√

(2π)3|2tD|
exp

(−xTD−1x

4t

)

(5)

where the covariance is 2tD. Plugging the Fourier transform of (5) into (4) results in a more

general case of the Stejskal-Tanner equation:

S(g) = S0 exp
(

−bgTDg
)

(6)

The 3x3 second-order positive-definite symmetric matrix D is referred to as the diffusion ten-

sor [15]. It contains six unique elements and therefore six diffusion weighted images are required,

along with the B0 image, to estimate the tensor. The diffusion weighted images are obtained from

uniform, non-colinear gradient directions so as to not favor a given direction in the tensor fitting

process. These seven images can be obtained with an MRI scan on the order of 1-2 minutes [88],

thereby making it a clinically feasible imaging protocol.

Many factors affect the quality of the diffusion tensors. As mentioned earlier, noise, motion,

and distortions in the diffusion weighted images will result in poor tensor estimates. Aside from

8



e1
e2

e3

Figure 5: Examples of the ellipsoidal representation of prolate (a) and oblate (b) diffusion tensors.

Adapted from [69].

post-processing the diffusion weighted images, it is also common to obtain DWIs from more than

six gradient directions in order to overfit the tensor, thereby reducing the effect of having some cor-

rupted DWI signals [71]. The fitting procedure also affects the quality of the resulting tensors. The

simplest approach is to take the logarithm of (6) and fit the tensor using least squares [15]. This

approach, however, does not ensure that the resulting tensor is positive-definite (i.e., have positive

eigenvalues). Non-linear fitting allows for this constraint and generally results in a less noisy tensor

field [71], especially if spatial regularization is incorporated into the fitting procedure [118]. Ad-

ditional approaches include using a weighted least squares fitting of the log-transformed equation

(6) which is used to detect and remove outlier DWI signals prior to the final tensor fit [43].

2.2 Tensor Image Visualization

The power of the diffusion tensor lies in its ability to capture and visualize more detailed properties

of the diffusion than the scalar diffusion weighted images provide. For example, we can look at

how the rates of diffusion vary with direction or calculate the average diffusion rate at each voxel.

In fact, significant diagnostic information can be obtained from the diffusion tensor by analyzing

its principal components obtained through the tensor’s eigendecomposition [61]. Given a diffusion

tensor D, we can obtain the eigendecomposition

D = [e1 e2 e3]





λ1
λ2

λ3



 [e1 e2 e3]
T

(7)

where the eigenvalues are positive and sorted in descending order (i.e., λ1 ≥ λ2 ≥ λ3). The

eigenvectors e1, e2, e3 are considered the main axes of diffusion while the eigenvalues encode the

rates of diffusion along each corresponding axis. Given this interpretation, we can visualize the

diffusion tensor as an ellipsoid as shown in Figure 5. The axes of the ellipsoid are the eigenvectors

of the tensor while the tensor’s eigenvalues describe the ellipsoid’s stretch along each axis. Another

interpretation of the ellipsoid is as an iso-probability surface of the Gaussian diffusion model given

in (5).
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The tensor eigendecomposition allows for the computation of two key diffusion properties:

the Mean Diffusivity (MD) and the Fractional Anisotropy (FA) [69, 120]. These two measures

respectively capture the mean and variance of the diffusion rate with respect to direction. They are

computed from the tensor’s eigenvalues as

MD =
1

3
(λ1 + λ2 + λ3) (8)

FA =

√

3

2

√

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2
√

λ21 + λ22 + λ23
(9)

Examples of MD and FA on a slice of the brain are shown in Figure 6. From these images,

we observe the brain microstructure described in Section 1.1. Note that the mean diffusivity is

higher in the ventricles than the rest of the brain due to the lack of tissue structure. Conversely, the

fractional anisotropy is highest in the white matter of the brain due to coherent orientation of the

tissue fibers. We can further estimate the orientation of this microstructure as being equivalent to

e1. Of course, the quality of this estimate will depend in part on the FA. Low fractional anisotropy

would imply a less coherent orientation in the tissue fibers, making this estimation of the fiber

orientation a potentially poor one.

Other scalar measures have been generated to characterize both the shape and anisotropy of

diffusion tensors, but FA and MD are most commonly used in practice. A review of other scalar

tensor measures can be found in [90, 120].

Aside from visualizing the scalar FA and MD maps, approaches have been developed to display

the tensor’s orientation information as well. The two most common approaches are shown in

Figure 6. First, the primary diffusion direction e1 can be visualized as a color image, where the

RGB values are R = FA|e1 · [1, 0, 0]|,G = FA|e1 · [0, 1, 0]|, and B = FA|e1 · [0, 0, 1]| [96]. Such

a scheme allows for an intuitive visualization of fiber orientation weighted by the the reliability

of that estimate, yet color assignments are not unique. For example, the color yellow would be

assigned to voxels with e1 = [1, 1, 0] and e1 = [−1, 1, 0], leading to ambiguity of the underlying

fiber direction. As a result, it is occasionally necessary to visualize the tensor ellipsoids themselves

as seen in Figure 6(b). Note that generating color representations of tensor data remains an area of

open research [60].

Regardless of the visualization strategy, the value of the orientation information in Diffusion

MRI is significant as it allows us to infer the orientation of neural pathways in the white matter of

the brain. If we take, for example, the color-coded orientation map in Figure 6, we can see four

major neural pathways. The genu of the corpus callosum can be seen in red in the upper portion

of the image and arching upwards in a U-shape. A similar looking pathway, the splenium of the

corpus callosum, can be seen in the bottom half of the image flanked on each side by the optic

radiations in green. Finally, the corticospinal tract, which connects the spinal cord to the motor

cortex, can be seen in blue (coming out of the page) in the middle of the brain. These pathways,

as seen in diffusion MRI, agree with histological studies [41], thereby making diffusion MRI a

powerful tool for mapping out these neural pathways non-invasively.

10



(a) Mean Diffusivity (left), Fractional Anisotropy (center), and Color-coded Orientation Map (right)

(b) Ellipsoidal Visualization

Figure 6: Various methods of visualizing the information contained in a diffusion tensor field.

Images generated using MedINRIA (http://www-sop.inria.fr/asclepios/software/MedINRIA/) on

data obtained from [85].
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(a) Crossing Fibers (b) Corresponding Diffusion ODF (c) Corresponding Diffusion Tensor

Figure 7: Example of crossing fibers and how they are modeled using Diffusion MRI. Adapted

from [4, 48, 120] respectively.

2.3 High Angular Resolution Diffusion Models

While the diffusion tensor model provides a powerful tool for visualizing and assessing the mi-

crostructure of brain tissue, it suffers from a significant limitation: the assumption that diffusion

follows a Gaussian model. While this model may hold for simple examples such as those in Fig-

ure 1, there exist many situations where the local diffusion is more complex.

Take for example, this situation shown in Figure 7(a). This example shows a mixture of fibrous

tissues oriented along the positive and negative diagonal directions, resulting in a diffusion profile

in red. Ideally, we would like to model this diffusion as shown in Figure 7(b). Unfortunately,

the diffusion tensor model assumes ellipsoidal Gaussian diffusion. As a result, we would obtain

for this example the tensor shown in Figure 7(c). This tensor would misleadingly suggest that

diffusion is equal for all directions in the plane of the crossing. Further, the primary eigenvector of

the tensor is not guaranteed to align with either fiber direction.

Such an example is common in the white matter of the brain. The neural pathways are made up

of aligned tissue fibers whose diameter is on the order of microns [3]. In contrast, the resolution of

diffusion weighted images is typically on the order of millimeters cubed. As a result, this type of

averaging of diffusion from multiple pathways is unavoidable. In fact, it has been estimated that at

least one third [23] to two thirds [48] of voxels in the brain may exhibit this crossing fiber property.

Tuch et al. first proposed the use of more descriptive diffusion models by showing that there are

regions in the brain where fiber cross [116]. They noted that in order to detect these crossing fibers,

diffusion weighted images from a greater number of diffusion directions, and at a higher gradient

weighting, were required. Thus was born the concept of Higher Angular Resolution Diffusion

Imaging (HARDI).

Various attempts have been made to come up with HARDI models that can describe multiple

fiber populations at a single voxel. While work has been done in reviewing and comparing these

different HARDI approaches [4, 3, 2, 102], there is generally no consensus as to which HARDI

model is best suited to represent diffusion MR characteristics. While research in this area is on-

going, three main classes of HARDI models have established themselves. We examine each in
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turn.

2.3.1 Compartment Models

Initial attempts to model more complicated diffusion profiles revolved around fitting multiple ten-

sors to the different fiber populations (i.e., compartments) of the diffusion weighted image sig-

nals [116]. A mixture of Gaussians model is commonly assumed and the Stejskal-Tanner equation

was updated to incorporate the mixture.

S(g)

S0

=
∑

i

fi exp
(

−bgTDig
)

(10)

Each tensor Di has a corresponding volume fraction fi representing the fraction of the local dif-

fusion the fiber population represents. Later work using the CHARMED [9, 8] and FORECAST [6]

methods assumed a particular shape for each fitted tensor. The former approach attempts to model

intra-fiber and extra-fiber diffusion using prolate (cigar-like) and spherical tensors respectively.

The latter approach models prolate tensors with an equal and known mean diffusivity. More recent

work has instead assumed a mixture of Wishart (MOW) distributions - effectively a distribution

over tensors - as the choice of diffusion model [68, 67]. A recent and thorough review of these

compartment models can be found in [97].

While these mixture model approaches allow for the same intuitive representation as the single

tensor model, they also have their limitations. These include:

• The number of tensors being fitted to the DWI signal has to be specified ahead of time.

While there has been work on estimating this number from the data [5, 116], there is no

ground truth specification for the number of tensors to fit at a voxel.

• There is no guarantee that the assumed shape of the fitted tensors is appropriate for the

underlying diffusion. If the shape assumption is poor, the volume fractions can be poorly

estimated [6].

• The mixture model, and not the underlying mixture components, is fit to the DWIs. While

the peaks of the mixture model will align with the directions of maximal diffusion, there is

no guarantee that the peaks of the underlying distributions will align with these directions as

well [116, 117].

Some of these limitations have been addressed in recent work. For example, instead of fitting a

fixed number of tensors to the data, volume fractions can be calculated for a set of basis tensors [81,

68, 67]. Those tensors with a volume fraction above a given threshold are maintained to model the

diffusion.

2.3.2 Higher Order Tensors

While compartment models increase the fidelity of the tensor fitting by mixing multiple, simple

tensor models, it is also possible to increase the complexity of the tensor model itself [12, 49,

82, 93]. By introducing a higher-order tensor representation into the Stejskal-Tanner equation, we

obtain
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S(g)

S0

= exp

(

−b
3
∑

i1=1

· · ·
3
∑

iℓ=1

Di1···iℓgi1 · · ·giℓ

)

(11)

where the ℓ-th order tensor D represents an ℓ-dimensional grid of entries and has the degrees

of freedom necessary to model non-Gaussian diffusion [93, 82]. Note that by moving to this

higher-dimensional representation, we no longer make a Gaussian assumption on the diffusion

PDF. Instead, the higher-order tensor captures higher-order moments of the diffusion signal [12].

One such example of modeling these higher-order moments is in Diffusion Kurtosis Imaging,

where the diffusion PDF is modeled using both a regular diffusion tensor for the Gaussian part of

the diffusion PDF and a 4th order tensor for the kurtosis of the diffusion PDF [65].

Like ordinary diffusion tensors, various diffusion features can be extracted from a higher order

tensor. The majority of these features are based on the higher order tensor’s directional profile

D(g) =

3
∑

i1=1

· · ·
3
∑

iℓ=1

Di1···iℓg∡i1 · · ·g∡iℓ (12)

where D(g) is the diffusion rate along unit direction g and g∡ij is the vector g projected onto the

ij-th axis of the higher order tensor. From this directional profile, we can obtain features equiva-

lent to mean diffusion and fractional anisotropy by taking, respectively, the mean and variance of

D(g) [93]. A recent review of higher order tensors is available in [12].

Unlike compartment models, higher order tensors have the benefit of modeling non-Gaussian

diffusion without having to specify the number of fiber compartments present. However, there

persists the concern that the maxima of (12) are not guaranteed to line up with the underlying fiber

tract directions [117].

2.3.3 Diffusion Orientation Distribution Functions

On the other end of the spectrum, model-free approaches have also been proposed to capture

local diffusion properties. Again, Tuch instituted this approach through the introduction of q-

ball imaging [115]. Based on the earlier q-space approach described by the Fourier transform in

(4), Tuch noticed that the directional dependence of the diffusion rate is the most commonly used

information for diffusion MRI analysis and that the radial distance component of the diffusion does

not play a significant role. As a result, instead of modeling the diffusion as a PDF p(x), where x is

a vector of any length, q-ball imaging models the diffusion orientation distribution function (ODF)

ψ(θ, φ), where θ, φ are spherical angles. As such, the ODF captures the probability of diffusion

along different angular directions (θ, φ) but without a radial distance parameter. An estimation of

the ODF can be more efficiently obtained through the use of the Funk-Radon transform [115]. By

ignoring the radial component, the q-ball ODF can be estimated with fewer diffusion weighted

image samples than the original PDF from q-space imaging, leading to more reasonable scanning

times.

Other model-free approaches have also gained traction in the diffusion MRI community. First,

the diffusion orientation transform (DOT) shares similarities with q-ball imaging as both are based

on the earlier q-space approach. In contrast, DOT assumes diffusion is Gaussian along the radial

direction and uses this assumption to perform the Fourier transform in (4) using fewer diffusion
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weighted image samples [95]. The DOT diffusion ODF is then obtained by analytically integrating

the resulting PDF along the radial direction.

An alternative model-free approach is Jansons and Alexander’s Persistent Angular Structure

(PAS) approach [64]. The goal behind PAS is to find a diffusion PDF p(x) from (4) that is both

smooth yet captures the key angular structure of the diffusion. This goal is achieved through

optimization by finding a PDF p(x) that maximizes entropy while minimizing the error in fitting to

the diffusion weighted image samples. A Lagrange multiplier is used to weight the two competing

terms [64].

Unlike the diffusion tensor, the diffusion ODF is a spherical function that can be represented in

many ways [66, 103]. The most popular choice for its representation is a real spherical harmonic

expansion [6, 50, 66]. The diffusion ODF ψ can be represented as:

ψ(θ, φ) =

K
∑

ℓ=0

ℓ
∑

m=−ℓ

Fm
ℓ Y

m
ℓ (θ, φ) (13)

where integers ℓ andm are the degree and order of the harmonics respectively. The basis harmonics

Y m
ℓ are given as:

Y m
ℓ =



















√

2ℓ+1
4π

P 0
ℓ (cos(φ)), if m = 0

√
2
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)!

Pm
ℓ (cos(φ))cos(mθ), if m > 0

√
2
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)!

P−m
ℓ (cos(φ))sin(mθ), if m < 0

(14)

where Pm
ℓ is the associated Legendre function of degree ℓ and orderm. As the ODF is anti-podally

symmetric, only the even degree basis harmonics are used [50]. Typically, the expansion is limited

to degree ℓ ≤ 8 to suppress noise artifacts in the resulting ODF [48]. Other ODF representations

have also seen limited use, including von Mises-Fisher and Watson distributions [103].

The notions of mean diffusivity and fractional anisotropy have also been extended to HARDI

diffusion ODFs, with the latter being referred to in this context as generalized anisotropy (GA).

Similar to the tensor case, the two measures correspond to the mean and variance of the diffusion

ODF ψ:

MD =
1

4π

∫

ψ(θ, φ)dS GA =
1

4π

∫

(ψ(θ, φ)−MD)2 dS (15)

Unlike the diffusion tensor model, MD and GA generally do not have an elegant solution.

Analytical solutions have been proposed for both measures [94] but involve ad hoc scaling and

normalization weights. Examples of MD and GA images are shown in Figure 8. We can also

visualize the orientation information in the diffusion ODF by visualizing the spherical functions

themselves as seen in Figure 8.

Various other model-free diffusion ODF estimation procedures have been recently proposed

and a thorough review of these techniques is available in [10]. One of the key limitations of the

model-free HARDI approaches is precisely that a model is not assumed. In areas of low anisotropy,

both PAS and q-ball imaging can overestimate the directional dependence of the diffusion as a

result of image noise [64, 115]. This overestimation can result in spurious maxima in the diffusion

ODFs.
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(a) Mean Diffusivity (top) and Gen-

eralized Anisotropy (bottom)

(b) q-ball Diffusion ODFs

Figure 8: Sample visualization techniques for diffusion ODFs obtained from HARDI.

2.4 HARDI versus the Diffusion Tensor

Despite the presence of these HARDI models that better represent the underlying diffusion prop-

erties, the use of the diffusion tensor model still persists in a clinical setting [88, 89, 91]. There are

various reasons for the use of what is perceived to be an inferior model and these reasons highlight

some of the limitations of HARDI:

• The number of gradient directions, and in turn diffusion weighted images, required for the

reconstruction of HARDI models is still significantly larger than for diffusion tensor imag-

ing. With scanning time as a bottleneck, the opportunity to obtain enough diffusion weighted

images for a HARDI reconstruction remains, in many cases, a luxury.

• To observe non-Gaussian diffusion, the strength of the magnetic gradients used in the scan

is increased [116]. Increasing the gradient strength increases diffusion rates, which in turn

are inversely proportional to relaxation time and diffusion weighted image intensity. If we

increase the gradient strength enough, the diffusion weighted image intensities can fall below

the noise floor, an effect seen with HARDI imaging settings [71].

• Recent research suggests that limitations of the tensor model with regards to crossing fibers

might be overcome by taking into account neighborhood information [13, 107]. With such

advancements, it remains unclear at this time if HARDI can provide enough additional in-

formation over a diffusion tensor image to warrant the added imaging cost.

Due to these above reasons, and the wealth of diffusion tensor medical research [91], the tensor

model cannot be ignored.
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3 Brain Connectivity Mapping from dMRI

The orientation information in diffusion MRI is incredibly valuable in mapping out neural path-

ways in the white matter of the brain. As diffusion is strongest along the fiber tracts that make up

neural pathways, the directions of maximal diffusion at each voxel location can be used to help

reconstruct the fiber tracts, thereby mapping out connectivity in the brain. The problem of map-

ping out these connections is known as tractography and is complicated by many factors. We have

already mentioned two: poor diffusion model fitting and noisy diffusion measurements. Here, we

look at how these complications, and others, have led to the development and evolution of various

tractography algorithms.

3.1 Streamline Tractography

The earliest approaches to the tractography problem surrounded tracing out 3D curves that fol-

lowed the direction of strongest diffusion [16, 86]. These 3D curves, known as streamlines, evolve

using the following Euler equation:

r(si+1) = r(si) + αε1(r(si)) (16)

where r is the streamline curve parametrized by its length from a given seed point, and si are points

along the curve. ε1 is the primary diffusion direction (PDD) at the given location on the curve and

the choice of notation comes from the use of the diffusion tensor’s primary eigenvector as the PDD.

The PDD acts as the tangent to the streamline as it evolves with stepsize α, where α is sufficiently

smaller than the voxel size to limit discretization effects on the evolving curve. These aspects are

further shown in Figure 9. While the above Euler equation most easily describes the streamline

evolution, a higher-order Runge-Kutta method is commonly used to improve numerical stability

in the streamline evolution [16]. The streamline evolution continues until the PDD becomes un-

reliable. Typically, the reliability of the PDD is captured through either fractional anisotropy [16]

or via neighborhood PDD coherence [86]. This initial tractography approach is referred to in the

literature as the fiber assignment by continuous tracking (FACT) method.

One of the concerns with the FACT approach is that it follows the PDD regardless of whether

the PDD at a voxel is an accurate estimation of fiber tract orientation. In areas of lower anisotropy

(but still above the termination threshold of FACT), the PDD may become more unreliable. In these

situations, we may wish to regulate the effect of the local PDD on the direction of the evolving

streamline. This is the idea behind the tensor deflection (TEND) approach [77]. In this algo-

rithm, the local diffusion tensor D is used to deflect the incoming streamline curve as given by the

evolution equation:

r(si+1) = r(si) + αD(r(si)) · r(si) (17)

The greater the anisotropy of the tensor, the more reliable the PDD and therefore the stronger

the deflection of the streamline fiber. An example of this evolution is shown in Figure 9(c).

By deflecting the incoming streamline curve, TEND implicitly creates a curvature constraint

on the evolving streamline. The streamline can only bend as much as a diffusion tensor will

allow. In some situations, this curvature constraint can cause the TEND algorithm to deviate from
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r(s1)

x

y

z

r(s0)

r(s)

t(s0)

ε1(r(s0))

(a) Streamline tangent to PDD (b) Effect of stepsize on streamline trac-

tography

(c) Tensor Deflection

Figure 9: Examples of streamline evolution. Streamlines evolve in the direction tangent to the

local primary diffusion direction. Step sizes in the evolution equation are chosen sufficiently small

so as to avoid poor tracking due to discretization. Adapted from [16, 86, 77] respectively.

a high curvature fiber tract, thereby generating a poor result [46]. To compensate for this effect,

the tensorline approach was proposed [77] that evolves the streamline curve based on a weighted

combination of (16) and (17). As a result, the curvature can be turned on and off based on local

anisotropy or prior knowledge. Streamline tractography has also been extended to compartment

models [25] and diffusion ODFs using extracted ODF maxima [28]. In these cases, streamlines

follow the PDD that creates a minimal angle with the incoming curve. A further review can be

found in [125].

From a computational standpoint, these streamline approaches have many limitations, namely

• Streamline approaches only follow one tract at a time. The algorithm cannot naturally handle

situations where tracts fan out or cross. One approach to address this concern is to perform

a brute force implementation of the algorithm where every point of the brain is, in turn,

used as a seed. The tracts that are kept are ones that flow through one or more regions of

interest [87]. Even so, this brute force approach doesn’t guarantee that crossing or kissing

(i.e., barely touching) fibers are appropriately handled.

• These algorithms, particularly the FACT algorithm, assume that the principal diffusion di-

rection is an accurate and error-free estimate of the fiber direction. Any error in the PDD

measurement propagates to the streamline curve, and that error will accumulate with each

step taken. Error in the PDD, while small at each step, can accumulate to the point where the

streamline can “jump” into a neighboring tract, thereby giving a false display of anatomical

connectivity [87].

• Despite the above issues, these tractography algorithms present a binary result: a 3D space

curve. There is no representation of the confidence or accuracy of the resulting streamline

tract. Attempts are being made to quantify tract confidence from streamlines [36, 37], but

addressing this problem is still in the early stages.
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(a) Streamline Tractography (b) Probabilistic Tractography

Figure 10: Examples of streamline and probabilistic tractography applied to a seed region in the

Splenium of the Corpus Callosum. Note that since probabilistic tractography uses streamline trac-

tography as an underlying mechanism, the results are similar.

Even so, streamline tractography has been successful in detecting major fiber tracts like the

Forceps Major shown in Figure 10(a).

3.2 Probabilistic Tractography

One of the major concerns with streamline tractography was the amount of confidence we can have

in the accuracy of the generated tracts. This concern has led to significant work in trying to perform

tractography from a probabilistic point of view. Given points A and B in a diffusion MR image I,

probabilistic tractography algorithms attempt to compute the probability of a tract connecting A

and B. Formally, that probability is given as:

p(A→ B|I) =
∞
∑

n=1

∫

Ωn
AB

p(n)p(v1:n|I)dΩn
AB (18)

where n is the length of the tract, v1:n is a random path of length n, and Ωn
AB is the space of fiber

tracts of length n that connect A to B [53]. Given the exponential number of paths in the space

Ωn
AB , this integration cannot be done analytically. Instead, the probability p(A→ B|I) is sampled

through the use of Markov Chain Monte Carlo (MCMC) [74, 53, 24, 27].

Conceptually, MCMC-based probabilistic tractography shares many similarities with stream-

line tractography algorithms. Both trace out 3D streamlines by following a local tangent vector.

The differences with probabilistic tractography approaches is that instead of exclusively using the

principal diffusion direction as the local tangent to the curve, they sample each tangent vector vi

from a given distribution pi(vi|vi−1, I). Also, hey repeat the streamline tractography many times
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from the same seed A. Each resulting streamline is considered a sample of p(A → B|I). With

enough of these samples (K), we can obtain a reasonable approximation of the probability that

regions A and B are connected:

p(A→ B|I) =
∞
∑

n=1

K
∑

k=1

p(n)
ϑ(vk

1:n)

K
(19)

The function ϑ(vk
1:n) is equal to one if path k connects regions A and B and zero otherwise.

The prior probability p(n) is usually taken to be uniform, thereby being unbiased to path length.

Effectively, the probability thatA and B are connected is equal to the fraction of random paths that

connect A and B [27]. Probability maps containing the values from (19) can then be displayed and

analyzed. An examples is shown in Figure 10(b).

While many probabilistic tractography algorithms have been proposed, their key differences

seem to lie in how the distribution pi(vi|vi−1, I) models the local tangent vectors vi that make up

each random path. This tangent vector distribution is commonly split into two independent terms

pi(vi|vi−1, I) = pi(vi|I)p(vi|vi−1) (20)

where the first distribution, pi(vi|I) captures the likelihood of a fiber direction given the image

data, while the second distribution, p(vi|vi−1) imposes a smoothness constraint. The smoothness

constraint is typically represented by a Bernoulli distribution with p(vi|vi−1) = 1 if the angle

between vi and vi−1 is less than ninety degrees (and zero otherwise). Meanwhile, the image-

dependent distribution, known by the name fiber orientation distribution (FOD), has received a

greater amount of attention. We examine some popular choices for FODs below.

3.2.1 Fiber Orientation Distributions

Fiber orientation distributions are similar in many ways to the diffusion ODFs introduced in Sec-

tion 2.3. Both are spherical distributions whose maxima are likely directions tangent to fiber tracts.

However, FODs capture the likelihood of a fiber tract being tangent to a given direction instead of

the likelihood of diffusing along a given direction. Directions with slow diffusion rates in an ODF

will still have a non-zero probability, despite that slow diffusion being evidence of no neural con-

nectivity. An FOD, however, will have zero probability for those directions, leading to a sharper

probability distribution.

Many techniques have been proposed for computing an FOD and generating a accurate FOD

remains an area of open research. Below are the most popular approaches:

Diffusion Profile: We noted earlier that the diffusion tensor describes a Gaussian model of

diffusion. As such, this Gaussian model is commonly used as an FOD by integrating along the

radial dimension [59, 74]. These Gaussian approaches typically replace the diffusion tensor D

with a scaled version Dα to make the distribution sharper. Sample values for α range from 2 [59]

to 7 [74].

HARDI versions have also followed a similar approach with a sharpened version of the diffu-

sion ODF used as an FOD [48, 73].

Heuristic Approaches: Parker et al. proposed the probabilistic index of connectivity (PICo)

approach where the FOD is an heuristic distribution based on local anisotropy [98]. The PDD is
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taken as the mean tangent direction with a cone of uncertainty whose apex angle is a function of a

local anisotropy measure.

Bayesian Formulations: The tangent vector distribution can also be described using Bayes

rule with respect to the diffusion data:

pi(vi|I) =
p(I|vi)p(vi)

p(I) (21)

The posterior distribution p(I|vi) captures how well the diffusion model fits the diffusion

weighted image samples and is typically approximated using a Gaussian distribution on the model’s

residual fit [24, 23, 45, 53]. The prior on fiber direction, p(vi) is typically chosen to be uniform

while p(I) can be chosen so as to normalize the distribution.

Statistical Bootstrap: Instead of assuming some distribution for the FOD, some have used

bootstrap techniques to approximate the distribution from multiple samples [76, 70, 121]. During

the image acquisition process, multiple diffusion weighted images can be obtained for each gradi-

ent direction. When it comes to fitting a diffusion model, we can do so by fitting to a randomly

selected subset of the DWIs. This fitting process can be repeated for many image subsets, thereby

generating multiple diffusion MR images. The distribution of the primary diffusion directions

generated from this set of dMRIs can then be used as a model-free approximation of the FOD.

In the absence of multiple DWI acquisitions, wild bootstrap can be performed [70, 121]. In

this situation, noise is added to the diffusion weighted images by using random perturbations of

the residual of the model fit. The fitting is then re-performed for each set of noise-simulated DWIs

to obtain multiple diffusion MR images from which the FOD can be generated.

Unsupervised Learning: In some cases, the diffusion MR data can be used to learn the rela-

tionship between the diffusion measurements and the FOD. Tournier et al. proposed the assumption

that the voxels of highest FA can be used as examples of voxels where the FOD is a Dirac distri-

bution in the direction of the PDD [111]. Under this assumption, they compute a sparse spherical

deconvolution technique that fits a combination of these Dirac FODs to the diffusion weighted

data, thereby generating more general FODs.

Probabilistic tractography approaches have the advantage of characterizing uncertainty in the

tractography algorithm. Even so, these methods too have their limitations:

• As each step taken along a tract contains some uncertainty, the connection probabilities we

obtain using this approach are inevitably linked to the length of the tract. As such, we

cannot interpret these probabilities as a measure of tract quality since they are not invariant

to length [69].

• As with streamline tractography, noise can still cause the maxima of the tangent vector dis-

tribution to be off. There exists no mechanism in the tractography algorithm to correct for

this error.

• The number of path samples required to approximate (18) is commonly on the order of

thousands [24, 53, 70]. This results in significant computational cost and running times on

the order of an hour or more for a given seed point [124]. Some recent work has tried to

address this issue through, for example, the use of particle filters [124].
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3.3 Front Propagation Tractography

A third set of tractography algorithms can be described as front propagation approaches where

some form of information propagates outward from a given seed region at a speed proportional to

the amount of fiber tract evidence. The information propagated by the front can then be used to

reconstruct the fiber tracts. These algorithms can be divided into three main groups based on their

computational aspects.

3.3.1 Fast Marching Tractography

Conceptually, the fast marching tractography approaches are distinguished by the calculation of a

time of arrival of the propagating front for each voxel [100]. This arrival time T is related to the

speed of the front F via the Eikonal equation

|∇T |F = 1 or T (ri) = T (ri−1) +
|ri − ri−1|
F (ri)

(22)

where ri and ri−1 are neighboring voxels on opposite sides of the propagating front. With the

arrival times calculated for all voxels, fiber tracts can be delineated by performing gradient descent

on the arrival time map. By generating tracts in this fashion, situations of branching and merging

fibers are handled naturally through the propagation of the front.

The speed F of the front is set based on the presence or absence of a fiber tract. A common

choice is to use the diffusion profile as the speed function [79, 80, 108, 92], thereby ensuring faster

speed along directions of faster diffusion. Another choice is neighborhood PDD coherence [100].

By making the front speed an indicator of tract presence, we can characterize the tract’s “quality”

as some function of the speed. One approach is to characterize the confidence of a tract γ by its

weakest link τ [100]:

ζ(γ) = min
τ
F (γ(τ)) = min

τ

1

|∇T (γ(τ))| (23)

While measuring tract quality in this fashion is a heuristic approach, it does provide us with a

measure of confidence that is invariant to path length.

3.3.2 Tractography via Flow Simulation

Instead of using an arrival time map for tract reconstruction, we can interleave the two operations,

thereby recovering the tract as we propagate the front. Noting that diffusion is fastest along a fiber

tract, some researchers [42, 72, 92, 126, 19, 56, 112, 18] have proposed that we simply simulate

the diffusion and reconstruct candidate tracts through the analysis of the diffusion front.

The diffusion is simulated using Fick’s Second Law [92], given as

∂u

∂t
= ∇ · (ψ∇u) (24)

where u is the local molecular concentration and ψ is the diffusion function (either the tensor

D [72, 92, 126, 19, 56] or a diffusion ODF in the case of HARDI [42]). Given a seed point,

the diffusion process is simulated for a fixed time t. The resulting concentration map u is then
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Diffusion Front

Root Node

(a) An Example Diffusion Front (b) Example of Minimum Path Trac-

tography

Figure 11: Examples of front propagation tractography, specifically the representation of the dif-

fusion front and the connection strengths generated using minimal path tractography on a seed in

the Splenium of the Corpus Callosum. Adapted from [72, 31] respectively.

thresholded to obtain the hard diffusion front shown in Figure 11(a). The voxels along the diffusion

front can then be scored based on a set of criteria to determine the likelihood that they are on a fiber

tract [72, 126, 42]. Sample criteria include distance from the seed point, fractional anisotropy, and

path curvature [72]. The diffusion is then simulated at each candidate point and the process repeats

itself.

While this approach has generally gone out of favor due to the ad hoc criteria used to select

fiber tract points, the ideas generated by this tractography approach have been applied elsewhere.

One example is the work of O’Donnell et al. where the steady state flux (i.e., ∂u
∂t

= 0) is solved for

and fiber curves are computed that maximize the resulting flux [92]. A similar approach is used by

Hageman et al. where instead of modeling diffusion, they model fluid flow using the Navier-Stokes

equation [58]. By using the fluid flow model, Hageman et al. are capable of adding additional tract

information through fluid flow related concepts (e.g., viscosity).

3.3.3 Minimal Path Tractography Algorithms

A third set of tractography algorithms also display this concept of front propagation: graph-based

minimal path algorithms [63, 109, 123]. These tractography algorithms discretize the image space

into a graph and use Dijkstra’s algorithm to obtain the path of strongest diffusion. In this case, the

front being propagated is the boundary between the visited and unvisited nodes.

To ensure the shortest path is the path of strongest diffusion, the edge weights in the graph are

set to w(eij) = −log(Pdiff (i, j)), where the pseudo-probability Pdiff is given as

Pdiff(i, j) =
1

Z

(

∫

(θ,φ)∈βi

ψi(θ, φ)dS +

∫

(θ,φ)∈βj

ψj(θ, φ)dS

)

(25)

where ψi is the diffusion ODF at voxel i, Z is a normalizing constant, and βi is the solid angle

around the graph edge between i and j [31, 63]. As with the fast marching algorithm, we can
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consider a “weakest link” connection strength here as well by selecting the largest edge weight

along the tract. An example of this form of tractography shown in Figure 11(b).

One must be concerned when using this method to ensure that the angular discretization pro-

vided by the edge connectivity is fine enough to avoid diverging effects similar to those in Figure 9.

3.4 Global Tractography

While the tractography algorithms in the previous sections have their conceptual differences, one

aspect they do share is that they generate tractography results in a local, greedy fashion. Because

of this trait, these tractography algorithms have been prone to amplify localized errors in the data

and limit their effectiveness [32, 87]. To address this concern, the field of diffusion MR analysis

have been developing techniques that model tractography as a global optimization problem [83].

Generally speaking, global tractography algorithms frame tractography as a curve fitting prob-

lem, though how those curves are represented varies. Initial global tractography techniques begin

with small, randomly distributed, curve pieces and tries to link them together into fiber tracts

that best fit the dMRI data [52, 75]. The optimization is performed globally (i.e., over the whole

image space), resulting in algorithms that are more robust to the presence of local difusion mea-

surement errors. More recently, a probabilistic version of this idea was presented by Booth and

Hamarneh [32] where graph edges are used in the place of curve pieces. However, the most popular

global tractography technique so far has been the Hough transform technique of Ananj et al. [1].

In their technique, a parameterized set of full curves are compared to the dMRI and scored based

on how well they explain the image data. Those curves that have the highest scores are chosen to

represent axonal tracts.

While these global tractography algorithms generate more robust results than earlier tractogra-

phy techniques, they are limited by the discretization of the curves they fit to the dMRI data. This

discretization has the potential to limit what axonal tracts can be detected and represented with

these algorithms. That said, recent work in machine learning may provide the ability to learn a

more representative set of discrete curves for these tractography algorithms, which could poten-

tially reduce curve fitting errors [47].

4 Conclusions

Diffusion MRI provides us with the ability to analyze brain connectivity non-invasively. By mea-

suring the diffusion of water molecules along various directions in 3D, and knowing that cell struc-

ture restricts molecular diffusion, we are able to infer the directional organization and integrity of

fibrous tissue. Further modeling of these diffusion measurements allow us to assess characteristics

such as bulk diffusivity and anisotropy. The directional dependence of the diffusion can also be

used to trace out the imaged neural fibers.

Various computational aspects of diffusion MRI have been presented in this chapter, from

acquiring diffusion-weighted MRI, to modeling the diffusion using diffusion tensors or HARDI

models, to uncovering neural pathways with tractography algorithms. These analysis techniques

have become even more established with their incorporation into software packages like FSL,

MedINRIA, Camino, and TrackVis. These aspects of image analysis merely scratch the surface
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of what may be possible with this relatively new imaging technique. Already, there is work being

done in the areas of segmentation [33, 35, 104], registration [30, 55], and statistics of diffusion

MRI data [101]. It is hoped that continued work in diffusion MRI will culminate in the ability to

generate a human connectome: a detailed connectivity map of the human brain [38, 40].
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