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19.1  Diffusion-Weighted Image Acquisition

Diffusion magnetic resonance imaging (dMRI) is a powerful imaging 
protocol that allows for the assessment of the organization and integrity of 
fibrous tissue. The imaging works by measuring the diffusion of water mol-
ecules within the body. This diffusion is restricted by cell membranes and 
as such, rates of diffusion are far less in directions perpendicular to fibrous 
tissue than parallel to the fibers. With enough diffusion measurements along 
different directions in 3D, we can noninvasively obtain a profile of the diffu-
sion at various points within the imaged subject.

The diffusion profiles obtained from dMRI have had a significant impact 
on the analysis of neural connectivity within the white matter of the brain. 
Neural pathways, dubbed fiber tracts, can be traced out using the directional 
information from the diffusion profiles. This process is known as tractog-
raphy and, due to noise, motion artifacts, and partial voluming effects, is a 
computationally difficult problem.

We present here an examination of the current state of tractography and 
dMRI. In particular, we look at the computational challenges inherent in this 
area and the open problems that remain.

19.1.1  Biological Basis for Diffusion MRI

The biological basis for dMRI dates back to 1828 when botanist Robert Brown 
noticed the continuous and random motion of pollen grains suspended in 
water [29]. What Brown had discovered was later determined to be the motion 
of water molecules due to thermal agitation [58]. This motion, now known 
as Brownian motion or diffusion, was later characterized by A. Einstein [41], 
resulting in Einstein’s equation:

	 r dt2 6= 	 (19.1)

What Einstein’s equation characterized was that the square of the average 
displacement of molecules (r) with a given diffusion rate (d) is proportional 
to the observation time (t). If we can measure this molecular displacement 
over a fixed time, we can obtain the diffusion rate of different substances 
under different conditions.

As the majority of the human body is water [46], the diffusion phenome-
non occurs within us as well. While the diffusion process is random, our cell 
structures can restrict or hinder the motion of water molecules [19]. As such, 
the diffusion of water molecules in our body depends on the microstructure 
of our tissues. Fast molecular diffusion occurs within and around a cell as 
there are few microstructures to inhibit motion. Diffusion through the cell 
however is slower as the cell membrane and other structures (e.g., myelin 
sheaths in the brain white matter) restrict molecular motion.
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Since the diffusion of water within the body is dependent on local cell 
structure, we can discuss how different organizations of these structures 
affect diffusion rates. Consider, for example, the human brain where 
functional regions (gray matter) are connected by a collection of neural 
pathways (white matter). Figure 19.1 presents diffusion measures for the 
brain’s corticospinal fluid (CSF), gray matter, and white matter, respec-
tively. When the cell structure is minimal as in CSF, we see fast isotropic 
diffusion. More complex cell structure that is not consistently organized, 
such as gray matter, shows slower, but still isotropic, diffusion. Yet if the 
local cell structure is organized in a consistent orientation, as it is in white 
matter, the diffusion rates become anisotropic, that is, they vary with 
regard to direction [19].

These diffusion differences within the brain are potentially useful cues 
in analyzing brain structure and function. For example, measuring the 
average diffusion rate or the anisotropy of a tissue can give us significant 
information about the tissue’s organization and integrity [76]. Diffusion 
measurements would be most informative in white matter regions where 
the orientation of the microstructure can be inferred from the diffusion. 
This microstructural orientation within the brain’s white matter is in turn 
known to describe the direction of neural pathways in the brain [20]. As 
a result, by measuring the diffusion using Einstein’s equation, we could 
infer the orientational structure of the brain’s white matter and in turn map 
out the brain’s neural pathways. This is precisely what dMRI is used to 
accomplish.

19.1.2  Diffusion-Weighted Image Acquisition

To understand how diffusion can be measured through MRI, we must first 
address the basic concepts on nuclear magnetic resonance. All elementary 

(a) (b) (c)

Figure 19.1
Synthetic examples of the diffusion seen in CSF (a), gray matter (b), and white matter 
(c) within the brain. The diffusion rates for various directions are shown in bold. (Adapted 
from Alexander, D.C., Visualization and Processing of Tensor Fields, Chapter 5: an introduction 
to computational diffusion MRI: the diffusion tensor and beyond, Springer Berlin Heidelberg, 
Heidelberg, Germany, pp. 83–106, 2006.)
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particles possess a physical property of spin (s) as seen in Figure 19.2. This 
spin property rotates the particle around its nucleus, thereby giving the par-
ticle a magnetic moment (m). This magnetic moment can then be manipulated 
using nuclear magnetic resonance. As the body is mostly water, the spins of 
hydrogen atoms within water molecules become a good candidate for MRI.

19.1.2.1  Magnetic Resonance Imaging

MRI is comprised of three principal steps: precession, resonance, and relax-
ation. We consider each in turn.

Precession: A static magnetic field B0 is applied to the body. This magnetic 
field aligns the rotational axis of each spin with its field direction. These 
spins now rotate, or precess, around the same magnetic axis. Note that 
roughly an equal number of spins will be aligned with the positive direction 
of the magnetic axis as with the negative direction and the overall signal 
generated during precession will be minimal.

Resonance: With the magnetic field B0 in place, a second, weaker, magnetic 
pulse is applied to the body in the direction g. This second field results in 
the magnetic moment m of each spin aligning with the pulse direction g. The 
spin’s axis of rotation remains aligned with B0. The result of the resonance 
phase is to cause the net magnetism of the spin to veer away from the main 
magnetic field B0. This change in the magnetic field induces a small current 
within the subject.

Relaxation: The second magnetic pulse is removed and the magnetic moments 
of the hydrogen atoms realign with B0. As this realignment occurs, the 
changing magnetic field generated by the realignment of the spins induces 

m

S

Figure 19.2
Nuclear spin s generating a magnetic moment m. The particle spins around a rotational axis 
shown here in gray. (Adapted from Lenglet, C. et al., Diffusion tensor magnetic resonance 
imaging: Brain connectivity mapping. Technical Report 4983, INRIA, October 2003.)
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a current in the coil of the MRI scanner. From this current, two common 
measurements can be taken:

	 1.	Spin–spin relaxation time (T2): The amount of time it takes for the 
magnetism in the direction of g to reduce to 37% of its original value

	 2.	Spin–lattice relaxation time (T1): The amount of time it takes for the 
magnetism in the direction of B0 to recover 63% of the magnetism it 
lost when the second gradient was applied in the direction g

These relaxation times can be visualized at multiple locations in the brain, 
resulting in what are known as T1 and T2 weighted images.

19.1.2.2  Diffusion-Weighted Imaging

As magnetic resonance imaging depends on the magnetic moments of 
hydrogen atoms, Stejskal and Tanner were able to develop a sequence of pre-
cession, resonance, and relaxation periods that allow MRI to measure the 
movement of hydrogen atoms over time and in turn the water molecules of 
which they are a part [95]. Le Bihan and Breton later adapted this MR image 
sequence to the scanning of the human body [24]. This imaging sequence is 
summarized in Figure 19.3 for a given angular direction g.

The sequence in Figure 19.3 assumes that the magnetic field B0 has been 
applied and that the spins are precessing around B0. In this state, a magnetic 
pulse is applied at an angle of 90° from the direction of B0. This pulse aligns 
the spins that were separately aligned to either the positive or negative B0 
axis. Once the spins are aligned, the 90° pulse is removed and a second 
pulse, known as a gradient pulse, is applied in the direction g. This gradient 
pulse senses the induced current to a specific angular direction.

A third magnetic pulse in the direction 180° from B0 follows the gradient 
pulse, then the gradient pulse is reapplied. The 180° pulse plays a key role in 
that it flips the spin direction of the atoms to the opposite of what they were 
during the precession phase. As a result of this flip, the current induced by sta-
tionary atoms during the application of the second gradient pulse will cancel 
out the current induced by the same atoms during the first gradient pulse [67]. 
Therefore, the resulting signal measured after all gradient pulses have been 
applied relates solely to the molecules experiencing motion in the direction g.

180-pulse90-pulse

g g

δδ
Δ

Signal

Figure 19.3
The Stejskal–Tanner diffusion-weighted imaging sequence. (Adapted from Westin, C.-F. et al., 
Med. Image Anal., 6, 93, 2002.)
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The T2 relaxation time is then measured from this final signal for multiple 
locations in the brain and visualized in what are known as diffusion-
weighted images (DWIs). Figure 19.4 displays a conventional T2 image next 
to sample DWIs for various gradient directions g. Note here that rapid diffu-
sion results in fast T2 relaxation times, resulting in a low intensity in the DWI. 

(a)

(b)

Figure 19.4
Axial slices of (left to right) (a) standard T2 image and (b) its corresponding DWIs from gradient 
pulses in the horizontal, vertical, and out-of-plane directions. Note the differences in mea-
sured diffusion in the splenium due to gradient direction (highlighted by the white arrows). 
(Adapted from Jones, D.K., Cortex, 44(8), 936, September 2008.)
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Further note the different rates of diffusion for different directions within 
the brain’s white matter as pointed out by the white arrows in Figure 19.4.

From the DWI for gradient direction g, the diffusion rate (d) can be com-
puted using the Stejskal–Tanner equation:

	 S S bd= -0 exp( ) 	 (19.2)

where
S is the DWI intensity
S0 is the standard
T2 is the image intensity
b is the diffusion weighting [95]

The diffusion weighting b is in turn proportional to the strength and dura-
tion of the gradient pulse. The T2 image used in (19.2) is typically referred to 
in this context as a B0 image as it is acquired without the application of the 
gradient pulses (i.e., b = 0). The scalar d is commonly referred to as the appar-
ent diffusion coefficient (ADC).

19.1.3  Correction of Image Artifacts

To obtain a full understanding of dMRI, we must acknowledge how the qual-
ity of the DWIs is affected or limited by the image acquisition process. All 
further analysis is going to depend on the accuracy of these diffusion mea-
surements, and as such, we must address the presence of noise and imaging 
artifacts within these DWIs.

dMRI is susceptible to various artifacts, the three most common being eddy 
currents, subject motion, and Rician noise [13]. Let us consider each in turn.

19.1.3.1  Eddy Currents

As seen in the diffusion imaging sequence in Figure 19.3, multiple mag-
netic gradient pulses are applied in rapid succession. Switching between 
these gradients can result in fluctuations in the scanner’s magnetic field. 
These fluctuations induce what are known as eddy currents in the coil of 
the MRI scanner. The eddy currents interfere with the currents induced by 
the scanned subject, thereby distorting the resulting DWIs [13].

Much is known of eddy currents, namely, that they are dependent on 
the magnitude of the gradient pulse, independent of the subject being 
scanned, and that they result in related geometric and intensity distortions 
in DWIs [51]. The geometric distortion produced from eddy currents has 
been shown to consist of a translation, scale, and shear of the resulting 
image and is commonly rectified using affine registration [27,51,70]. The 
DWIs are registered to a T2-weighted image with the mutual information 
similarity measure showing the best results [70]. As the T2 image is acquired 



536 Medical Imaging

without gradient pulses that produce eddy currents, it is assumed to be 
free of geometric distortion, thereby making it an appropriate template to 
which we can register the DWIs. Intensity corrections are then calculated 
directly from the magnitudes of the shear, scaling, and translations of the 
affine warp [51,70].

One benefit of eddy currents being independent of the subject scanned 
is that the affine warp used in the correction can be obtained by imaging 
a physical phantom with known ground truth [34]. This warp can then be 
applied to later subject scans.

19.1.3.2  Subject Motion

Depending on the number of DWIs being acquired, the length of a dMRI 
scan can range from a couple of minutes [74] to a few hours [103]. During that 
time, the subject may move both voluntarily involuntarily (e.g., breathing). 
As a result, the same voxel location in two DWIs is not guaranteed to cor-
respond to the same anatomical location in the subject.

While correcting for subject motion in a single image has been well stud-
ied (see [98] for a survey), the problem of correcting motion between separate 
DWIs has yet to receive a strong theoretical treatment [13]. Even so, two main 
approaches have been proposed to correct for subject motion between DWIs, 
both involving image registration. First, we can, as with eddy current cor-
rection, align the DWIs to a T2-weighted image with the mutual information 
similarity measure [70,90]. The alternative approach is to model the diffusion 
at each voxel (as discussed further in Section 19.2) and to align images so as 
to minimize the residual of the model fit [7,10]. A recent quantitative com-
parison of these approaches suggests that both methods are equally capable 
of correcting for subject motion [91].

Note however that if the rotational motion of the subject is large, the direc-
tions of the applied gradient pulses would need to be corrected as well [66,90].

19.1.3.3  Rician Noise

Any environment is going to contain a certain amount of background noise. 
In the case of dMRI, this noise has been well modeled using a Rician distri-
bution [16] given as
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where
x is the observed image intensity
μ is the noise-free signal
σ is the standard deviation of the noise
I0 is the zeroth-order Bessel function of the first kind
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At high signal to noise ratios, the Rician distribution is occasionally approxi-
mated using a Gaussian distribution [43]. This additive noise can have an 
adverse effect on the diffusion rates calculated using the Stejskal–Tanner 
equation, particularly for images taken at a high diffusion weighting [60].

Historically, variational methods have been applied to remove this Rician 
noise, with anisotropic filtering [82] and total variation regularization [16,43], 
both showing success. Weighted-mean filtering approaches have also been 
used [97,107]. The main conceptual difference in noise removal in DWIs is 
whether to denoise one image at a time (the scalar approach) or all images at 
once (the vector approach) [43]. Recent results suggest that the vector-based 
algorithms improve signal to noise to a greater extent [97].

19.2  Modeling Local Diffusion Patterns

Since the introduction of dMRI, two key advancements have propelled the 
field to where it is today: first, the introduction of the diffusion tensor by 
Basser et al. [14] and second, the introduction of higher angular resolution 
diffusion imaging (HARDI) [101]. The introduction of the diffusion tensor 
brought forth the concept of modeling the diffusion rates from the DWIs as 
a 3D function within each voxel. HARDI, on the other hand, allowed us to 
increase the complexity of these models to better represent the local diffusion 
properties. This section will show how these two contributions underlie the 
ability to perform brain connectivity analysis.

19.2.1  Diffusion Tensor Model

While we have shown that the Stejskal–Tanner equation (19.2) relates 
diffusion rates to the DWI intensities, we can consider a more general 
formulation of the diffusion properties at a voxel. Since water molecules 
undergo random Brownian motion, we can consider a probability density 
function (PDF) pt(x) describing the probability of a water molecule expe-
riencing a displacement x over the observation time t. It has been shown 
that the distribution pt is related to the DWI intensities via the Fourier 
transform [5].
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As, S(g) represents the diffusion-weighted signal for the gradient direction g, 
S0 is the unweighted B0 image signal, and b is the diffusion weighting. With 
enough DWIs S(g), the Fourier transform can be inverted to obtain pt. This 
is known as q-space imaging [103]. In practice however, the number of DWIs 
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required to accurately perform the inversion leads to scanning times on the 
order of hours [54] that is generally not available in a clinical setting. As a 
result, it has become common to assume a model for pt, the simplest model 
being a zero-mean Gaussian:
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where the covariance is 2tD.
Plugging the Fourier transform of (19.5) into (19.4) results in a more general 

case of the Stejskal–Tanner equation:

	
S S b T( ) expg g Dg= -( )0

	
(19.6)

The 3×3 second-order positive-definite symmetric matrix D is referred to 
as the diffusion tensor [14]. It contains six unique elements and therefore 
six DWIs are required, along with the B0 image, to estimate the tensor. The 
DWIs are obtained from uniform, noncollinear gradient directions so as to 
not favor a given direction in the tensor fitting process. These seven images 
can be obtained with an MRI scan on the order of 1–2 min [74], thereby mak-
ing it a clinically feasible imaging protocol.

Many factors affect the quality of the diffusion tensors. As mentioned 
earlier, noise, motion, and distortions in the DWIs will result in poor ten-
sor estimates. Aside from post-processing the DWIs, it is also common to 
obtain DWIs from more than six gradient directions in order to overfit the 
tensor, thereby reducing the effect of having some corrupted DWI signals 
[60]. The fitting procedure also affects the quality of the resulting tensors. 
The simplest approach is to take the logarithm of (19.6) and fit the tensor 
using least squares [14]. This approach, however, does not ensure that 
the resulting tensor be positive definite (i.e., have positive eigenvalues). 
Nonlinear fitting allows for this constraint and generally results in a less 
noisy tensor field [60], especially if spatial regularization is incorporated 
into the fitting procedure [102]. Additional approaches include using a 
weighted least squares fitting of the log-transformed equation (19.6) that 
is used to detect and remove outlier DWI signals prior to the final tensor 
fit [33].

19.2.2  Tensor Image Visualization

The power of the diffusion tensor lies in its ability to measure and visual-
ize more detailed properties of the diffusion than the scalar DWIs provide. 
For example, we can look at how the rates of diffusion vary with direction 
or calculate the average diffusion rate at each voxel. In fact, significant diag-
nostic information can be obtained from the diffusion tensor by analyzing 
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its principal components obtained through the tensor’s eigendecomposition 
[50]. Given a diffusion tensor D, we can obtain the eigendecomposition:
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where the eigenvalues are positive and sorted in descending order (i.e., λ1 ≥ 
λ2 ≥ λ3). The eigenvectors e1, e2, e3 are considered the main axes of diffusion, 
while the eigenvalues encode the rates of diffusion along each correspond-
ing axis. Given this interpretation, we can visualize the diffusion tensor as 
an ellipsoid as shown in Figure 19.5. The axes of the ellipsoid are the eigen-
vectors of the tensor, while the tensor’s eigenvalues describe the ellipsoid’s 
stretch along each axis. Another interpretation of the ellipsoid is as an iso-
probability surface of the Gaussian diffusion model given in (19.5).

The tensor eigendecomposition allows for the computation of two key dif-
fusion properties: the mean diffusivity (MD) and the fractional anisotropy 
(FA) [58,105]. These two measures respectively capture the mean and vari-
ance of the diffusion rate with respect to direction. They are computed from 
the tensor’s eigenvalues as

	
MD = + +( )1
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(b)(a)

Figure 19.5
Examples of the ellipsoidal representation of prolate (a) and oblate (b) diffusion tensors. 
(Adapted from Jones, D.K., Cortex, 44(8), 936, September 2008.)
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Examples of MD and FA on a slice of the brain are shown in Figure 
19.6. From these images, we observe the brain microstructure described 
in Section 19.1.1. Note that the MD is higher in the ventricles than the 
rest of the brain due to the lack of tissue structure. Conversely, the FA 
is highest in the white matter of the brain due to coherent orientation of 

(a)

(b)

Figure 19.6
(See color insert.) Various methods of visualizing the information contained in a diffu-
sion tensor field. (a) MD (left), FA (center), and color-coded orientation map (right) and 
(b)  ellipsoidal visualization. (Images generated using MedINRIA http://www-sop.inria.
fr/asclepios/software/MedINRIA/ on data obtained from Mori, S., John Hopkins Medical 
Institute: Laboratory of Brain Anatomical MRI, in vivo human database, http://lbam.med.
jhmi.edu/, accessed February 2009.)
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the tissue microstructure. We can further estimate the orientation of this 
microstructure as being equivalent to e1. Of course, the quality of this esti-
mate will depend in part on the FA. Low FA would imply a less coherent 
orientation in the tissue microstructure, making the estimation of this ori-
entation not well founded.

Other scalar measures have been generated to characterize both the shape 
and anisotropy of diffusion tensors, but FA and MD are most commonly used 
in practice. A review of other scalar tensor measures can be found in [105,114].

Aside from visualizing the scalar FA and MD maps, approaches have been 
developed to display the tensor’s orientation information as well. The two 
most common approaches are shown in Figure 19.6. First, the primary dif-
fusion direction (PDD) e1 can be visualized as a color image, where the RGB 
values are R = FA|e1 · [1,0,0]|, G = FA|e1 · [0,1,0]|, and B = FA|e1 · [0,0,1]| [80]. 
Such a scheme allows for an intuitive visualization of orientation weighted 
by the orientation strength, yet color assignments are not unique. For 
example, the color yellow would be assigned to voxels with e1 = [1, 1, 0] and 
e1 = [−1, 1, 0], leading to ambiguity of the underlying diffusion direction. As 
a result, it is occasionally necessary to visualize the tensor ellipsoids them-
selves as seen in Figure 19.6b. Generating a less ambiguous color representa-
tion of tensor data remains an area of open research [115].

Regardless of visualization strategy, the value of the orientation informa-
tion in dMRI is significant as it allows us to infer the orientation of neural 
pathways in the white matter of the brain. If we take, for example, the FA in 
Figure 19.6, we can observe four major neural pathways. The forceps minor 
can be seen in the upper portion of the image arching upward in a U shape. 
A similar looking pathway, the forceps major, can be seen in the bottom half 
of the image as an inverted U shape. Flanking the forceps major on either 
side are the optic radiations. These pathways, as seen in dMRI, agree with 
histological studies [31], thereby making dMRI a powerful tool for mapping 
out these neural pathways noninvasively.

19.2.3  High Angular Resolution Diffusion Models

While the diffusion tensor model provides a powerful tool for visualizing 
and assessing the microstructure of brain tissue, it suffers from a significant 
limitation: the assumption that diffusion follows a Gaussian model. While 
this model may hold for simple examples such as those in Figure 19.1, there 
exist many situations where the local diffusion is more complex.

Take, for example, this situation shown in Figure 19.7a. This example 
shows a mixture of fibrous tissues oriented along the positive and negative 
diagonal directions, resulting in a diffusion profile in bold. Ideally, we would 
like to model this diffusion as shown in Figure 19.7b. Unfortunately, the dif-
fusion tensor model assumes ellipsoidal Gaussian diffusion. As a result, we 
would obtain for this example the tensor shown in Figure 19.7c. This tensor 
would misleadingly suggest that diffusion is equal for all directions in the 
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plane of the crossing. Further, the primary eigenvector of the tensor is not 
guaranteed to align with either fiber direction.

Such an example is common in the white matter of the brain. The neu-
ral pathways are made up of aligned tissue fibers whose diameter is on the 
order of microns [3]. In contrast, the resolution of DWIs is typically on the 
order of millimeters cubed. As a result, this type of averaging of diffusion 
from multiple pathways is unavoidable. In fact, it has been estimated that at 
least one-third [21] to two-thirds [39] of voxels in the brain may exhibit this 
crossing fiber property. As a result, attempts have been made to come up 
with better diffusion models.

Tuch et al. first proposed the use of more descriptive diffusion models by 
showing that there are regions in the brain where fibers cross [101]. They 
noted that in order to detect these crossing fibers, DWIs from a greater 
number of diffusion directions, and at a higher gradient weighting, were 
required. Thus was born the concept of higher angular resolution diffusion 
imaging (HARDI).

Initial attempts to model more complicated diffusion profiles revolved 
around fitting multiple tensors to the DWI signals [101]. A mixture of 
Gaussian’s model was assumed and the Stejskal–Tanner equation was 
updated to incorporate the mixture:
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Each tensor Di has a corresponding volume fraction fi representing the 
fraction of the local diffusion the tensor represents. Later work using the 
CHARMED [8,9] and FORECAST [6] methods assumed a particular shape 

(c)(b)(a)

Figure 19.7
Example of crossing fibers and how they are modeled using dMRI. (a) Crossing fibers, (b) cor-
responding diffusion ODF, and (c) corresponding diffusion tensor. (Adapted from Alexander, 
D.C., Visualization and Processing of Tensor Fields, Chapter 5: an introduction to computational 
diffusion MRI: The diffusion tensor and beyond, Springer, Berlin Heidelberg, Germany, pp. 
83–106, 2006; Descoteaux, M. et al. IEEE Trans. Med. Imaging, 28(2), 269, 2009; Westin, C.-F. et al., 
Med. Image Anal., 6, 93, 2002, respectively.)
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for each fitted tensor. The former approach attempts to model intra-fiber and 
extra-fiber diffusion using prolate (cigar-like) and spherical tensors, respec-
tively. The latter approach models prolate tensors with an equal and known 
MD. More recent work has instead assumed a mixture of Wishart (MOW) 
distributions—effectively a distribution over tensors—as the choice of dif-
fusion model [56,57].

While these mixture model approaches allow for the same intuitive repre-
sentation as the single tensor model, they also have their limitations. These 
include the following:

•	 The number of tensors being fitted to the DWI signal has to be speci-
fied ahead of time. While there has been work on estimating this 
number from the data [5,101], there is no ground truth specification 
for the number of tensors to fit at a voxel.

•	 There is no guarantee that the assumed shape of the fitted tensors is 
appropriate for the underlying diffusion. If the shape assumption is 
poor, the volume fractions can be poorly estimated [6].

•	 The mixture model, and not the underlying mixture components, 
is fit to the DWIs. While the peaks of the mixture model will align 
with the directions of maximal diffusion, there is no guarantee that 
the peaks of the underlying distributions will align with these direc-
tions as well [101].

Some of these limitations have been addressed in recent work. For example, 
instead of fitting a fixed number of tensors to the data, volume fractions can 
be calculated for a set of basis tensors [56,57,69]. Those tensors with a vol-
ume fraction above a given threshold are maintained to model the diffusion. 
Also, instead of using the mixture components for further analysis, the mix-
ture model itself is used to analyze the diffusion [6,56,57].

On the other end of the spectrum, model-free approaches have also been 
proposed to capture local diffusion properties. Again, Tuch instituted 
this approach through the introduction of q-ball imaging [100]. Based on 
the earlier q-space approach described by the Fourier transform in (19.4), 
Tuch noticed that the directional dependence of the diffusion rate is the 
most commonly used information for dMRI analysis and that the radial 
distance component of the diffusion does not play a significant role. As a 
result, instead of modeling the diffusion as a PDF p(x), where x is a vec-
tor of any length, q-ball imaging models the diffusion orientation distribu-
tion function (ODF) ψ(θ, φ), where θ, φ are spherical angles. As such, the 
ODF captures the probability of diffusion along different angular directions 
(θ, φ) but without a radial distance parameter. An estimation of the ODF can 
be more efficiently obtained through the use of the Funk–Radon transform 
[100]. By ignoring the radial component, the q-ball ODF can be estimated 
with fewer DWI samples than the original PDF from q-space imaging, lead-
ing to more reasonable scanning times.
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Two other model-free approaches have also gained traction in the dMRI 
community. First, the diffusion orientation transform (DOT) shares simi-
larities with q-ball imaging as both are based on the earlier q-space approach. 
In contrast, DOT assumes diffusion decays exponentially along the radial 
direction and uses this assumption to perform the Fourier transform in (19.4) 
using fewer DWI samples [79]. The DOT diffusion ODF is then obtained by 
analytically integrating the resulting PDF along the radial direction.

An alternative model-free approach is Jansons and Alexander’s persistent 
angular structure (PAS) approach [54]. The goal behind PAS is to find a dif-
fusion PDF p(x) from (19.4) that is smooth yet captures the key angular struc-
ture of the diffusion. This goal is achieved through optimization by finding 
a PDF p(x) that maximizes entropy while minimizing the error in fitting to 
the DWI samples. A Lagrange multiplier is used to weight the two compet-
ing terms [54].

One of the key limitations of the model-free HARDI approaches is pre-
cisely that a model is not assumed. In areas of low anisotropy, both PAS and 
q-ball imaging can overestimate the directional dependence of the diffusion 
as a result of image noise [54,100]. This overestimation can result in spurious 
maxima in the diffusion ODFs. While work has been done in reviewing and 
comparing different HARDI approaches [1,3,4,87], there is generally no con-
sensus as to which HARDI model is best suited to represent diffusion MR 
characteristics.

As with the diffusion tensor, the quality of the diffusion ODF is going to 
depend in part on the algorithm used to fit the ODF to the diffusion data. 
Recently, Jian and Vemuri pointed out that many of these diffusion model 
fitting algorithms can be unified using a spherical deconvolution framework 
[55]. Given DWI signals S(g) and the B0 image S0, the diffusion ODF ψ can be 
considered as a deconvolved version of the signal:
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where
R is the convolution kernel
M is a manifold, typically ℝ3 in the case of a PDF and 𝕊 2 for the ODF

With a discretization of M, (19.11) can be converted into a linear least squares 
problem. However, the kernel matrix representing R is typically ill-condi-
tioned and highly sensitive to noise in the sampled S(g) [55]. As a result, 
nonlinear fitting approaches are recommended [2,55].

19.2.4  HARDI Representation and Visualization

While a diffusion PDF, such as the Gaussian PDF used with the diffusion 
tensor, provides information on the radial aspect of the measured diffusion, 
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the concept of using a diffusion ODF has become commonplace with HARDI 
data [55]. As such, an efficient representation of the ODF would be useful 
for further computation. Since the diffusion ODF is a spherical function, the 
most popular choice for its representation is a real spherical harmonic expan-
sion [6,40,55]. The diffusion ODF ψ can be represented as
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where integers ℓ and m are the degree and order of the harmonics, 
respectively.

The basis harmonics Ym
�  are given as
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where Pm
�  is the associated Legendre function of degree ℓ and order m.

As the ODF is antipodally symmetric, only the even-degree basis 
harmonics are used [40]. Typically, the expansion is limited to degree ℓ ≤ 8 
to suppress noise artifacts in the resulting ODF [39]. Other ODF representa-
tions have also seen limited use, including von Mises–Fisher distributions 
[88] and fourth-order tensors [11].

The notions of MD and FA have also been extended to HARDI diffusion 
ODFs, with the latter being referred to in this context as generalized anisot-
ropy (GA). As before, the two measures correspond to the mean and variance 
of the diffusion ODF ψ:
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Unlike the diffusion tensor model, MD and GA generally do not have an 
elegant solution. Analytical solutions have been proposed for both measures 
[11,78] but involve ad hoc scaling and normalization weights. Examples of 
MD and GA images are shown in Figure 19.8.

Finally, we note that the visualization of the orientation information in the 
diffusion ODF typically involves visualizing the spherical ODFs themselves 
as seen in Figure 19.8.
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19.2.5  HARDI versus the Diffusion Tensor

Despite the presence of these HARDI models that better represent the under-
lying diffusion properties, the use of the diffusion tensor model still persists 
in a clinical setting [74–76]. There are various reasons for the use of what is 
perceived to be an inferior model and these reasons highlight some of the 
limitations of HARDI:

•	 The number of gradient directions, and in turn DWIs, required for 
the reconstruction of HARDI models is still significantly larger than 
for diffusion tensor imaging. With scanning time as a bottleneck, 
the opportunity to obtain enough DWIs for a HARDI reconstruction 
remains in many cases a luxury.

•	 To observe non-Gaussian diffusion, the strength of the magnetic 
gradients used in the scan is increased [101]. Increasing the gradi-
ent strength increases diffusion rates, which in turn are inversely 
proportional to relaxation time and DWI intensity. If we increase 
the gradient strength enough, the DWI intensities can fall below the 
noise floor, an effect seen with HARDI imaging settings [60].

•	 Recent research suggests that limitations of the tensor model with 
regard to crossing fibers can be overcome by taking into account 
neighborhood information [12,92]. With such advancements, it 
remains unclear if HARDI can provide information that cannot be 
recovered from a diffusion tensor image.

(b)(a)

Figure 19.8
Sample visualization techniques for diffusion ODFs obtained from HARDI. (a) MD (top) and 
GA (bottom) and (b) q-ball diffusion ODFs.
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Due to these aforementioned reasons and the wealth of diffusion tensor 
medical research [76], the tensor model cannot be ignored.

19.2.6  Diffusion MR Image Regularization

While modeling local diffusion through tensors or ODFs provides useful 
information with regard to orientation dependence and anisotropy, we must 
not lose sight of the fact that the resulting diffusion profiles are estimates of 
the underlying diffusion and are open to error. While noise reduction can 
be performed on DWIs as seen in Section 19.1.3, any remaining noise can 
be amplified due to a poor model fit. Further, the choice of model, particu-
larly the tensor model, can result in a poor fit to the diffusion measurements. 
These potential errors will affect any further analysis of the diffusion data 
and so it is important that they be addressed.

Methods for addressing model error generally fall into two categories: cor-
recting for noise and correcting for model choice. We look at these in turn.

19.2.6.1  Noise Reduction

Total variational regularization has been a popular choice for noise removal 
in the diffusion tensor images [35,37,43,85,99,108]. Generally, total variation 
approaches involve the minimization of an energy functional:

	 E E I ETV data orig diff( ) ( , ) ( )I I I= + 	 (19.15)

where Edata is a term that measures the distance from the noise reduced image
I  from the original version of the image Iorig. The term Ediff is the Perona and 
Malik anisotropic diffusion term that controls the smoothing in the image 
[104]. The variations between the proposed methods relate to what is regu-
larized and how they maintain the constraints of the diffusion tensor. In 
some cases, only the principal diffusion direction (i.e., the tensor’s primary 
eigenvector) is regularized [108]. In other cases, the tensor’s eigenvectors and 
eigenvalues are regularized separately [37,99]. Still other approaches regular-
ize all tensor elements at once, using the Cholesky factorization [35] or tensor 
distance metrics [43,85] to ensure positive definiteness of the diffusion tensors.

Other regularization approaches include graph-based anisotropic diffu-
sion filtering of the tensor elements [110], Markov random field minimiza-
tion of the principal diffusion directions [86], and bilateral [49] and nonlocal 
means [107] filtering using tensor distance metrics.

19.2.6.2  Model Correction

While noise in the diffusion measurements is one source of inaccuracy, the 
chosen diffusion model may also be inaccurate. As seen earlier, the diffusion 
tensor model is unable to accurately represent diffusion profiles in areas of 
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crossing fibers. Recent work has looked at determining crossing fiber locations 
from neighborhood information in tensor images. Barmpoutis et al. estimate 
an ODF called a tractosema by performing a neighborhood kernel integration 
with a specialized kernel [12]. Meanwhile, Savadjiev et al. produce a similar 
ODF by measuring the probability of diffusion along 3D curves through the 
surrounding neighborhood [92]. These approaches are able to resolve certain 
crossing fiber situations, yet it remains unclear whether all crossing fibers can 
be discovered using some similar post-processing on diffusion tensor images.

Despite attempts to fully address noise and inconsistencies within the 
data, it is unlikely that we will ever be sure that all imperfections will be 
removed. As such, recent work has looked at quantifying this error using 
statistical methods [52,106].

19.3  Brain Connectivity Mapping from dMRI

The orientation information in dMRI is incredibly valuable in mapping out 
structure in the white matter of the brain. As diffusion is strongest along the 
fiber tracts that make up neural pathways, the directions of maximal diffusion 
at each voxel location can be used to help reconstruct the fiber tracts, thereby 
mapping out connectivity in the brain. The problem of mapping out these 
connections is known as tractography and is complicated by many factors. We 
have already mentioned two: poor diffusion model fitting and noisy diffusion 
measurements. Here, we look at how these complications, and others, affect 
existing algorithms as well as how the tractography results are used.

19.3.1  Streamline Tractography

The earliest approaches to the tractography problem surrounded tracing out 
3D curves that followed the direction of strongest diffusion [15,72]. These 3D 
curves, known as streamlines, evolve using the following Euler equation:

	 r r r( ) ( ) ( ( ))s s s1 0 1 0= + ae 	 (19.16)

where r is the streamline curve parametrized by its length from a given seed 
point and si are points along the curve. ε1 is the PDD at the given location 
on the curve and the choice of notation comes from the use of the diffusion 
tensor’s primary eigenvector as the PDD. The PDD acts as the tangent to 
the streamline as it evolves with stepsize α, where α is sufficiently smaller 
than the voxel size to limit discretization effects on the evolving curve. These 
aspects are further shown in Figure 19.9. While the aforementioned Euler 
equation most easily describes the streamline evolution, a higher-order 
Runge–Kutta method is commonly used to improve numerical stability in 
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the streamline evolution [15]. The streamline evolution continues until the 
PDD becomes unreliable. Typically, the reliability of the PDD is captured 
through either FA [15] or via neighborhood PDD coherence [72]. This initial 
tractography approach is referred to in the literature as the fiber assignment by 
continuous tracking (FACT) method.

One of the concerns with the FACT approach is that it follows the PDD 
regardless of whether the PDD at a voxel is an accurate estimation of fiber 
tract orientation. In areas of lower anisotropy (but still above the termina-
tion threshold of FACT), the PDD may become more unreliable. In these 
situations, we may wish to regulate the effect of the local PDD on the direc-
tion of the evolving streamline. This is the idea behind the tensor deflection 
(TEND) approach [65]. In this algorithm, the local diffusion tensor D is used 
to deflect the incoming streamline curve as given by the evolution equation:

	 r r D r r( ) ( ) ( ( )) ( )s s s s1 0 0 0= + ×a 	 (19.17)

The greater the anisotropy of the tensor, the more reliable the PDD and 
therefore the stronger the deflection of the streamline fiber. An example of 
this evolution is shown in Figure 19.9c.

By deflecting the incoming streamline curve, TEND implicitly creates a 
curvature constraint on the evolving streamline. The streamline can only 
bend as much as a diffusion tensor will allow. In some situations, this cur-
vature constraint can cause the TEND algorithm to deviate from a high-
curvature fiber tract, thereby generating a poor result [38]. To compensate 
for this effect, the tensorline approach was proposed [65] that evolves the 
streamline curve based on a weighted combination of (19.16) and (19.17). As 
a result, the curvature can be turned on and off based on local anisotropy 

r(s1)z

x

y

r(s0)
ε1(r(s0))

t(s0)
r(s)

(a) (b) (c)

Figure 19.9
Examples of streamline evolution. Streamlines evolve in the direction tangent to the local PDD. 
Stepsizes in the evolution equation are chosen sufficiently small so as to avoid poor tracking due 
to discretization. (a) Streamline tangent to PDD, (b) effect of stepsize on streamline tractography, 
and (c) tensor deflection. (Adapted from Basser, P.J. et al., Magn. Reson. Med., 44, 625, 2000; Lazar, M. 
et al., Hum. Brain Map., 18, 306, 2003; Mori, S. et al., Ann. Neurol., 45(2), 265, 1999, respectively.)
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or prior knowledge. Streamline tractography has also been extended to 
multitensor models [23] and HARDI using extracted ODF maxima [26]. In 
these cases, streamlines follow the PDD of minimal angle with the incoming 
curve. A further review can be found in [112].

From a computational standpoint, these streamline approaches have many 
limitations, namely:

•	 Streamline approaches only follow one tract at a time. The algorithm 
cannot naturally handle situations where tracts branch or cross. 
One approach to address this concern is to perform a brute force 
implementation of the algorithm where every point of the brain is, 
in turn, used as a seed. The tracts that are kept are ones that flow 
through one or more regions of interest [73]. Even so, this brute 
force approach doesn’t guarantee that crossing or kissing (i.e., barely 
touching) fibers are appropriately handled.

•	 These algorithms, particularly the FACT algorithm, assume that the 
principal diffusion direction is an accurate and error-free estimate of 
the fiber direction. Any error in the PDD measurement will result in 
accumulation of error with each step taken. Error in the PDD, while 
small at each step, can accumulate to the point where the streamline 
can “jump” into a neighboring tract, thereby giving a false display of 
anatomical connectivity [73].

•	 Despite the aforementioned issues, these tractography algorithms 
present a binary result: a 3D space curve. There is no representa-
tion of the confidence or accuracy of the resulting streamline tract. 
Attempts are being made to quantify that confidence from stream-
lines [116], but addressing this problem is still in the early stages.

Even so, streamline tractography has been successful in detecting major fiber 
tracts like the forceps major shown in Figure 19.10a.

19.3.2  Probabilistic Tractography

One of the major concerns with tractography is the amount of confidence we 
can have in the accuracy of the generated tracts. As such, significant work 
has gone into performing tractography from a probabilistic point of view. 
Given points A and B in a diffusion MR image I , we can define the probabil-
ity of a tract connecting A and B as
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where n is the length of the tract, v1:n is a random path of length n, and WAB
n  is 

the space of fiber tracts of length n that connect A to B [42]. Given the expo-
nential number of paths in the space WAB

n , this integration cannot be done 
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analytically. Instead, the probability p(A → B|I  ) is sampled through the use 
of Markov chain Monte Carlo (MCMC) [22,25,42,63].

Conceptually, MCMC-based probabilistic tractography shares many simi-
larities with streamline tractography algorithms. Both trace out 3D stream-
lines by following a local tangent vector. The differences with probabilistic 
tractography approaches are that instead of exclusively using the principal 
diffusion direction as the local tangent to the curve, we sample each tangent 
vector vi from a given distribution pi(vi|vi−1, I  ). Also, we repeat the streamline 
tractography many times from the same seed A. Each resulting streamline 
is considered a sample of p(A → B|I  ). With enough of these samples (K), we 
can obtain a reasonable approximation of the probability that regions A and 
B are connected:

	
p A B p n

K
k

K

n

n
k

( | ) ( )
( ):® =

==

¥

ååI
11

1J v

	

(19.19)

The function J( ):v1 n
k  is equal to one if path k connects regions A and B and 

zero otherwise. The prior probability p(n) is usually taken to be uniform, 
thereby being unbiased to path length. Effectively, the probability that A and 
B are connected is equal to the fraction of random paths that connect A and 
B [25]. Probability maps containing the values from (19.19) can then be dis-
played and analyzed. An example is shown in Figure 19.10b.

(b)(a)

Figure 19.10
Examples of streamline and probabilistic tractography applied to a seed region in the sple-
nium of the corpus callosum. Note that since probabilistic tractography uses streamline trac-
tography as an underlying mechanism, the results are similar. (a) Streamline tractography and 
(b) probabilistic tractography.
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While many probabilistic tractography algorithms have been proposed, 
their key differences seem to lie in how the distribution pi(vi|vi−1,I ) models 
the local tangent vectors vi that make up each random path. In the succeed-
ing text are the most popular approaches:

Diffusion profile: We noted earlier that the diffusion tensor describes a 
Gaussian model of diffusion. As such, this Gaussian model is commonly 
used to describe the distribution pi(vi|Di) [48,63]. The incoming tract direc-
tion vi−1 is modeled as being independent of the local diffusion tensor Di, 
thereby splitting the tangent vector distribution into two terms:

	 p p pi i i i i i i( | , ) ( , ) ( | )v v v v v- -=1 1I I 	 (19.20)

where the diffusion data is the local diffusion tensor I  = Di. The condi-
tional probability p(vi|vi−1) is typically chosen as a binary distribution with 
p(vi|vi−1) = 1 if the angle between vi and vi−1 is less than ninety degrees (and 
zero otherwise).

These Gaussian approaches typically replace the diffusion tensor D with 
a scaled version Dα. As expected, the diffusion data contain diffuse infor-
mation and α is used to decrease probabilities perpendicular to the PDD. 
Sample values for α range from 2 [48] to 7 [63].

HARDI versions have also followed a similar approach with a sharpened 
version of the diffusion ODF used for pi(vi, I ) [39,62].

Heuristic approaches: Parker et al. proposed the probabilistic index of connec-
tivity (PICo) approach where the tangent vector distribution also takes the 
form in (19.20). The key difference is how the diffusion data are used. The 
distribution pi(vi, I ) is not Gaussian in this case and instead is replaced by 
a heuristic distribution based on local anisotropy [81]. The PDD is taken as 
the mean tangent direction with a cone of uncertainty whose apex angle is a 
function of a local anisotropy measure.

Bayesian formulations: The tangent vector distribution can also be described 
using Bayes’ rule with respect to the diffusion data:
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The posterior distribution p(I|vi, vi−1) captures how well the diffusion model 
fits the DWI samples and is typically approximated using a Gaussian distri-
bution on the model’s residual fit [21,22,36,42]. Friman et al. update the curva-
ture prior p(vi|vi−1) to be the dot product between the two tangent vectors [42].

Statistical bootstrap: Instead of assuming some distribution for the tangent vector, 
some have used bootstrap techniques to approximate the distribution from mul-
tiple samples [59,64,106]. During the image acquisition process, multiple DWIs 
can be obtained for each gradient direction. When it comes to fitting a diffusion 
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model, we can do so by fitting to a randomly selected subset of the DWIs. This 
fitting process can be repeated for many image subsets, thereby generating mul-
tiple diffusion MR images. The distribution of the PDDs generated from this set 
of dMRIs can then be used as a model-free approximation to pi(vi, I ).

In the absence of multiple DWI acquisitions, wild bootstrap can be per-
formed [59,106]. In this situation, noise is added to the DWIs by using random 
perturbations of the residual of the model fit. The fitting is then reperformed 
for each set of noise-simulated DWIs to obtain multiple diffusion MR images 
from which the distribution pi(vi, I ) can be generated.

Probabilistic tractography approaches have the advantage of characteriz-
ing uncertainty in the tractography algorithm. Even so, these methods too 
have their limitations:

•	 As each step taken along a tract contains some uncertainty, the connec-
tion probabilities we obtain using this approach are inevitably linked to 
the length of the tract. As such, we cannot interpret these probabilities 
as a measure of tract quality since they are not invariant to length [58].

•	 As with streamline tractography, noise can still cause the maxima of 
the tangent vector distribution to be off. There exists no mechanism 
in the tractography algorithm to correct for this error.

•	 The number of path samples required to approximate (19.18) is com-
monly on the order of thousands [22,42,59]. This results in significant 
computational cost and running times on the order of an hour or more 
for a given seed point [111]. Some recent work has tried to address 
this issue through, for example, the use of particle filters [111].

19.3.3  Front Propagation Tractography

A third set of tractography algorithms can be described as front propaga-
tion approaches where some form of information propagates outward from 
a given seed region at a speed proportional to the amount of fiber tract evi-
dence. The information propagated by the front can then be used to recon-
struct the fiber tracts. These algorithms can be divided into three main 
groups based on their computational aspects.

19.3.3.1  Fast Marching Tractography

Conceptually, the fast marching tractography approaches are distinguished by 
the calculation of a time of arrival of the propagating front for each voxel [83]. 
This arrival time T is related to the speed of the front F via the Eikonal equation
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where ri and ri−1 are neighboring voxels on opposite sides of the propagating 
front.
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With the arrival times calculated for all voxels, fiber tracts can be delin-
eated by performing gradient descent on the arrival time map. By generating 
tracts in this fashion, situations of branching and merging fibers are handled 
naturally through the propagation of the front.

The speed F of the front is set based on the presence or absence of a fiber 
tract. A common choice is to use the diffusion profile as the speed function 
[67,68,77,93], thereby ensuring faster speed along directions of faster diffu-
sion. Another choice is neighborhood PDD coherence [83]. By making the 
front speed an indicator of tract presence, we can characterize the tract’s 
“quality” as some function of the speed. One approach is to characterize the 
confidence of a tract γ by its weakest link τ [83]:
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While measuring tract quality in this fashion is a heuristic approach, it does 
provide us with a measure of confidence that is invariant to path length.

19.3.3.2  Tractography via Flow Simulation

Instead of using an arrival time map for tract reconstruction, we can inter-
leave the two operations, thereby recovering the tract as we propagate the 
front. Noting that diffusion is fastest along a fiber tract, some researchers 
[17,18,32,45,61,77,96,113,117] have proposed that we simply simulate the dif-
fusion and reconstruct candidate tracts through the analysis of the diffu-
sion front.

The diffusion is simulated using Fick’s second law [77], given as
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where
u is the local molecular concentration
ψ is the diffusion function (either the tensor D [18,45,61,77,113] or a diffu-

sion ODF in the case of HARDI [32])

Given a seed point, the diffusion process is simulated for a fixed time t. The 
resulting concentration map u is then thresholded to obtain the hard diffu-
sion front shown in Figure 19.11a. The voxels along the diffusion front are 
then scored based on a set of criteria to determine the likelihood that they 
are on a fiber tract [32,61,113]. Sample criteria include distance from the seed 
point, FA, and path curvature [61]. The diffusion is then simulated at each 
candidate point and the process repeats itself.

While this approach has generally gone out of favor due to the ad hoc cri-
teria used to select fiber tract points, the ideas generated by this tractography 
approach have been applied elsewhere. One example is the work of O’Donnell 
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et al. where the steady state flux (i.e., 𝜕u/𝜕t = 0) is solved for and tracts are gen-
erated that maximize the resulting flux [77]. A similar approach is used by 
Hageman et al. where instead of modeling diffusion, they model fluid flow using 
the Navier–Stokes equation [47]. By using the fluid flow model, Hageman et al. 
are capable of modeling further concepts of the flow (e.g., viscosity).

19.3.3.3  Minimal Path Tractography Algorithms

A third set of tractography algorithms also display this concept of front 
propagation: graph-based minimal path algorithms [53,94,109]. These trac-
tography algorithms discretize the image space into a graph formulation and 
use Dijkstra’s algorithm to obtain the path of strongest diffusion. In this case, 
the front being propagated is the boundary between the visited and unvis-
ited nodes.

To ensure the shortest path is the path of strongest diffusion, the edge 
weights in the graph are set to w(eij) = −log(Pdiff(i,j)), where the pseudo-
probability Pdiff is given as
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where
ψi is the diffusion ODF at voxel i
Z is a normalizing constant
βi is the solid angle around the graph edge between i and j [53]
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Figure 19.11
Examples of front propagation tractography, specifically the representation of the diffusion front 
and the connection strengths generated using minimal path tractography on a seed in the sple-
nium of the corpus callosum. (a) An example diffusion front and (b) example of minimum path 
tractography. (Adapted from Kang, N. et al., IEEE Transactions on Medical Imaging, 24(9), 1127, 
September 2005, Booth, B.G. and Hamarneh, G. Exact integration of diffusion orientation distri-
bution functions for graph-based diffusion MRI analysis, Proceedings of ISBI, pp. 935–938, 2011; 
respectively.)
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As with the fast marching algorithm, we can consider a “weakest link” con-
nection strength here as well by selecting the largest edge weight along the 
tract.

One must be concerned when using this method to ensure that the angu-
lar discretization provided by the edge connectivity is fine enough to avoid 
diverging effects similar to those in Figure 19.9. An example of this form of 
tractography is shown in Figure 19.11b.

19.4  Conclusions

dMRI provides us with the ability to analyze brain connectivity noninvasively. 
By measuring the diffusion of water molecules along various directions in 
3D and knowing that cell structure restricts molecular diffusion, we are able 
to infer the directional organization and integrity of fibrous tissue. Further 
modeling of these diffusion measurements allows us to assess characteristics 
such as bulk diffusivity and anisotropy. The directional dependence of the 
diffusion can also be used to trace out the imaged axonal fibers.

Various computational aspects of dMRI have been presented in this 
chapter, from acquiring diffusion-weighted MRI to modeling the diffusion 
through the use of diffusion tensors or diffusion ODFs to uncovering neu-
ral pathways with tractography algorithms. These analysis techniques have 
become even more established with their incorporation into software pack-
ages like FSL, MedINRIA, Camino, and TrackVis. These aspects of image 
analysis merely scratch the surface of what may be possible with this rela-
tively new imaging technique. Already, there is work being done in the areas 
of segmentation [118], registration [119], and statistics of dMRI data [84]. It is 
hoped that continued work in dMRI will culminate in the ability to generate 
a human connectome: a detailed connectivity map of the human brain [30].
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