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Medical Image Registration:
A Review

Lisa Tang and Ghassan Hamarneh

22.1  Introduction to Medical Image Registration

With the advent of different medical imaging modalities, clinicians can now 
perform diagnosis in a minimally invasive manner. Nevertheless, each modal-
ity currently only provides particular types of information. CT and MRI, for 
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example, provide structural information of our body (e.g., an anatomical map), 
but do not convey functional information* (i.e., relating to metabolic functions 
of an imaged organ). Conversely, modalities such as PET and SPECT capture 
functional but not structural information. This motivates image registration, 
the task of bringing two medical images into spatial alignment. Once images 
are aligned, information from different modalities can then be integrated 
and examined as a whole.

MIR indeed is a crucial step for many image analysis problems where 
information from different sources are combined and examined. The images 
involved may come from the same modality but captured at different times, 
or from multiple modalities and/or at different times, for example, as intro-
duced earlier. Some general applications of MIR are listed in the following; 
more can be found in [18,38,89,160].

•	 Multi-temporal image analysis. Images of the same subject are 
acquired at different times and/or under different physical condi-
tions. Registration of these intra-subject images allows us to moni-
tor disease progression, or to detect and/or quantify changes in an 
anatomy. Registration of intra-operative (between preoperative and 
postoperative) images can also enhance surgical procedures.

•	 Multi-subject image analysis. Also known as (aka) intersubject registra-
tion; images of different subjects are registered for deformation-based 
morphology [8,114]. The subjects may also be of different species 
(e.g., human brain to chimpanzee brain for “asymmetry analysis” [7]).

•	 Multimodality image fusion. As introduced earlier, images acquired 
from different modalities are aligned to create image fusions that 
facilitate clinical diagnosis [44,113]. Some clinical applications may 
also involve matching images of different dimensionality.

•	 Construction and use of atlases. Group of images that are acquired from 
different sites and/or at different times are aligned simultaneously. This 
allows for statistical analysis of anatomical shapes [146], creation of 
probabilistic segmentations [139], brain functional localization [43], etc.

•	 Dynamic image sequence analysis. This analysis involves dynamic 
stacking static images that were acquired at different time steps form 
dynamic image sequences, which are typically used to capture and 
quantify motion of an anatomy, for example, respiratory/cardiac 
cycle of the lungs/heart. One example application is the fusion of 
2D+time ultrasound with 2D+time MRI to measure the distensibility 
of carotid arteries [87].

*	 An analogy would be a topographic map of a city, which does not indicate the functional 
aspect of the city, i.e., information conveying population growth or utility of a location 
(residential vs. commercial).
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As we will see later, most of the proposed techniques for the aforementioned 
problems involve performing the following tasks: (1) characterizing the reg-
istration solution, which may involve a set of constraints imposed on the 
desired solution; (2) defining a list of criteria to quantify the optimality of a 
candidate solution; and (3) devising a strategy to find the desired solution. In 
the coming sections, we will individually examine the essential components 
central to each task. Let us first review the preliminaries to MIR.

22.2  Preliminaries

22.2.1  Image Representation and Imaging Terminologies

A digital image I gives a discrete representation of a continuous signal that 
measures physical quantities (e.g., light in photographs, or photon densities 
in an x-ray image). Following conventions of [56,92], the term physical or world 
coordinate is used to describe an arbitrary location in a continuous domain 
and the term image coordinate is used to index a particular cell on the image 
grid. We also refer to the data value at a grid center as its intensity value 
(“pixel” or “voxel” are also used in the context of a 2D or 3D domain, respec-
tively) and denote a physical coordinate as x (in 2D, x = [x1 x2] represents the 
position of a point in the x and y dimensions).

Typically, structural images acquired from invisible light medical imag-
ing modalities are scalar functions, that is, I: Ω ↦ ℝr, r = 1. For color images, 
or visible light medical images in general (e.g., dermoscopy, wound care 
imageries, etc.), I is a vector-valued function with r = 3. When I is an image 
sequence that is acquired to capture dynamic information occurring over 
time which is typically created by stacking static images to form 2D + time 
or 3D + time data, one may instead denote as I: ℝd × ℝ ↦ ℝr.

22.2.2  Data Interpolation

When one wants to query for intensity values at locations between cell cen-
ters (e.g., one third position of a cell), one must approximate these values 
from the original data. This is known as image interpolation or image resam-
pling, and is usually done in a process where a continuous function is fitted 
to the original set of data points.

Common interpolation methods include nearest neighbor, linear (bi- or tri-), 
polynomial (cubic, quintic, etc.), and windowed sinc. Other less commonly 
used ones include Lagrange and Gaussian interpolation, as well as methods 
based on the Fourier and Wavelet transforms. For details on the latter meth-
ods proposed, see the survey of [72].

The simplest interpolation method is nearest neighbor (aka piecewise con-
stant or proximal interpolation) where the intensity value of x is determined 
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as the intensity value of its closest grid location. However, being a discon-
tinuous function, nearest neighbor is not normally used for registration.

The more commonly used interpolant is linear interpolation (bilinear and 
trilinear for 2D and 3D, respectively). In 2D, it is defined as
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where i1 and ε1 are, respectively, the integer and remainder parts of x1 
(similarly defined for those of x2). Unlike nearest neighbor, it generates spa-
tially continuous intensity values. However, it is not differentiable at the 
center of grid cells, which is a problem when a gradient-based optimization 
technique is used to optimize the registration objective (see Section 22.3.4.2). 
It also causes spatially varying, low-pass filtering of the images [38], which 
can be a problem when computing similarity metrics on image pairs.

From the perspective of signal processing theory, the most ideal interpo-
lant is one that uses the sine function because it has the fullest potential to 
recover the continuous signal underlying I [56,72]. For reasons of practicality, 
the sine function is only approximated with a Window function w. In 2D, a 
windowed sine interpolant is defined as
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where m is the radius or spatial extent of w and

	 K t w t t( ) ( ) ( )  sinc= 	 (22.2)

Nevertheless, the windowed sine interpolant has several trade-offs in its 
utilization, for example, large m, while being more precise, will require 
longer computation times [144].

Spline interpolation may arguably give optimal balance between computa-
tion time and precision of interpolation [73]. The spline interpolant involves 
representing the continuous form of I by a set of spline basis functions βj and 
computing a set of expansion coefficients cj of βj such that the resulting basis 
function interpolates the values of I at grid locations. The set of coefficients 
are computed by solving a linear system of equations, which is most effi-
ciently done by recursive digital filtering. Intensity at x is computed by mul-
tiplying the B-spline coefficients with shifted B-spline kernels within a small 
support region of the requested position; in 2D, this is done as
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where j indices the pixel coordinates within the support region of the spline 
window.
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22.2.3  Spatial (Geometric) Transformations

In image registration, a spatial transform plays the crucial role of represent-
ing registration solutions in a precise manner. Mathematically, it may be 
defined as U : Ω ↦ ℝd, Ω ⊆ ℝd, which describes a mapping between the coor-
dinate system of one image and that of another image.

22.2.3.1  Terminologies

A mapping U is said to be smooth if all of its partial derivatives of up to a 
certain order exist and are continuous. It is said to be bijective if it is a one-
to-one mapping. It is said to be invertible (aka homeomorphic or topology-
preserving) if it is bijective and continuous, and that its inverse is also 
continuous. Note that smoothness of U is not equivalent to invertibility, 
that is, invertibility does not require differentiability of U. When U is both 
smooth and invertible, it is called diffeomorphic.

Some of these properties of U are highly desirable; after all, properties 
of U affect the appearance of the image to which it is applied. Generally, 
smoothness of U is desired as it directly affects the smoothness of the image 
on which it is applied to. Applying a random warp (vector field with random 
displacements) to an image, for instance, will destroy the morphology (level 
sets) of an image [34].

Bijectivity, on the other hand, may or may not be required. Bijectivity of U 
ensures that the folding of space does not happen as multiple points cannot 
be mapped into the same point. In some cases, however, the folding of space 
should be allowed. This occurs, for example, in intra-operative image reg-
istration where tearing and resection of tissues can occur in the postopera-
tive image. Even for registration of intersubject brain images, the topology 
of the brain, the shape of the ventricles, the number and shape of the sulci 
may vary significantly from one subject to another [114] such that bijectivity 
should not be strictly enforced.

Invertibility also may or may not be required. It is needed when one needs 
to map individual images from a set to a common space. It is also needed 
in order to allow for decomposition of the transformation Jacobian, which 
is often done in registrations of diffusion tensor images to reorient tensor 
values at each location after deforming an image.

Lastly, we desire a diffeomorphic transform when we need to maintain 
the (non-) connectivities between neighboring anatomical structures after 
registration [12]. Note that a diffeomorphic transform that matches arbitrary 
number of points can always be found (proof given in [63]).

22.2.3.2  Spatial Transformation Models

Spatial transformation models (transforms) are often used to parameterize 
U, thereby allowing U to be compactly represented. The ones commonly 
used for image registration are categorized as either linear or nonlinear.
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Linear transforms include translation, rotation, rigid, affine, and perspec-
tive. A rigid transform allows for translations and rotations only; an affine 
transform allows for rigid as well as scale and skew (distortions that pre-
serve parallelism of lines); a projective transform allows for all distortions 
that preserve colinearity (lines remain straight after distortion).

Compared to linear models, nonlinear transformation models allow for 
more localized deformations. Common nonlinear models include those that 
are based on radial basis functions (RBF). Under these models, a set of points  
P = {xi}, for example, manually identified landmarks in Ω, is used to extrapo-
late U:
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where
Hm−1 (x) is a polynomial of degree m − 1
β is a basis function
ci are coefficients to be solved in a system of equations

Note that P may be irregularly located in Ω. Different forms of β(r) results 
in different types of spline [124]. For example, with r =  x⃦ − Pi  ,⃦ defining the 
RBF as β(r) = r2 ln r and β(r) = r gives the thin-plate-spline (TPS) in 2D and 
3D, respectively. With (r2 + a2), where 0 < b < 1 and a is a user-parameter that 
increases the amount of smoothing, one gets the multi-quadric splines (MQ). 
Other choices are described in [52,124].

Many RBFs like TPS and MQ give global support, that is, one control point 
has a global effect on U (i.e., deformations in one image region affects the 
entire domain). This property may cause problems as large and inconsistent 
displacements in P can lead to singularities in the systems of equation to be 
solved. Furthermore, the size of P directly affects computational complexity 
of solving the system.* In these regards, basis functions with local support 
are highly desired.

One of such locally supported functions is the basis-spline (B-spline). 
When extended to a multivariate function via the use of tensor products, 
it gives the free-form deformation (FFD) model. Under FFDs, the image 
domain is divided into a lattice whose intersections represent the positions 
of a set of control points B such that translating the control points induces 
local deformations. Performing registration is then reduced to finding the 
optimal translations for each control point [46], or the optimal values of the 
set of B-spline coefficients [107], or the divergence† and curl of U at control 

*	 Malsch et al. [84] proposed to partition the image domain and employ separate TPS models 
for each partition.

†	 This parameterization approach was shown to be more capable of avoiding grid folding more 
than uniform B-spline parameterization [54].
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point [54]. The DOFs of FFD is thus determined by the size of this set of 
parameters. The spacing between control points determines the scale of local 
deformations, for example, lowering the spacing allows for more localized 
motion. In 2D, it has the form:
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where
β.,. is a basis function of degree n
(r, s) are lattice coordinates relative to x

Despite some of its deficiencies [126], FFD is a popular choice in many appli-
cations due to its ease of implementation, low computational complexity, and 
the superior properties of B-spline functions (continuity and locality).

Another popular choice is to represent U with finite elements [102,122], 
which involves discretizing Ω with mesh elements, each with a set of meshes. 
To obtain values of U at points within a mesh element e, one then uses linear 
interpolation:
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where
Be is a basis function for e
qn

e  is the nth node of mesh e

Lastly, parameterization of U has also been done with discrete Fourier 
transformation (DFT) [27] and discrete cosine transformation (DCT) [52], 
which involve globally supported basis functions (as they operate in fre-
quency domain). Usually, only low-frequency basis functions are used for 
parameterization, which by construction gives inherently smooth regu-
larized solutions [159]. Gefen [42] also modeled U with wavelet expansion 
and showed that its use can give more accurate registrations than use of TPS. 
However, the complexity of the wavelet approach depends on the size of U.

In summary, linear models and nonlinear models differ in terms of their 
DOFs, which in turn determine the different types of geometric distortions 
they induce on images. In some applications, linear models are sufficient 
to describe misalignment between two images, for example, registration of 
brain images. In others, both linear and nonlinear models are needed to cor-
rect for global and local misalignment between two images. There are also 
cases where misalignment between two images involve both articulation 
(e.g., of rigid bones) and elastic deformations (e.g., soft tissues surrounding 
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rigid bones) such that the use of a global nonlinear transform will give elas-
tic deformations everywhere, or conversely, the use of a global linear trans-
form will fail to align elastic tissues. In these cases, a common strategy is to 
partition the image domain into different regions, determine a local (non)
linear transform for each region, and employ a scheme to spatially fuse the 
piecewise local transforms [100]. Another approach is the use of polyrigid 
models [3]. Details on the aforementioned linear and nonlinear models can 
also be found in focused reviews [52,144] or general surveys [18,44,77,83].

22.3  Fundamentals of Image Registration

22.3.1  Mathematical Formulation of Image Registration

Let there be two images F and M. The goal of registering F and M is to find a 
spatial transformation U that optimally maps points in F to the correspond-
ing points in M.* Optimality of U is measured by a set of criteria of two types: 
regularization (aka internal forces), which measures the regularity of U, and data 
dissimilarity (aka external forces), which measures how well U relate F and M 
based on image data. Details on these terms will be surveyed in the following 
subsections. Once a set of criteria has been defined for a specific registration 
problem, the optimal U can then be found via minimization of a cost function 
C that contains a weighted sum of two or more of these criteria, for example,

	 C D R( ) ( , ) ( )U U U= + ++ +a ai i i iF M � �1 1 	 (22.7)

where
Di denotes a data dissimilarity term
Ri+1 denotes a regularization term
αi is a weight on the ith term

22.3.2  Regularization

Solution of an image registration problem, U, is generally not unique.† To reg-
ularize U, we may restrict the type of U to a certain space, such as the space 
of affine transformations or the space of diffeomorphisms (Section 22.4.1). 
We may also explicitly enforce constraints on the behavior of U based on our 

*	 Following conventions of [56], the image which we apply U is called the moving image and 
the target image which M is matched to is called the fixed image. The literature also refers to 
the fixed and moving images as the target and source images, or the reference and floating 
images, respectively.

†	 One intuition is that registration involves solving for a vector-valued mapping (i.e., T(x)) 
based on scalar information D, thus leading to an under-determined problem [92]. Consider 
too an example where two images are completely homogeneous in grey values, then any 
arbitrary transformation would be a valid solution even though many are undesired ones.
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prior knowledge about the expected solution. For example, when registering 
x-ray breast images, one might impose incompressibility constraints in tissue 
deformation [104]. When registering images containing rigid bodies (e.g., 
bones [129]) one might impose local rigidity constraints to disallow elastic 
deformations in rigid regions.

In Section 22.2.3, we have outlined the desired properties of U, including 
smoothness and invertibility, arguably two of the most important ones. We 
next present how these may be achieved. Other regularization constraints 
proposed in the literature are highlighted in Section 22.3.2.4.

22.3.2.1  Smoothness Regularization: Implicit Approaches

A common approach to regularization is to constrain the behavior of U 
via use of a spatial transformation model. As discussed previously, these 
models impose constraints on the type of geometric distortions they induce 
on images. For example, rigid transforms preserve all internal angles and 
distances, perspective transforms only preserve colinearity (points that lie 
on a line remain so after they have undergone transformation), while non-
linear transforms allow for localized deformations.

Solving U using parametric transforms generally simplifies the optimization 
of the objective function (Equation 1.7). Rather than solving for U at each spa-
tial location in Ω (c.f. Section 22.4.1), one only needs to resolve the transform’s 
parameters, effectively reducing the size of the solution space (in case of linear 
transforms, the dimension of the search space is equal to the number of transform 
parameters). Furthermore, the inherent smoothness properties provided by a 
given spatial transformation model ensure some regularity of U. Thus, in many 
older works, for example [82], no explicit regularization was done. However, in 
more recent works, invertibility has become an important criterion [29]. As all of 
the aforementioned parametric models do not enforce invertibility, additional 
regularization terms are needed; these will be examined in Section 22.3.2.4.1.

22.3.2.2  Smoothness Regularization: Explicit Approaches

When no parameterization of U is used, any point may be displaced arbi-
trarily, which would lead to an unrealistic warp of M. To ensure smooth-
ness of U, as well as other desired properties of U outlined in Section 22.2.3, 
explicit energy terms are needed (Ri+1 in Equation 22.7). We now examine in 
detail some of the common ones found in the literature.

22.3.2.2.1  Regularizers Motivated from Basis Functions

Regularization terms in Equation 22.7 are typically defined based on an 
application-dependent Sobolev semi-norm (bilinear form) [90]:

	
Rnorm L q d( ) [ ]

( )
U L U x=

2 W 	 (22.8)

where L is a differential operator on U.
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One regularizer proposed by Horn and Schunk [53] is the diffusion 
regularizer, which penalizes variations in the gradients of U. In 2D, it is 
defined as
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where Ui(x) denotes the ith component of U at x. This definition relates 
closely to the classical Tikhonov regularization for ill-posed problems. 
When instead an L1 norm is used, such regularization falls in the class 
of total variation (TV) methods [10,41], leading to a TV regularizer that is 
defined as
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which allows for discontinuities in U. However, as it is non-differentiable at 
zero, researchers have proposed to replace |x| with x k2 2+  where value of 
k affects amount of discontinuities allowed.

Note that the aforementioned regularizers also penalize linear transfor-
mations [92]. To address this, the curvature regularization (aka bi-harmonic) 
[20,92] was proposed:
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which approximates the mean curvature of the surface of U. By taking 
the Laplacian of U instead of its gradient, linear transforms result in zero 
smoothness cost. Furthermore, as the null-space of the operator has infinite 
dimension and contains all harmonic vector fields, use of this regularizer 
ensures smooth deformations [92].

Another common regularizer is based on the thin-plate-spline model 
(Section 22.2.3):
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Note that this regularization term is zero for any affine transformations and 
therefore penalizes only non-affine transformations.
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In [22], Chen and Suter proposed a generalization of the scalar thin-plate 
splines (TPS) called the m-order regularization:
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where the divergence and curl operators are used to impose incompress-
ible flow and irrotational flow, respectively, and β1 and β2 weight the respec-
tive components. According to [22], this regularizer is applicable in tagged 
cardiac MRI registration that require the solenoidal component of U to be 
divergence-free.

22.3.2.2.2  Regularizers Based on Continuum Mechanics

The linear-elastic and fluid-flow models are two classic physics-based 
regularization methods [52,92,103].* Both models borrow concepts from con-
tinuum mechanics to describe the amount and type of forces exerted on a 
medium and model image deformations as responses to forces acting on 
either a elastic body or viscous fluid.

Elastic regularization is based on the theory of linear elasticity, which 
states that the body forces and “surface stresses” of a linear elastic material 
sum to zero when the material is in equilibrium, thus giving rise to the fol-
lowing Navier-Cauchy linear elastic partial differential equation (PDE) [52]:

	 m m lÑ + + Ñ Ñ × + =2 2 0U U f x( ) ( ) ( ) ( )x 	 (22.14)

where f denotes the body force; μ and λ are the Lame parameters, which can 
be interpreted in terms of Young’s modulus and Poisson’s ratio†, and are used 
to describe the relationship between stress and strain (internal forces that 
bring the material into equilibrium). The first term is associated to the incom-
pressibility of the material [15,52]. The second term allows for expansion (dila-
tion) or contraction of the material [17,124]. Formulating MIR with this PDE, 
f is modeled as matching forces based on image similarity (more details in 
Section 22.3.3) and the remaining terms are seen as internal forces that regu-
larize U. Accordingly, elastic regularization can be formulated as [92]

	

Relastic x d( ) ( ) ( ) ( ) .U U U x= Ñ + + Ñ Ñ ×ò1
2

2 2m m l
W 	

(22.15)

The derivation of Equation 22.14 assumes that the stress and strain are lin-
early related, thus assuming that the elastic properties of the material is 
homogeneously by isotropic [52]. This is generally not true in many biological 

*	 Note Zikic et al. [159] categorize them as parametric via use of particular basis functions.
†	 Poisson’s ratio is the ratio between lateral shrinking and longitudinal stretching. A value of 

0.5 means the material is incompressible.
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materials. In practical terms, the linear relationship assumes that the restoring 
forces increase monotonically with strain [29], thus penalizing large deforma-
tions. Additionally, ignoring the second-order derivatives of U would lead to 
large numerical errors for large deformations [52].

To address these problems, Christensen et al. [29] proposed a viscous-fluid-
based model, which views a deforming image as a highly viscous (sticky 
and thick) fluid. Specifically, this model is built on several physical laws that 
govern conservation of mass, energy, linear and angular momentum. We will 
highlight two of the most relevant. The first is the constitutive equations [52], 
which state that the stress tensor Σstress is linearly related to the rate of deforma-
tion tensor D as follows:

	 Sstress f fpI= - + +l m( )trace D I D2 	 (22.16)

where D is expressed as

	
D V V= Ñ + Ñ( )1

2
( )T

	
(22.17)

with V being the instantaneous velocity of U.
The second is the conservation of linear momentum, which states that
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where η is a parameter that allows for “arbitrary creation or destruction 
of mass.” Combining Equations 22.16 through 22.18 results in the Navier–
Stokes–Duhem equation:
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and assuming negligible change in ρ and ignoring* the inertial terms (r ¶
¶
V
t

 
and ηV) yield the following Navier–Stokes PDE:

	 m m lÑ + + Ñ Ñ × + =2 2 0V V f x( ) ( ) ( ) ( )x 	 (22.20)

Remarkably, Equation 22.20 is similar to Equation 22.14 except that this 
PDE operates on V instead of U. Intuitively, operating on V gives a more 
accurate calculation of the displacement gradients (second-order gradi-
ents of U are not ignored) leading to a more realistic model of material 
deformations.

*	 Valid for slow flow rates.
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22.3.2.3  Constraints for Invertibility

None of the aforementioned regularization methods detailed so far ensures 
invertibility of U. A simple approach to ensure invertibility is to add a regu-
larization term to the registration objective function (Equation 22.7) that 
penalizes cases when |D| < 0.3 [106,126].

	 R U D xinvertibility( ) | ( ) |.= - 1 	 (22.21)

In [62], Chen and Lee showed that FFD based on cubic B-splines is locally 
injective over Ω if the maximum displacement of control points is limited 
to 0.40δ, where δ is the spacing of control point grid. This means that invert-
ibility of U can also be ensured by constraining the maximum displacement 
of control points of an FFD lattice (e.g., control points on a lattice with 20 mm 
spacing should be constrained to translate no more than 8 mm). However, 
this restriction becomes impractical when one needs to recover large defor-
mations (i.e., >8 mm). A better alternative may be the polyrigid/polyaffine 
transformation models proposed in [3].

22.3.2.4  Other Regularization Constraints

22.3.2.4.1  Inverse Consistency

Related to the invertibility constraint is inverse consistency, which demands 
that registration results be consistent or symmetric: if U2 is the inverse trans-
form of U, that is, M º U = F and F º U2 = M, then U2 º U = Id [8,27]. Inverse 
consistency is important when the end-goal of MIR is to transfer some quan-
titation from one image to another (e.g., segmentation via registration) such 
that results are invariant to choice of the reference image.

Theoretically, the process of finding an invertible transform is inherently 
symmetric; however, this is practically not true if an asymmetric data simi-
larity cost is used [11]. One solution is to symmetrize the data term as done 
in [5,11,111], or to add a regularization that penalizes the residue between U 
and its inverse [26], for example,

	
Rinv consistency- = --

Î
å U x U x
x

1 2( ) ( ) .
W 	

(22.22)

22.3.2.4.2  Volume-Preservation

One may require U to be volume-preserving (VP), which is desired* when F 
and M are known to be capturing the same anatomy that does not change in 
size. An interesting formulation of VP is based on the optimal mass transport 

*	 Conversely, it should not be enforced when, for example, matching two different perspective 
projections of an object, or matching MRI to PET where image intensities are assumed to 
predict mass density.
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problem of Monge-Kantorovich [127]. A simpler alternative is the incom-
pressibility constraint:

	

Rj log D d( ) | ( ( ))| .U x x= ò
W 	

(22.23)

Other forms include | ( ) |D dx x-ò 1
W

 and those given in [104].

22.3.2.4.3  Local Rigidity

When registering images containing rigid objects (e.g., bones, hard tissues), 
one demands that these hard objects remain rigid after registration. One 
can do this by enforcing additional local rigidity constraints over selected 
regions; for example, in 2D [91]:
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where each aforementioned term measures local deviations from area-
preservation (linearity), angle-preservation (orthogonality), and VP, respec-
tively. Another [48] formulates local rigidity as hard constraints. Pennec et al. [98] 
also measured local rigidity with trace((JT J − Id)2).

22.3.3  Data (Dis)Similarity

The sources of information that the data (dis)similarity term is built upon 
can generally be classified as model-based or intensity-based [2,92].

Model-based information is often provided in forms of landmark cor-
respondences identified by clinical experts or manual segmentation of the 
input images. Examples include [30] where Chui et al. used the Robust Point 
Matching algorithm to match manually extracted sulcal points for brain image 
registration, and [25,63] where researchers have matched landmarks via dif-
feomorphic warps. Fuzzy or hard segmentation labels, too, can be matched 
using the cardinality match or Kappa statistics similarity metrics [56].

Due to the need for human intervention, accuracy of model-driven regis-
tration highly depends on the correctness of landmark correspondences or 
segmentation. When employing landmark correspondences, the identified 
landmarks should be spatially distributed [56,92]. When using segmentation, 
one needs to ensure that interpolation artifacts would not corrupt evalua-
tions of image similarity. Consequently, pure use of model-based data terms 
is quite restrictive.

In contrast to model-based information, intensity-based information is 
derived entirely from the input images. This information may be based on 
raw image intensities or features extracted from the intensities.
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In mono-modality registration, data similarity terms using information about 
raw intensities usually assume that the similarity between F and M is related to 
their intensity distributions. Assuming both F and M contain the same anatomy 
and U represents an optimal alignment, their intensity relationship becomes:

	 F M= + +� U t z 	 (22.25)

where
τ is zero-mean Gaussian noise
ζ is an intensity correction field

Essentially, Equation 22.25 states that after applying U to M, M and F only 
differ by an intensity mapping with an additive noise.

For some applications, e.g., CT-CT intra-subject image registrations, we 
may assume ζ = 0, thus allowing for the use of the Sum of Squared Difference 
(SSD) metric. If instead, intensities of F and M are linearly related, then one 
may use the (normalized) cross-correlation (CC) metric [5,144], the coefficient 
of variation [143], or those based on the normalized intensity gradients [49].

The assumption that ζ is zero or linear can easily be violated when images 
are corrupted by spatially-varying or “nonstationary” intensity distortions, 
for example, MR images. Real-world images are also often corrupted by 
spatially varying distortions, occlusions, illumination inhomogeneity, and 
reflectance artifacts [77,95].

To address intensity inhomogeneities, measures based on information 
theory may be used. These include joint entropy [92], entropy correlation coef-
ficient [40], cumulative residual entropy [138], normalized mutual informa-
tion (NMI) [2] and its numerous other extensions, for example, regional MI, 
alpha-MI, generalized survival exponential entropy–based MI (GSEE-MI) 
[75,78,81,107,137]. As these measures belong to a subclass of the divergence mea-
sures, which measures distances between distributions [101], they can be more 
robust against intensity inhomogeneities. However, while they are shown to be 
effective for many multimodal registration problems [2], these measures still 
assume global spatial dependencies between corresponding pixels. To better 
capture nonstationary dependencies, authors have proposed to compute these 
measures locally, that is, average over a small pixel neighborhood, based on 
the observation that spatially varying intensity distortion is constant within a 
small pixel neighborhood. Examples include local CC and regional MI.* More 
explicit ways include performing intensity correction and registration simul-
taneously or removing ζ (via some training procedures, etc.) before metric 

*	 MI have several “weaknesses”; one being sensitivity to interpolation artifacts [38], another 
being its “globality” [5], that is, it examines joint and marginal intensity distributions only. 
One variant of MI addresses this problem to estimate MI locally. However, one requires a 
large number of samples to estimate MI; conversely, as locality in the MI estimate increases, 
its statistical reliability decreases. Thus, MI and local MI may be arguably less efficient and 
less robust than CC [5].
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evaluation [37,93,95]. Alternatively, Droske and Rumpf [34] proposed to match 
image level sets using a Mumford-Shah formulation for registration.

Data dissimilarity terms built on feature-based information generally 
involve extracting and using particular type of information from the images 
for registration. Edge-based features include edgeness, ridges, local curvature 
extrema, corners, crest, and extremal lines [17,83,96,149]. Others that examine 
the texture of image regions include Gabor [16] and grey level cooccurrence 
matrix (GLCM) [16], “braintons” [75], and Laws’ texture coefficients [60]. 
Features that analyze and capture the structural properties in images include 
vesselness [21], local structure [116], and moment invariants [39,151]. Those 
adopted from the computer vision community include SIFT [23], SURF [157], 
and shape context [1,128].

In the past decade, researchers began to adopt a hybrid approach where 
multiple sources of information are combined to improve existing metrics. 
One of the most prominent examples includes the HAMMER algorithm 
(Section 22.4.2), which combines segmentation-based information and geo-
metric moment invariants (GMI), which are calculated in neighborhoods of 
different sizes. Avants et al. also [6] proposed the idea of integrating different 
image metrics and sources for DTI-registration (e.g., combining a correla-
tion-based metric on T1 and FA images). Their software, too, allows users to 
combine multiple image metrics as well as landmarks. Hartkens et al. [50] 
also combined user-provided surface information with NMI for nonrigid 
registration of brain images, while Cao et al. [21] combined a feature-based 
measure with a conventional intensity-based measure for lung image regis-
tration. Table 22.1 highlights various other hybrid approaches.

22.3.4  Solution-Search

If the registration objective contains only one data term (e.g., Equation 22.7 
contains D only), it may be possible to perform registration analytically, as 
we shall see in the next section. However, as Section 22.3.2 explained, reg-
ularization constraints are generally needed, meaning that Equation 22.7 
involves more than one energy term. Optimization methods are therefore 
needed to minimize a potentially complex and nonlinear objective function. 
Section 22.3.4.2 will highlight some of the optimization methods that have 
been devised for MIR.

22.3.4.1  Closed-Form Solutions for Image Registration

Most closed-form solutions for image registration operate on ordered point 
sets (point sets with known correspondences) that have been extracted from 
the images to be registered. As discussed in Section 22.2.3.2, if point corre-
spondences are available, one may compute a nonlinear transform directly 
via TPS interpolation. It is also possible to resolve the parameters of a rigid 
transform between two ordered point sets in closed form. According to [36], 
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the earliest method for closed-form rigid registration is based on minimiza-
tion of a least squares (LS) error* (known as fiducial registration error if the 
point correspondences originate from fiducial markers or expert-identified 
landmarks) and is solved via SVD. Its later variants include different formu-
lations of the Eigen system describing the point correspondences. Three of 
such are described in [36].

For affine motions based on least squares, regularization is needed to pre-
vent all points in one point set to be mapped to a single point of the other 
set (as this would give an LS error of zero) [35]. For this, one may employ 
the Laplacian operator (i.e., L = a∇2 + cI where a, b are constants) for regular-
ization and allow for inexact point correspondences by assuming Gaussian 
distributed noise around each. This led to the following Bayesian energy 
minimization as proposed in [28]:

	
arg min ( ) ( ( )) ( ) ( ( ))
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*	 Least squares error may be defined as P Pm
m

mR Tå - ¢ -ˆ ˆ , where ( , )P Pm m¢  denotes the mth pair 
of corresponding points in point sets P and P′ and R̂ and T̂ are, respectively, the candidate 
rotation and translation components.

Table 22.1

Hybrid Approaches to Construction of Data Dissimilarity Terms

Features + other sources
An edge-based alignment metric + MI + the SURF descriptor [157] for lung image 
registration [149]

NCC + local phase + image gradients for 3D echocardiography [158]
Geometric moments + segmentation information for various images [111,145]
Vesselness + 1 of 3 similarity metrics [21]
Shannon divergence on brainton + GSEE-MI +, etc. [75]
Landmarks + other sources
Kullback-Leibler + global MI + landmarks correspondences for brain images [65]
SSD + landmark correspondences, combined with spatially varying weight [7]
Intensity similarities + rough landmark correspondences [9]
Landmarks + point-wise MI for brain MRI and functional MRI (brain tumor) [80]
Airway bifurcations and vascular landmarks + sum of squared local tissue volume 
difference [155]

Landmarks + 1 of many metrics, implemented in a MRF-based optimization approach [47]
Surfaces + other sources
Points + surfaces + image metric [50]
Surface registration refined by voxel-based registration [102]
SAVOR [45]: performs nonrigid diffeomorphic registration using MR image intensity, 
subcortical binary segmentation, and volumetric cortical segmentations
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where
m is the number of correspondences
A, t are respectively the affine matrix and translation vector to be estimated
σi is the covariance matrix that represents the spatial uncertainty of the ith 

pair of correspondence

By inverting the system matrix of the following system of linear equations
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one attains the optimal values for A, t, and βi (a vector of weights to 
be calculated for each correspondence), with K(x, y) = k Id being a d × d 
matrix where k ∝ e  x⃦ − y  ⃦ . The optimal transformation is then computed as 
U Ki i i

i

m
( ) ( , ) .x x x=

=å b
1

 Another closed-form approach for affine registration 

is to reduce the affine problem to that of the orthogonal case [51]. However, 
the accuracy of this approach is questioned in [35].

When correspondences between extracted point sets are not known, rough 
estimation of the translation and rotation parameters can be done indepen-
dently by first computing the displacement vector that would align the cen-
troids of the point sets and then resolving for the rotation parameters via 
principal axis transform [18]. Spectral algorithms may also be used to solve 
rigid registrations, for example [58]. These algorithms operate by encod-
ing point sets as affinity matrices and performing eigen-decomposition on 
these matrices. However, for spectral methods to work robustly, the eigen-
structure of the affinity matrix must be rich in order to provide discriminat-
ing features for proper determination of point correspondences. Otherwise, 
optimization techniques such as the iterative closest point algorithm and its 
variants may be better alternatives [35].

Affine transformations may be solved in closed form using properties of 
the Fourier transform [125]. Furthermore, if U can be described by a finite 
set of displacement vectors, one may also solve for U by formulating a linear 
assignment problem (LAP) [130]. Recently, Westin et al. [64] also developed 
the polynomial expansion framework that was designed to solve global and 
local linear registrations analytically.

22.3.4.2  Iterative Optimization

A common approach taken by many optimization methods is to view the 
solution space as a 1D landscape, known as functional landscape, where a 



637Medical Image Registration

position on the landscape corresponds to a candidate solution and eleva-
tion corresponds to the optimality of a solution, that is, C. One then takes 
a step from the current to a new position on a path that would lead to the 
location of lowest elevation in the landscape. This can be mathematically 
expressed as

	 P P dk k k ka+ = +1 	 (22.27)

where Pk denotes a vector of transform parameters obtained in the current 
iteration, Pk+1 corresponds to a candidate vector to be examined next, dk is the 
direction of the next step, and ak is the size of the step.

There are many strategies for determining ak. For example, it can simply be 
set to a fixed value. It can also be defined using a decaying function of k or a 
line search scheme where for every k, one tries to minimize C along the search 
direction dk:

	
a ak

a
k k= +arg min ( )C P d

	
(22.28)

This can be costly as each iteration involves multiple evaluations of C, so 
inexact searches are usually used [67].

How one exactly computes dk and ak differentiates different optimization 
techniques from one and another. We next present two general classes of 
optimization methods: gradient-based and gradient-free. The former com-
putes dk based on the gradient of the cost function, typically by examin-
ing the cost function with regard to changes in transformation parameters. 
Conversely, gradient-free approaches operate on the cost function directly. 
The next subsections present the details of each.

22.3.4.2.1  Gradient-Based

Gradient-based methods may be deterministic or stochastic, where the differ-
ence lies in the use of a deterministic or random process during the entire 
optimization process [67].

Deterministic techniques that have been employed for image registration 
include gradient descent, quasi-Newton, nonlinear conjugate gradient, etc. 
These are common in that the search direction dk is based on the derivative 
of the cost function with respect to the parameters. Under gradient descent 
techniques, the search direction is updated as
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(22.29)

Klein et al. [66] explored two variants of the gradient descent method. One 
applies a decaying function on k for ak; the other uses an inexact line search 
routine called “More-Thuente” to determine ak.
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Quasi-Newton (QN) methods may have “better theoretical convergence 
properties than gradient descent,” thanks to the use of second-order infor-
mation [66]. They are based on the Newton–Raphson algorithm, which is 
given by
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1
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(22.30)

where H(Pk) is the Hessian matrix of the cost function. However, calculation 
of the inverse of the computation is expensive, so QN methods approximate 
the Hessian, for example, L = [H(Pk)]−1. Calculation of Lk can be done in several 
ways, including Symmetric-Rank-1, Davidon–Fletcher–Powell, Broyden–
Fletcher–Goldfarb–Shanno (BFGS), and the Limited memory BFGS, which 
is a variant of BFGS that avoids the need to store L in memory. According to 
[67], BFGS is very efficient in many applications.

The nonlinear conjugate gradient (NCG) method is based on the linear 
conjugate gradient method, which was first designed for solving a system 
of linear equations. NCG is an extension that is suitable for minimizing 
nonlinear functions. Under NCG, the search direction is defined as a linear 
combination of the cost gradient and the previous search direction, that is,
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where the scalar βk affects the convergence property and can be computed 
using different equations (see examples in [67]).

All of the aforementioned methods require an exact calculation or close 
approximation of the first- or second-order functional gradient. This can be 
very computational expensive. To address this, approximation of the cost gra-
dient using stochastic sampling is done. The Kiefer–Wolfowitz method, for 
instance, uses finite difference to approximate the gradient, that is, g̃ ≈ ∂C/∂Pk 
[67]. This method requires 2N evaluations of the cost function for each k where 
N is the dimensionality of the solution space. The simultaneous perturbation 
method may also be used, which only performs two evaluations of the cost 
function, independent of N. The Robbins-Monro algorithm approximates the 
functional derivative using only a small subset of voxels randomly selected 
in every iteration. It was shown to give best compromise between conver-
gence and accuracy over all aforementioned methods (both deterministic 
and stochastic ones), as evaluated in various registration experiments [67]. 
For further details on the aforementioned or other gradient-based optimiza-
tion algorithms, we refer readers to Klein's thesis [67].

22.3.4.2.2  Gradient-Free

Next, we present different classes of gradient-free approaches, many of 
which make few or no assumptions about the problem being optimized and 
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can conduct searches in a very large solution space. Often, some form of 
stochastic procedures is used in these methods.

22.3.4.2.2.1  Search Approaches
Powell’s method (Powell’s conjugate gradient descent method) is one com-
monly used gradient-free, search-based optimization technique. It finds the 
optimum in a d-dimensional solution space with a series of 1D searches. For 
example, finding the optimal parameters for an affine 3D transformation usu-
ally starts with a 1D search along lateral translation direction, then along the 
cranial–caudal translation direction, and followed by a rotation about each of 
the three axes. The choice of ordering influences the success of optimization 
and many have adopted heuristics to select the most suitable order.

A related algorithm is the simplex algorithm (aka Nelder-Mead simplex, 
downhill simplex, or amoeba method). Following the analogy of [144], one 
can see simplex as a creature with n + 1 feet crawling in an n-D search space. 
One of its feet stands on the initial parameter estimate while the rest are 
randomly placed. At each iteration, the cost function is evaluated at each 
foot position and the foot with the worst cost is moved to improve its cost. 
Some specific rules are designed to guide which foot to move next and by 
how much.

Other examples of search-based algorithms include simulated annealing, 
DIRECT [135], and Tabu search.

22.3.4.2.2.2  Evolutionary Algorithms
A representative class of metaheuristics is evolutionary algorithms (EAs). 
EAs are based on the principle of natural selection, that is, the fittest sur-
vives. The solution space is seen as a dynamic population. A candidate 
solution plays the role of an individual in a population and its function cost 
corresponds to its fitness value of surviving in the population. Evolution of 
the population then occurs after repeated applications of reproduction (aka 
inheritance), mutation, recombination (aka crossover), and selection. Many 
methods based on this idea have been proposed in the literature; an exten-
sive review is given in [31].

One popular choice is the evolutionary strategy (ES). In each iteration, 
“children” are created via mutation of the population (its “parents”). A muta-
tion is a random vector generated from a multidimensional normal distribu-
tion. The covariance matrix of the distribution is adapted in each iteration: it is 
increased if the new population consists of better individuals or decreased 
otherwise. The population then reduces back to its original size by keeping 
only the fittest. A variant is the one-plus-one ES [115], where both the popu-
lation size and the number of children generated are equal to 1; this variant 
was used by Chillet et al. [24] to affinely register 3D models of brain and liver 
vasculatures (encoded with an inverted distance map) to CT or MR images.

A relatively new class of algorithms for multimodal function optimiza-
tion is those based on artificial immune systems (AIS), which are inspired 
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by theoretical immunologic models. They are capable of locating the global 
minimum of a function as well as a large number of strong local optima 
by automatically adjusting the population size and combining local with 
global searches. Recently, Delibasis et al. [33] applied it to solve for a spatial 
matching between point correspondences identified in medical images.

Of all EA methods, the current state-of-the-art is probably the covariance 
matrix adaptation method [67]. It has several phases. In the reproduction 
phase, a set of m search directions (dk) is generated from a normal distribution 
whose covariance matrix is computed to favor search directions that were 
successful in previous iterations (and m is a user-defined parameter control-
ling the population size). In the selection phase, the cost function is evaluated 
for each search direction using Equation 22.28, and the l best search directions 
are selected. Finally, in the recombination phase, a weighted average of the 
l selected trial directions is computed to generate the next set of search direc-
tions. Recommendations for the choice of m and l based on n are given in [67].

22.3.4.2.2.3  Discrete Optimization
Discrete optimization operates by searching for the best solution out of a 
discrete set of solutions. When applied to image registration, they usually 
involve modeling the deformation U as a random field and recasting regis-
tration of F and M as a Markov Random Field (MRF) energy minimization 
problem [14,46,71,109], which formulates the statistical dependence between 
F and M as

	 p F M p F M p( , | ) ( | , ) ( ).U U U= 	 (22.32)

where the conditional probability p(F|U, M) is the data likelihood that models 
dependence between intensity values between the two images and the prior 
probability p(U) is the prior that favors plausible deformations. As we will 
see shortly, these probabilities essentially correspond to data dissimilarity 
and regularization terms of a typical registration objective given in Equation 
22.7. Assume F is conditionally independent of U and M, the first term in the 
preceding becomes
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Assuming further that F(x) only depends on M º U(x) and not the rest of the 
values in M, one obtains

	 p F M p F M( ( )| ( ), ( )) ( ( )| ( ))x U x x x U x= � 	 (22.34)

We will now see how use of discrete optimization can simplify maximum a 
posterior (MAP) inference. Let the spatial coordinates of M be a graph G (whose 
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set of nodes V correspond to x ∈ Ω and edges (xi, xj) ∈ ε encode neighborhood 
relationships, for example, 4-connectivity in 2D, etc.). In the simplest form, 
the data likelihood can model pixel-wise dependence between F and M with 
a Gaussian noise model, that is,
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and the prior can be encoded as a regularization penalty that examines the 
interactions between displacements of two neighboring points xi, xj, that is,
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Performing MAP inference can now be done as minimization of the 
following:
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which leads to minimization of the following MRF energy:
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(22.38)

where the first summation over unary potentials θi is identical to the SSD 
metric (Section 22.3.3) and the second summation over pair-wise potentials θij 
resembles a Laplacian regularizer on U (Section 22.3.2). Note that this MRF 
energy contains potentials of first-order* and that the maximum clique of its 
corresponding graph is size of 2.

MAP inference with MRF as given earlier can be solved with dif-
ferent classes of algorithms; these include linear programming, message 
passing, and graph-cut. Algorithms for solving integer linear programs 
include cutting-plane method, branch-and-bound, branch-and-cut, etc. 
Message passing algorithms include Belief Propagation, Tree Reweighted 
Message Passing (TRMP), and Max-Product algorithms. Graph-cut 
algorithms include α-expansion and α-β swap [14].

Different matching problems have adopted a discrete optimization 
approach [14,70]. For MIR, one of the earliest applications of MRF energy 
minimization include [121] where Tang and Chung resolved U at every 

*	 Modeling U with pair-wise relationships may be sufficient; however, some problems may 
require terms of higher-order energies, e.g., surface registration [156] or point (hypergraph) 
matching [88], which would require more elaborate techniques, e.g., [57] to optimize.
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location via minimization of Equation 22.38. Lombaert et al. [79] later 
extended [120] by incorporating the use of landmarks for deformable regis-
tration of coronary angiograms.

To control deformations more effectively, Glocker et al. [46] parameterized 
U with FFD transformation model and applied MAP inference to solve for the 
optimal translations of the control points of the B-spline model. To minimize 
their objective function, they employed Fast-PD [69] (stands for Fast Primal-
Dual approximation), which works by solving the energy minimization prob-
lem by a series of graph-cut computations. The process reuses the primal and 
dual solutions of the linear programming relaxation of the energy minimiza-
tion problem obtained in the previous iteration, thus effectively decreases run 
time; see review [47] for details. Their method was widely accepted due to its 
high efficiency and public availability made possible through their software 
called DROP, which contains implementations of various image similarity 
measures. Kwon et al. [71] also used the FFD framework for 2D registration, 
but proposed the following higher-order regularization term that does not 
penalize global transformations like Equation 22.38 would:
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where Ud denotes the dth component of U. The higher-order MRF energy 
was then converted to a pair-wise one, so it could be solved with TRWP.

In [109], Shekhovtsov et al. performed MRF-based matching using a lin-
ear programming relaxation technique. However, they proposed to decom-
pose a 2D deformation model into x and y components so that the problem 
could be solved with sequential TRMP. Lastly, Lempitsky et al. [74] proposed 
the fusion-move approach to combine discrete optimization with continu-
ously valued solutions for 2D image registration, effectively avoiding local 
minima while avoiding problems due to discretizing the deformation space. 
Specifically, candidate flow fields (Û) were generated using the method of 
[53]. Each candidate flow was seen as a “proposal” label l ∈ L, which was 
then iteratively examined and fused in a moving-making approach. MRF-
energy minimization in each iteration was performed with the Quadratic 
Pseudo Boolean Optimization algorithm [68]. In regularizing U, the authors 
proposed the following pair-wise potentials:
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refined with gradient-based optimization.
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22.4  Two Commonly Adopted Registration Paradigms

22.4.1  Demons Algorithm and Its Extensions

To better understand thermodynamic equilibrium, the Scottish physicist 
James Maxwell [123] came up with the concept of demons as door guards that 
selectively allow “hot” molecules through. Adopting this concept, Thirion 
[123] proposed to formulate registration as a process where demons locally 
push voxels into or out of object boundaries to allow for image matching, 
by treating images as isointensity contours and computing demon forces to 
push these contours in their normal direction to encourage image alignment. 
The orientation and magnitude of the forces are derived from the instan-
taneous optical flow equation [56], which assumes that M is the deformed F, 
whose deformations δx are due to local motions that occur after δt, that is,
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The method alternates between computing the image forces and perform-
ing regularization on the motion field using Gaussian smoothing. This sim-
ple scheme is computationally efficient. In [97], Pennec et al. showed that 
the Demons algorithm can be seen as an approximation of a second-order 
gradient-descent on the SSD metric. Bro-Nielsen [17] also showed that apply-
ing the Gaussian filter instead of the real linear elastic filter is an approxima-
tion of the fluid model; see details in Section 22.3.2.2.2. Surveys of the state of 
art of optical flow algorithms are given in [10,135] and the references therein; 
the latter in particular also provides public data sets and methodologies for 
evaluation of optical flow algorithms. [75] also provides ground truth motion 
fields of real-world videos.

Since its conception, different extensions of Thirion’s Demons algorithm 
were proposed; these include extension of the image forces to be based 
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on cross-correlation [5] or phase [59]. In [19], Cachier et al. proposed the 
PASHA algorithm, which incorporates the addition of a random field 
C (essentially, an “intermediate transformation” [85]) to allow for inexact 
point correspondences as given by U. This leads to minimization of the 
following energy
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where the first term measures the quality of the field of point correspondence 
C between the deformed M and F based on a data dissimilarity measure; 
γn accounts for the noise in the image, γc accounts for spatial uncertainty 
on the correspondences, and γ controls the amount of regularization on U. 
Rather than solving the complex energy minimization in Equation 22.46, 
Cachier et al. alternatively optimize Equation 22.46 with regard to C given 
U, and then optimize Equation 22.46 with regard to U given C. The second 
optimization has a closed-form solution when the regularization is quadratic 
and uniform, and can be obtained by setting it as the convolution of C by a 
Gaussian kernel [132].

To solve the first optimization, that is, minimize 1 12 2
g gn c

F M- + -�C C U  
with regard to C given U, one linearly approximates the data (first) term for 
every pixel as
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where J(x) = − ∇M° U(x). This allows one to rewrite the first optimization as
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where γn(x) = |F(x) − M º C(x)| is a local estimation of noise that is used. 
Since the approximation for each pixel is independent of each other, one 
instead solves a simple system for each pixel using the following normal 
equation:
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All of this leads to the following modified demons algorithm:

	 1.	Start with an initial estimate of Û.
	 2.	Compute an update for C as given in Equation 22.45.
	 3.	To enforce fluid-like regularization (Section 22.3.2.2), set C ← K * C, 

where K is generally a Gaussian kernel.* Otherwise, skip this step.
	 4.	Compute C ← U + C.

•	 To enforce elastic-like regularization, compute U ← K * C.
•	 Otherwise, compute U ← C.

where the convolution of C with a Gaussian kernel is an efficient approxima-
tion to elastic or fluid regularization.

To spatially adapt regularization, Stefanescu et al. [114] smoothed U 
using a variable Gaussian kernel whose size depended on a scalar field 
that encoded the expected amount of deformations as estimated from prior 
segmentation of the anatomy. The authors also filtered C after each itera-
tion according to a measure that is based on local intensity variance and 
gradient.

Yet another extension is called the Log Domain Diffeomorphic Demons 
(LDDD), which was proposed by Vercauteren et al. [131,133] to constrain U 
to reside in the space of diffeomorphisms Diff(Ω). Recall that when per-
forming an n-dimensional optimization search in Rn, the iterative step 
used in Newton’s optimization method is of the form Pk+1 = Pk + akdk, 
where dk is the descent direction, which lies in the tangent space of Rn. 
However, when we move from Rn to the space of diffeomorphisms (i.e., 
smooth manifold), the descent direction that lies in the tangent space at Pk 
is different from the tangent spaces of any other point. To map a point on 
the tangent space of Pk to a point on the manifold, one thus employs the 
exponential map operation, that is, exp : V↦ Diff(Ω). Accordingly, parameter-
izing U and C by stationary velocity fields V and VC via exponential map, 
that is, U = exp(V), C = exp(VC), one now minimizes the log-domain version 
of Equation 22.46 with regard to VC:
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The iterative update in the aforementioned step 4 becomes

	 C U¬ � exp v( ),d 	 (22.47)

*	 The Gaussian kernel is an estimate to the Green’s kernel for the linear operator L for the fluid 
model [17].
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where δv is a small update velocity field that was derived in [84] as 
F M

J
J

n

c

( ) ( )

( )
( ).

x U x

x
x

-

+

�
2

2

2

g
g

To further enforce inverse consistency (Section 22.3.2.4.1), Vercauteren et al. 
further proposed a symmetric version of LDDD [132]. Other extensions of 
the demons algorithm include multichannel diffeomorphic demons [99]; 
spherical demons, which operates on the sphere for surface registration [153]; 
as well as iLogDemons [85], which incorporates elasticity and incompress-
ibility constraints.

22.4.2  Block-Matching and HAMMER

Block-matching (BM) is an efficient scheme for isolating and selecting salient 
parts of an image to drive the process of registration. Usually, a BM algorithm 
consists of the following steps that iterate until certain convergence criterion 
is met. First, blocks of image pixels computed from F and M are matched 
according to their similarity scores and displacement vectors are computed 
from the best matches. Second, displacements of all voxels in the entire 
domain are then computed from the matches via interpolation, for example, 
using TPS [84] or a Gaussian weighting scheme [111]. Then, regularization on 
U is subsequently enforced via Gaussian filtering on U.

This matching method was originally proposed for video sequence* match-
ing but has been successfully used for MIR since its first adoption in [32] by 
Collins et al. Some of its successful applications include elastic registration of 
neck-and-head, paraspine, and prostate images as performed in [84] (where 
blocks belonging to detected anatomical landmarks were matched based on 
local cross-correlation), as well as piecewise affine registration of biological 
images (e.g., histological sections, autoradiographs, cryosections, etc.) as per-
formed in [100] (where robust least square was used to estimate the local 
transformations associated to each matching pair).

Both demons framework and BM algorithms are quite similar in that 
both perform regularization of U via post-filtering (i.e., apply filtering 
on update of U per iteration). However, rather than computing the data 
forces for all voxels, BM involves an additional/explicit step of preselect-
ing salient regions only in which data forces are calculated for matching. 
Unlike the original demons algorithm, BM algorithms are also capable of 
recovering large deformations thanks to the strategy of matching blocks 
of different scales hierarchically (e.g., start with large blocks, then reduce 
their sizes in subsequent stages). For example, it was shown capable of 
recovering rotations up to 28° in a study involving rat brain sections 
(see details in [100]).

*	 A survey of BM algorithms applied to video sequence matching is given in [55].
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One frequently cited BM-based registration framework is called HAMMER, 
which stands for Hierarchical Attribute Matching Mechanism for Elastic 
Registration. First proposed in [111] by Shen and Daatziko, important voxels 
or driving voxels are selected based on the attribute vectors (AV) (Section 22.3.3) 
computed from each voxel. The selection of voxels and their influences on 
the current estimate of U are hierarchically determined. Specifically, in the 
early stages of registration, the similarity between two driving voxels is 
determined based on the weighted sum of the AV similarities in the subvol-
umes that encompass each of the two voxels. A match occurs only when the 
integrated similarity is beyond a user-defined threshold, which is initially 
set to a high value. The threshold as well as the size of the subvolumes are 
then decreased at a user-defined rate in each iteration.

Some of the later extensions and applications of HAMMER include the 
following:

•	 Optimize parameters that define the set of AVs [145]
•	 Use of local spatial intensity histogram [110] or wavelets [150] to 

define the AVs
•	 Incorporation of landmark correspondences for matching, and 

replace Gaussian with TPS for interpolation of U [147]
•	 Groupwise registration using HAMMER [148]

22.5  Evaluating Registrations

A logical start on evaluating registration results is to examine them sub-
jectively. For images of the same modality, one can visualize the results by 
examining the registered images individually on separate windows with 
a linked cursor (“split window validation” [86]), examining their checker-
board or difference image, or viewing them jointly with alpha-bending.* For 
images of different modality, the alpha-bending is the most common tool 
as all image characteristics in both images can be displayed simultaneously 
[119]. Furthermore, if segmentation of one or both of the two images is avail-
able, one can also overlay the segmentation contours of one image on top of 
the image to be matched to; see [16] for examples.

In general, due to limits of subjective evaluation,† qualitative approaches 
are also guided with quantitative evaluation.

*	 A checkerboard image is created by combining parts of two images in an interlaced manner. 
A difference image is computed as pixel-wise subtraction between them. In a color overlay, 
one image is displayed in gray-scale and another is overlaid on top with a color-scale.

†	 Wong et al. [142] studied limits of visual detection of misregistrations in PET-to-MRI brain 
registrations.
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Quantitative evaluation of a registration technique may be broadly classi-
fied in terms of the nature of the experiment: synthetic or real.

Validation based on synthetic data is generally conducted in a controlled 
setting, usually performed to evaluate particular components of a regis-
tration method. For example, when performing registration with gradient-
based optimization, one often examines the “smoothness” and the capture 
range of the metric (by computing the metric between two images with 
regard to a range of misalignments). One may also examine the robust-
ness of an algorithm, that is, registration results remain reasonable even 
in extreme scenarios. A formalized protocol involving the aforementioned 
measures on a given image pair with known “ground truth” registration 
is given in [112]. One may also examine an algorithms’ performance by 
studying its inverse consistency and transitivity (i.e., registration results 
transfer, e.g., propagating registration result from A to B to C to B, and then 
back to A should yield zero in the composition of all obtained deformations 
maps [13]).

For mono-modality registration, where one assumes that M is a deformed 
version of F with additive noise corruption, one common practice to 
quantify registration quality is to compute the mean square error (MSE) 
between the deformed moving image and fixed image. MSE may further 
be used to compute the Peak-Signal-to-Noise Ratio (PSNR), which equals 
to 10 2( / ),log I MSEmax  where Imax is the maximum intensity between two 
images. The PSNE is a common measure to evaluate image reconstruc-
tion quality, and has been used in [134] to measure registration accuracy. 
However, an implausible warp may always produce zero MSE. Generally, 
examining intensity values alone does not evaluate the plausibility and 
quality of U and so both MSE and PSNR should not be the sole quantitative 
measurements.

A more direct and arguably more complete evaluation approach is to 
examine an algorithm’s ability to recover known misalignments. Starting 
with a pair of images, subjectively judged as registered, one then applies 
random misalignments and/or warps to one of the pair [61]. Then, a reg-
istration error metric (e.g., angular error or mean Euclidean distance) is 
computed to measure the residual between the obtained transform and the 
known transform (that misaligned the original pair) within the region of 
interest. Countless works, for example [10,46,71,109,117,118,121,140,157–159], 
have adopted this approach.

Validation based on real data involves performing actual image registra-
tions and employing additional data, ideally provided by clinical experts, to 
quantify accuracy of the obtained results. For example, if landmark corre-
spondences can be acquired, one may compute the target registration error 
(TRE) [141]. However, in order for precise assessment, it is important that 
the correspondences are as spatially distributed as possible, especially for 
results obtained from deformable registration. If segmentation of the images 
is available, one can also apply the warp to the segmentation and compute 
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overlap measures* between the target and deformed segmentations. The 
latter approach is known as morphology-based evaluation [5,66].

Several issues evolve around landmark-based and morphology-based 
evaluations. First, acquiring additional validation data is difficult and labo-
rious. For instance, landmarking 3D images (usually using 2D displays) is 
a challenging task due to limited sense of spatial context and depth. And 
when one or both of the input images are functional data (e.g., PET or SPECT, 
where anatomical boundaries cannot be reliably segmented automatically 
or manually), it becomes extremely difficult [136], if not impossible. Second, 
low interoperator variability† of the segmentation/landmarking results can-
not always be guaranteed. To reduce variability that may be introduced by 
operator’s biases and experience, protocols have been established for seg-
mentation, for example, brain images [66], and for identification of anatomi-
cal landmark, for example, femur [108]. Third, morphology-based evaluation 
does not provide a complete insight of registration accuracy. One problem is 
that quantitation cannot be expressed in a unit that is relevant for task of reg-
istration (e.g., distance in mm). Another is that it focuses only on segmented 
regions and disregards unsegmented structures as well as the regions within 
or surrounding the segmented regions.

Due to the aforementioned factors, evaluation based on segmentations are 
usually regarded as “bronze” evaluation, suggesting that one should inter-
pret with caution.

In the MIR literature, numerous researchers have performed comparative 
studies to evaluate a set of registration algorithms that have been designed 
for different problems. The earliest work is the Nonrigid Image Registration 
Evaluation Project (NIREP), which standardized a set of benchmarks and 
metrics (overlap, variance of image intensities in a population of registered 
images,‡ transitivity, and inverse consistency). The initial phase of NIREP 
involved a data set of 16 labeled brain images. Other comparative analyses 
include study of [128], where Urschler et al. compared six deformable reg-
istration algorithms with an experiment involving synthetic deformations 
applied to two pairs CT lung images.

Recently in 2010, Murphy et al. [94] have set up a web-based public platform 
called EMPIRE to allow for a “fair and meaningful comparison of registra-
tion algorithms applied to thoracic CT data.” The website allows developers 
to download image pairs and upload the corresponding registrations they 
obtained for evaluation as performed by the website. Four sets of measures 
are then later reported on the site, which include those based on alignment of 

*	 For example, Jaccard index, Dice coefficient (related to Jaccard index), Tanimoto coefficient 
(extended Jaccard index), etc.

†	 Some publications report registration accuracy in relation to interoperator variability 
(e.g., registration error is comparable to interoperator variability). One example is [136] for 
evaluation of whole-body CT-PET registrations.

‡	 As mentioned earlier, intensity-based measures do not reflect accuracy [66,154] as they 
assume that the same imaging protocol was used in all acquisitions).
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lung boundary and fissures. As of October 2011, over 30 teams have submit-
ted their results to this website.

For brain image, comparative studies in which at least three nonlinear 
algorithms were compared on whole-brain registrations that have been com-
pleted in the last decade include:

•	 Studies by Hellier et al. (see [66]): A series of publications that com-
pared five nonlinear methods that focused on registration accuracy 
in the cortical areas. Two sets of evaluation measures were used, 
including segmentation overlap, deformation quality (amount of 
singularities present), and symmetric hausdorff distance between 
segmented sulci surfaces. The authors also examined results in 
terms of shape similarity using PCA.

•	 Study by Yassa and Stark [152]: Six algorithms and two semi-
automated methods were compared based on two measures (over-
lap and “measure of blur” similar to intensity variance) computed in 
the cortical areas. They remarked that their evaluation involving 18 
images could not affirm that the nonrigid methods they examined 
can perform better in registering major cortical sulci.

•	 Study of Klein et al. [66]: the study compared 14 registration 
algorithms using four data sets by performing over 2168 image 
registrations per algorithm and computing various evaluation 
measures and performing statistical analyses on the obtained 
evaluation measures. Top-ranking methods were SyN (Symmetric 
Normalization) [8]), ART*, IRTK [105], and SPM’s DARTEL toolbox 
[4], with the first two giving top scores in all tests and for all label 
sets. SyN is recommended if high accuracy is desired; ROMEO† 
and Diffeomorhpic Demons [131] are more efficient alternatives for 
time-sensitive tasks.

22.6  Conclusions

This chapter reviewed the various techniques proposed for MIR, as well as 
those relating to registration evaluation. In summary, key tasks of a regis-
tration procedure include (1) characterization of the registration solution 
Section 22.3.2; (2) definition of one or a set of criterion to quantify the opti-
mality of the solution (Section 22.3.3; and (3) design and employment of an 
optimization strategy for finding the solution (Section 22.3.4.2). As there is 

*	 Automatic Registration Toolbox. http://www.nitrc.org/projects/art/
†	 http://ralyx.inria.fr/2006/Raweb/visages/uid27.html
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currently no generic registration algorithm that works in all applications, 
choices of data (dis)similarity terms and optimization strategy remain highly 
problem-specific.

There remain many open questions in MIR. For instance, MIR is chal-
lenged by the need for tuning a potentially long list of parameters that 
relate to optimization and feature extraction settings, as well as the weights 
between data dissimilarity and regularization terms. Furthermore, when 
operated on large images (e.g., vector- or tensor-valued images and dynamic 
sequences), MIR is burdened by heavy computation and memory demands. 
Future research works that aim at addressing these issues are therefore both 
interesting and important.
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