
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Predictive Connectome Subnetwork Extraction with Anatomical and Connectivity Priors

Colin J Browna,, Steven P Millerb, Brian G Bootha, Jill G Zwickerc,d, Ruth E Grunauc, Anne R Synnesc, Vann Chaub, Ghassan
Hamarneha

aMedical Image Analysis Lab, Simon Fraser University, Burnaby, BC, Canada
bDepartment of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada

cBC Children’s Hospital Research Institute and Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
dDepartment of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, BC, Canada

Abstract

We present a new method to identify anatomical subnetworks of the human connectome that are optimally predictive of targeted
clinical variables, developmental outcomes or disease states. Given a training set of structural or functional brain networks, derived
from di↵usion MRI (dMRI) or functional MRI (fMRI) scans respectively, our sparse linear regression model extracts a weighted
subnetwork. By enforcing novel backbone network and connectivity based priors along with a non-negativity constraint, the
discovered subnetworks are simultaneously anatomically plausible, well connected, positively weighted and reasonably sparse. We
apply our method to 1) predicting the cognitive and neuromotor developmental outcomes of a dataset of 168 structural connectomes
of preterm neonates, and 2) predicting the autism spectrum category of a dataset of 1013 resting-state functional connectomes from
the Autism Brain Imaging Data Exchange (ABIDE) database. We find that the addition of each of our novel priors improves
prediction accuracy and together outperform other state-of-the-art prediction techniques. We then examine the structure of the
learned subnetworks in terms of topological features and with respect to established function and physiology of di↵erent regions of
the brain.

1. Introduction

1.1. Motivation
Increasingly, di↵usion MR and functional MR images (dMRI

and fMRI, respectively) of the human brain are being repre-
sented as networks (i.e., connectomes) in order to naturally con-
vey white matter connections and correlated blood oxygen level
dependent (BOLD) activity between distinct, sometimes spa-
tially disparate regions of the brain. Connectome analysis has
been used to study a wide variety of aspects of brain structure,
function and development along with many neurological dis-
orders and disesases (Bassett & Bullmore (2009); Castellanos
et al. (2013)). Furthermore, it has been shown that machine
learning models trained on connectome data can be successful
in identifying and predicting many of these same diseases and
disorders Brown & Hamarneh (2016).

Representing an MRI of the brain as a network allows
a reduction of dimensionality from millions of (time series
or tensor-valued) voxels down to thousands of connections
(edges); a reduction informed by the anatomy of the brain as
opposed to the representation of the image. However, for the
purposes of prediction, thousands of features may still be too
many and cause over-fitting when limited numbers of scans are
available (Munsell et al. (2015)).

Furthermore, certain parts of the brain may be more infor-
mative than others with respect to a particular outcome or state.
For instance, region of interest (ROI) based studies suggest
that structural abnormalities related to poor neurodevelopmen-
tal outcomes are not spread evenly across the entire preterm
brain but instead localized to particular brain anatomy (Chau

et al. (2013)). Similarly, only particular functional subnetworks
of the brain are known to be altered by autism spectrum disor-
ders (ASD) (Assaf et al. (2010)). Thus, there is motivation to
discover which particular subnetworks (group of connections or
edges) in the brain network most a↵ect di↵erent brain functions
or are most impacted by di↵erent disorders.

In this paper, we present a method to identify anatomical sub-
networks of the human connectome that are optimally predic-
tive of targeted clinical diagnoses or developmental outcomes.
We define a subnetwork as meaning any connected or discon-
nected subset of edges in a brain network (not necessarily only
those with a known functional or anatomical purpose). Similar
to Munsell et al. (2015), our method is based on a regularized
linear regression on the output label of choice. Here, however,
we leverage two novel informed priors designed to find pre-
dictive edges that are well integrated into a connected subnet-
work and are unlikely to be dominated by image noise. Further-
more, we impose a constraint that ensures the non-negativity of
subnetwork edge weights. We apply our method to 1) predict-
ing the cognitive and neuromotor developmental outcomes of
a dataset of 168 structural connectomes of preterm infants ac-
quired shortly after birth, and 2) the autism spectrum category
of a dataset of 1013 functional connectomes from the Autism
Brain Imaging Data Exchange (ABIDE). We demonstrate that
these priors e↵ectuate the desired e↵ect on the learned subnet-
works and that, consequently, our model acheives higher accu-
racies on these challenging prediction tasks. Finally, we discuss
the structure of the learned subnetworks in the context of the
underlying neuroanatomy.
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Building on our prior work (Brown et al. (2016)), here we
introduce a new bounded connectivity prior which improves
on the original connectivity prior, validate our approach on the
larger ABIDE dataset and provide expanded discussions of re-
lated works, the implementation and runtime complexity of our
novel priors and our experimental results. Finally, we also ex-
amine the relationship between subnetworks predictive of cog-
nitive neurodevelopmental outcomes versus those predictive of
ASD.

1.2. Related Works
A variety of works, especially in past decade, have extracted

brain subnetworks as a form of feature selection for subsequent
analysis or prediction tasks (Brown & Hamarneh (2016)). Typ-
ically, these approaches either 1) perform some test of discrim-
inance or signal strength at each edge independently, 2) use a
generative model to find a basis set of subnetworks that are used
in further analysis or 3) use a predictive model to find edge
weights that predict a specific outcome.

The first approach, filtering edges independently, is not ideal
in the setting of connectome analysis since it is assumed that
there are relationships between di↵erent connections in the
brain, especially those local to one another. For this reason,
subnetwork selection approaches that operate on each edge in-
dividually are typically only used as preprocessing steps to
find candidate edges. For instance, Zhu et al. (2014) used t-
tests at each edge in a dataset of functional connectomes for
group discriminance followed by correlation-based feature se-
lection (CFS)(Hall & Smith (1999)) to find subnetworks that
were maximally predictive of Schizophrenia. In contrast, in our
method we perform feature selection in a single step which is
preferable as it allows all model parameters to be optimized si-
multaneously.

The second approach, is to find a set of basis subnetworks
that represent localized variation across connectomes in the
dataset (An et al. (2010); Calhoun et al. (2008); Ghanbari et al.
(2014)). One of the early works of this kind was by Calhoun
et al. (2008) who used independent component analysis (ICP)
to find basis subnetworks for functional brain networks. Sim-
ilarly, Ghanbari et al. (2014) used non-negative matrix factor-
ization to find a sparse set of non-negative basis subnetworks
in structural connectomes derived from dMRIs. Along with
Anderson et al. (2014), they argued that non-negative subnet-
work edge weights are more anatomically interpretable, espe-
cially in the case of structural connectomes which have only
non-negative edge feature values.

One drawback of these generative methods is that they do
not explicitly expose the factors that cause the variation in each
subnetwork. Further analysis must be performed to check if
particular subnetworks co-vary with other variables of interest.
To address this issue, Ghanbari et al. (2014) introduced age-
regressive, group-discriminative and reconstructive regulariza-
tion terms on groups of subnetworks, encouraging each group
to covary with a known factor. While this encourages subnet-
works to be related to specific outcomes, it does not guaran-
tee that the networks will be optimally predictive of those out-
comes, since the degree to which the regularization is enforced

can be weighted by any amount. Furthermore, the number of
subnetworks to extract is also a free parameter and it is not clear
how this value should be set.

The third common approach is to frame subnetwork extrac-
tion as a sparse feature selection problem over connectome
edges for the task of regression or classification. This class
of methods, to which our proposed method belongs, has the
benefit of being able to find a subnetwork of edges that are op-
timally predictive of an outcome of choice. Generally, given a
data set {(xi, yi)} for i 2 [1, ...,N], of observed input variables
X = [x1, ..., xN]T

2 RN⇥M , and a vector of outcomes (output
variables), y = [y1, ..., yN]T

2 RN⇥1, training of these models
requires optimizing an objective function of the form,

F(w|X, y) = L(w|X, y) + �L1||w||1 + �L2||w||22 + R(w|X), (1)

where L is the loss function, which fits the model parameters,
w, to the data, �L1 and �L2 govern the strength of L1 and L2
regularization and R is an aggregate of any additional (possibly
data dependent) regularization terms. The L2 term penalizes
larger parameters more strongly whereas the L1 term penalizes
parameters independent of magnitude, leading small parame-
ters to go to zero and thus encouraging sparsity. When R = 0,
the regularization on F is called Elastic Net regularization and
when also �L2 = 0, it is known as LASSO regularization (Zou
& Hastie (2005); Tibshirani (1994)). In the case that only �L2
is non-zero and L is a linear regression, F is the widely used
Ridge Regression (Hoerl & Kennard (1970)).

Many recent works on extracting subnetworks have em-
ployed some form of Eqn. 1. For instance, Casanova et al.
(2012) used a LASSO regularized random forest classifier to
find a sparse set of edges from fMRI connectomes that distin-
guished between adult male and female brains. Similarly, Mun-
sell et al. (2015) used an Elastic Net based subnetwork selection
in a 2-stage prediction framework for predicting the presence
of temporal lobe epilepsy (TLE) and the success of corrective
surgery in those with TLE. The use of the L1 regularizer in
these methods encourages sparse selection of stable features,
useful for identifying those edges most important for predic-
tion (Grosenick et al. (2013)). These methods, however, fail
to leverage the underlying structure of the brain networks that
might inform the importance or relationships between edges.

Watanabe et al. (2014) extended these approaches and ex-
ploited the relative position of edges by using a spatially regu-
larized support-vector machine (SVM) to find a structural sub-
network, predictive of schizophrenia. However, their approach
required parcellation of the brain into a regular grid, which is
not ideal since functional boundaries of the brain are ignored.
In contrast, Li et al. (2012) employed a Laplacian-based regu-
larizer which encourage subnetwork weights to smoothly vary
between neighbouring edges. Note that the combination of an
L1 and a Laplacian-based regularization term is called Graph-
Net (Grosenick et al. (2013); Ng et al. (2012)). The smooth-
ing encouraged by a Laplacian, however, may reduce sparsity
by promoting many small weights and blur discontinuities be-
tween the weights of neighbouring edges that should be pre-
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served. An ideal regularizer would encourage a well connected
subnetwork while preserving sparsity and discontinuities.

A number of recent papers have used neural network based
models for performing regression and classification (He et al.
(2018); Li et al. (2017); Kawahara et al. (2016)). While ex-
tremely powerful as learning models, the use of neural net-
works for brain network data remains challenging due to the
large number of training instances typically required to prevent
over-fitting.

Broadly, our approach extends the LASSO regression frame-
work, adding two further regularization terms, tailored to the
task of predictive subnetwork extraction human brain networks:
an anatomical prior term that discourages the subnetwork from
including anatomically implausible edges and a connectivity
prior that encourages well connected subnetworks (as opposed
to subnetworks comprising scattered, isolated edges). Addi-
tionally, we include a non-negativity constraint for more inter-
pretable weights in the context of non-negative brain network
connectivity values.

Qiao et al. recently presented an approach for estimating
functional brain networks that incorporated a prior term to en-
courage modular structure of the inferred connectome (Qiao
et al. (2016)). For the same task, Yu et al. introduced a weighted
sparsity term and a term designed to leverage group structure
(Yu et al. (2017)). While there are parallels between their pro-
posed terms and ours (e.g., in the inspiration to encode con-
nectivity informed sparsity and to impose some form of group
structure as a prior), their terms were embedded in generative
models to infer functional connectivity rather than in an end-to-
end discriminative model as is proposed here.

We describe our new objective function in detail in Section 2
and then compare its performance against other similar objec-
tive functions in Section 3.

2. Method and Materials

Here we present our novel subnetwork extraction method
(Section 2.1), details about each of the novel prior terms (Sec-
tions 2.2, 2.3 and 2.4) and the details of the two datasets used
for validation (Sections 2.5 and 2.6).

2.1. Subnetwork Extraction
In this section, we outline our proposed method for extracting

a subnetwork of connectome edges that is:

1. predictive (i.e., contains edges that accurately predict a
neurodevelopmental outcome),

2. anatomically plausible (i.e., edges correspond to func-
tional or structural connections),

3. well connected (i.e., high network integration, as de-
scribed in Brown et al. (2014)),

4. reasonably sparse and
5. non-negative.

Each connectome is represented as an undirected graph
G(V, E) comprising a set of vertices, V , and M edges, E. Note
that for both datasets used in this work, |V | = 90 and so

M = |E| = 90 ⇥ 89/2 = 4005. The structural or functional
connectivities (i.e., tract counts or correlations, respectively)
associated with the edges are represented as a single feature
vector x 2 R1⇥M and the entire training set of N subjects is
represented as X 2 RN⇥M with labels (e.g., outcome scores or
ASD categories) y 2 RN⇥1. To find a subnetwork that fits the
above criteria, we optimize an objective function over a vector
of subnetwork edge weights, w 2 RM⇥1:

w⇤ = argmin
w
||y � Xw||2 + �L1||w||1 + R(w) (2)

such that w � 0, (3)

and R(w) = �B(wT Bw) + �C(wT Cw), (4)

where ||w||1 is a sparsity regularization term, B is the network
backbone prior matrix (see Section 2.3), and C is the connectiv-
ity prior matrix (see Section 2.4). Hyper-parameters, �B, �C and
�L1 are used to weight each of the regularization terms. Given
a set of learned weights, w⇤, the label of a novel, unseen con-
nectome, xnew can be predicted as ypred = xneww⇤.

To perform this optimization we used the method (and soft-
ware) of Schmidt (2010).

2.2. Network Backbone Prior

Given a set of regions in the brain, many possible connec-
tome edges between those regions may be anatomically un-
likely (i.e., between regions not connected by white matter
fibers or regions that do not co-activate) but may have non-zero
connectivity in certain scans due to imaging noise and accu-
mulated pipeline error (i.e. due to atlas registration, parcella-
tion and for structural connectomes, tractography)(Cheng et al.
(2012)). Especially in the case of high dimensional data (i.e.,
thousands of edges) and relatively few training samples, some
edges may appear discriminative by pure chance, when in fact
they are just noise. Therefore, we propose a network backbone
prior term that encodes a penalty discouraging the subnetwork
from including edges with a low signal-to-noise ratio (SNR) in
the training data. The SNR of the j-th edge can be computed
as the ratio MEAN(X:, j)/SD(X:, j). However, in the case that the
dataset contains multiple classes, this ratio may falsely declare
an edge as noisy when the variability (c.f. denominator) in the
edge value is actually due to the edges’ values changing in a
manner that correlates with the class label of the subject. To
counteract this problem, we compute the SNR separately for
each class.

Assume that there are two classes, H and U (e.g., adverse
neurodevelopmental outcomes versus normal neurodevelop-
mental outcomes, or ASD versus controls). Let X⌦ represent
a matrix with a subset of the rows in X where ⌦ 2 {U,H}.
The SNR for each edge, j, in each class, ⌦, is computed as
SNR(X⌦, j) =

MEAN(X⌦, j)
SD(X⌦, j)

. In order not to favour the strongest
brain connections over weak yet important connections, we
threshold the SNR at each edge conservatively, to exclude only
the least anatomically likely edges. An edge, j, is only penal-
ized if both SNR(XU, j) and SNR(XH, j) are less than or equal to
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Figure 1: Sample backbone prior networks for preterm infant data (left) and ABIDE data (right). a-c) A backbone prior network (i.e., Bi, j = 0) for the preterm infant
structural connectome data rendered as curves representing the mean shape of all tracts between those connected regions (from one representative subject’s scan).
Colours represent the direction of the curve at each location. Axial, sagittal and coronal views in b) c) and d) respectively. d) The same network mapped on to a
Circos ideogram where green links represent inter-hemispherical connections and red and blue links represent intra-hemispherical connections in the left and right
hemispheres respectively. Opacity of each link represents the product of SNR values of the two classes (i.e., S NR(H)i ⇥ S NR(U)i). (e) A backbone prior network
for the ABIDE functional connectome data also mapped on to a Circos ideogram.

1 (i.e., signal is weaker than noise in both classes). In particular,
B is an M ⇥ M diagonal matrix, such that,

Bj, j =

8>><
>>:

1, if SNR(XH, j)  1 and SNR(XU, j)  1
0, otherwise.

(5)

So wT Bw only penalizes edges that do not pass the SNR
threshold among either instances in class H or in class U, and
thus are likely noisy. If a dataset does not contain multiple
classes, then all connectomes can be considered as part of a
single class and the first case in Eqn. 5 collapses to a single
inequality. Fig. 1 shows examples of B for the two datasets
used in this paper. Note that in the case of structural connec-
tomes, even edges with high SNR may not represent white mat-
ter fibers but instead high FA from other causes, especially for
infant connectomes (Brown et al. (2014)). Similarly, for func-
tional connectomes, edges with high SNR may not indicate an
excitatory (or inhibitory) interaction between two regions, but
instead regions that are co-activating due to some tertiary cause
(Fallani et al. (2014)). Nevertheless, such high-SNR edges are
not likely due to noise but instead to some real e↵ect and thus
may aid prediction.

While it may also be reasonable to use a statistical threshold
(e.g., a t-test) to select entries in B, the SNR intrinsically pro-
vides a reasonable and intreptable threshold (i.e., signal greater
than noise). Furthermore, the SNR values are not guaranteed to
be normally distributed, which a t-test requires.

Naı̈vely computing wT Bw directly would require O(M2)
space and time since B 2 RM⇥M . However, because only the
diagonal elements are non-zero, B does not need to be con-
structed directly and wT Bw =

PM
j w2

j B j, j can be computed in
O(M) space and time.

2.3. Connectivity Prior
We also want to encourage the subnetwork to be highly in-

tegrated as opposed to being a set of scattered, disconnected

Figure 2: Edge connectivity prior: By including this prior, the model objective
function encourages strong weights on pairs of edges that share a node (right)
but not pairs that do not share a node (left).

edges. This is motivated by the fact that important brain net-
works tend to be defined by inter-connectivity as opposed to
disparate connections across distinct parts of the brain. For
instance, functional brain network activity is generally con-
strained to white matter structure (Honey et al. (2009a)) and
white matter structure is organized into well connected link
communities (de Reus et al. (2014)). One example is the de-
fault mode network, which is understood to facilitate certain
functions (e.g., internal thought at rest) and is both well func-
tionally connected and well structurally connected (Fair et al.
(2009)). Furthermore, brain diseases, like amyotrophic lateral
sclerosis (ALS) have been shown to impact well-connected net-
works of the brain (Schmidt et al. (2016)).

Thus, we do not expect there to be a large number of dis-
connected sub-parts of the brain that are all highly responsible
for any particular neurodevelopmental outcome type. To embed
this prior, we incentivize pairs of edges in the target subnetwork
to share common nodes. For edge ei, j, between nodes i and j,
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and edge ep,q between nodes p and q, we construct the matrix,

C(ei, j, ep,q) =

8>><
>>:
�1, if i = p or i = q or j = p or j = q

0, otherwise,
(6)

such that the term wT Cw becomes smaller (i.e., more optimal)
for each pair of non-zero weighted subnetwork edges sharing
a node. This term places a priority on retaining edges in the
subnetwork that are connected to hub nodes (Fig. 2). This
is desirable since subnetwork hub nodes indicate regions that
join many connections (i.e., edges) predictive of outcome. In
contrast to a Laplacian based regularizer, which would encour-
age subnetwork weights to become locally similar, reducing
sparsity, our proposed term simply rewards subnetworks with
stronger hubs.

Similarly to the backbone network prior, wT Cw can be com-
puted e�ciently, without requiring matix C 2 RM⇥M to be ex-
plicitly constructed. Note that the jth row of C has a non-zero
entry for each edge that neighbours on (i.e., shares a node with)
edge j. With this fact, we can more e�ciently select the neigh-
bouring edges of a given edge. Let w(ei, j) represent the weight
of the edge between nodes i and j and similarly, let (Cw)(ei, j)
represent the ei, jth element of the product Cw. Then each ele-
ment (Cw)(ei, j) can be computed as,

(Cw)(ei, j) =

0
BBBBBB@
X

{k2V |k,i}

w(ek, j) +
X

{k2V |k, j}

w(ei,k)

1
CCCCCCA . (7)

Each sum requires |V | =
p

M steps and only O(M) memory.
Eqn. 7 must be computed M times (i.e., once for each edge),
and then wT Cw can be computed as,

wT Cw =
X

ei, j2E

w(ei, j)(Cw)(ei, j), (8)

with only an additional M steps (and again, O(M) memory).
Thus, the entire computation requires only O(M

p
M) time and

O(M) space.

2.4. Bounded Connectivity Prior

One drawback of the connectivity prior, wT Cw, as presented
is that it is not bounded and can take on arbitrarily large nega-
tive values by increasing the weights of a pair of neighbouring
edges, possibly causing degenerate solutions by dominating the
objective function. In practice, by initializing the weights rea-
sonably (i.e., all values near zero) we did not find this to occur
(due to the influence of the L1 prior which encourages edge
weights to decrease)(Brown et al. (2016)). Nevertheless, for
general applications, this property may pose a problem.

One possible solution is to try to reformulate the connectiv-
ity prior as a penalty, rather than as an insentive, by penaliz-
ing strong edge pairs that are not neighbours (i.e., do not share
a node). However, there may reasonably exist pairs of strong
edges in di↵erent parts of the subnetwork that are connected
but do not share a node and we do not want to discourage this
structure. In our preliminary tests, we found that this penalty

Group # Infants Birth GA # Scans Scan PMA
Normal 100 27.92 146 35.5

Low Motor 21 27.25 29 35.6
Low Cog. 11 27.46 13 35.4

All 115 27.85 168 35.56

Table 1: Demographics of preterm infant dataset from BC Chil-
drens Hospital. Ages are averaged and listed in weeks.

encouraged weights of edges around a single node to become
strong and all other weights to go to zero, as expected. Instead,
our solution is to maintain the original form of the matrix C and
to place an upper bound on the contribution of each weight. Let

g(wi) =
|wi|

|wi| + 1
. (9)

Note that g(0) = 0 and limwi!1 g(wi) = 1. Let g(w) =
[g(w1), · · · , g(wM)]. Then the new bounded connectivity prior
term, g(w)T Cg(w), approaches its largest negative value as all
elements of w go to infinity and the elements of g(w) approach
1. In the limit, each pair of neighbouring edges contributes
�1 to the objective function, so g(w)T Cg(w) > �2M(|V | � 2),
since there are M edges and each edge has 2(|V | � 2) neigh-
bouring edges. With this modification, the connectivity prior
is bounded, preventing degenerate solutions independently of
weight initializations. Fig. 3 shows the incentive contribution
from two neighbouring edges, across a range of weight values
for both the original and the bounded connectivity prior. We
test this bounded connectivity prior in Section 3.2.

2.5. Preterm Infant Data
The preterm neonate dataset contains 168 scans taken be-

tween 27 and 45 weeks post-menstral age (PMA) from a co-
hort of infants, born between 24 and 32 weeks gestational age
(GA). Scans were acquired at the British Columbia (BC) Chil-
dren’s Hospital on a Siemens (Berlin, Germany) 1.5T Avanto
using VB 13A software. Each scan was a 3D axial volumet-
ric di↵usion tensor image set (TR 4900 ms; TE 104 ms; FOV
160 mm; slice thickness, 3 mm; no gap) with 3 averages of 12
non-colinear gradient directions over 2 di↵usion weightings of
600 and 700 s/mm2 (b-value), with an in-plane resolution of
1.3mm. Each di↵usion weighted image set was preprocessed
using the FSL Di↵usion Toolbox (FDT) pipeline1 and tensors
were fit using RESTORE (Chang et al. (2005)). Nearly half of
the subjects were scanned twice for a total of 168 di↵usion ten-
sor images (DTI). Note that the cerebellum was omitted from
this analysis as it was not fully captured in many of the scans.

Connectomes were generated for each scan by aligning each
DTI to a neonatal template and atlas from the University of
North Carolina (UNC) School of Medicine at Chapel Hill (Shi
et al. (2011)). The UNC neonatal atlas comprises |V | = 90
anatomical regions as defined in the automated anatomical la-
beling (AAL) atlas (Tzourio-Mazoyer et al. (2002)). Full-
brain streamline tractography was then performed in order to

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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Figure 3: Plots of original and bounded connectivity priors assuming only two neighbouring edges, i and j. Connectivity term incentives are plotted across a range
of values for the weights of the two edges, wi and w j. In both cases, the prior gives increased incentive (i.e., negative contribution) when both of the neighbouring
edges have stronger weights. However, the original connectivity prior (left) provides unbounded incentive whereas the modified connectivity prior (right) is bounded
from below at -1.

count the number of tracts connecting each pair of regions.
See Brown et al. (2015) for a more detailed description of the
connectome construction process.

Cognitive and neuromotor function of each infant was as-
sessed at 18 months of age, corrected for prematurity, using the
Bayley Scales of Infant and Toddler Development, Third Edi-
tion (Bayley-III) ( Bayley (2006)). The scores are normalized
with mean of 100 and standard deviation of 15; we considered
adverse motor or cognitive outcomes as scores at or below 85
(i.e.,  1 std.). Table 1 details the demographics of each out-
come group.

2.6. ABIDE Dataset
We also validated our method on a dataset of resting-state

functional brain networks from 1112 subjects in the ABIDE
database, aggregated from 16 imaging sites and made freely
available (Craddock et al. (2013)). Data was accessed through
the Preprocessed Connectomes Project website2, which of-
fers ABIDE data, preprocessed using a number of di↵erent
pipelines. The data used in this study was preprocessed us-
ing the connectome computation system (Xu et al. (2015)) with
band-pass filtering and global signal regression. fMRIs were
registered to the MNI152 template space and the time series
were averaged within 90 regions defined in the AAL atlas (i.e.,
the same regions defined in the UNC infant atlas used for the
preterm infant dataset). Given an averaged time series for each
atlas region, Pearson’s correlation was computed between each
pair of regions to construct the functional connectome. Follow-
ing Yoldemir et al. (2015), negative correlation values were set
to zero. Ninety nine subjects were found to have missing or er-
roneous data for one or more atlas regions and were discarded
from our dataset for a total of 1013 functional connectomes.

Each participant in the ABIDE cohort was designated as a
control, or diagnosed with one of 4 autism spectrum categories:
1) Asperger’s; 2) Asperger’s or pervasive developmental dis-
order not otherwise specified (PDD-NOS); 3) PDD-NOS; 4)
autism. The distribution of number of participants in each cate-
gory is reported in Table 2. Individuals in the dataset had mean

2http://preprocessed-connectomes-project.org/

Autism Category # Scans Age
Control 539 16.6 ± 7.2

Asperger’s 87 19.5 ± 11.3
Asperger’s or PDD-NOS 4 36.2 ± 14.3

PDD-NOS 35 18.1 ± 11.9
Autism 348 16.0 ± 6.8

All 1013 16.8 ± 7.88

Table 2: Demographics of the used subset of the ABIDE dataset
organized by autism spectrum categories. Mean ages (and stan-
dard deviations) listed in years.

age 16.8 ± 7.88 years old, though with a wide range of 6.47 to
64 years old.

2.7. Validation Measures
To evaluate our proposed method and novel regularization

terms and compare our approach to others, we used three pri-
mary validation measures including Pearson’s correlation (r)
between ground truth and predicted scores and the area over the
regression error characteristic curve (AOC), which provides an
estimate of regression error (Bi & Bennett (2003)). Some pre-
vious studies have focused on predicting a binary abnormality
label instead of predicting actual scalar outcome scores (Brown
et al. (2015); Ziv et al. (2013)). Thus, to compare more directly
to these works, we also evaluate the accuracy (acc) of our mod-
els as a binary classifier. For the preterm infants, abnormality
is defined as any scores below 85 (i.e., one standard deviation
below the mean of 100) and for the ABIDE data, abnormality
is defined as any class that is not control. Similar to Brown
et al., an SVM was used to classify normal from abnormal in-
stances as it was found to perform better than thresholding the
predicted scores or autism spectrum categories. SVM learns a
max-margin threshold for the predicted output (i.e., one input
feature), optimal for classification over the training set.

3. Results

We followed a similar procedure for training models and pre-
dicting labels on both preterm neonate and ABIDE datasets.

6
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Figure 4: Accuracies of di↵erent prediction methods reported in Table 3 along
with 95% confidence intervals.

For each method (both proposed and competing), coarse grid
searches were performed in powers of two over the method’s
hyper-parameters to find the best performance (e.g., for the pro-
posed method, this search was over �L1, �C , �B 2 {20, ..., 29

}). A
finer grid search was not performed to avoid over-fitting to the
dataset.

3.1. Prediction of Neurodevelopmental Outcomes from
Preterm Connectomes

On the preterm neonate dataset, our goal was to predict both
cognitive and motor neurodevelopmental scores assessed at 18
months of age, corrected for prematurity. For each setting of
the model hyper-parameters, a leave-2-out, 1000-round cross
validation test was performed. If two scans were of the same
infant, those scans were not split between test and training sets.

The preterm neonate dataset is imbalanced, containing fewer
scans of infants with high and low outcome scores. In order
to flatten this distribution, the number of connectomes in each
training set was doubled by synthesizing instances with high
and low outcome scores, using the synthetic minority over-
sampling technique Chawla & Bowyer (2002).

Table 3 shows a performance comparison of the di↵erent
methods tested on the preterm neonate connectomes for pre-
diction of motor and cognitive outcome scores. Accuracies are
plotted with 95% confidence intervals in Figure 4. Our pro-
posed method with backbone and (bounded or original) connec-
tivity priors achieved the highest correlations, lowest AOCs and
best 2-class classification accuracies for both motor and cogni-
tive scores. For prediction of motor and cognitive outcomes,
respectively, the best parameter settings, [�L1, �C , �B], using
the original connectivity prior were [22, 21, 26] and [25, 22, 25]
and using the bounded connectivity prior were [24, 21, 25] and
[23, 22, 21]. Note that, beginning with standard linear re-
gression, the correlation values of our proposed model im-
proved as each regularization term was added. All tested
methods achieved statistically significant (p < 0.05) ground
truth/predicted correlation values since, for 1000 ⇥ 2 = 2000

total predictions, the threshold for 95% significance is r �
0.0439.

For 2-class classification in particular, the proposed method
outperformed our previous method, of training SVM on global
measures of network topology and metadata (Brown et al.
(2015)), by 7.4% on average. Note that the reported accura-
cies for this network-measure-based method are lower here than
what was previously reported because in the current study, we
include infants with Bayley-III scores of 85 in the abnormal
class, whereas in the previous work, 85 was treated as normal.
The proposed regularization terms also outperformed GraphNet
(Grosenick et al. (2013)) by 7% and 2%, Elastic-Net (Munsell
et al. (2015)) by 12% and 5%, and the feature extraction method
of Zhu et al. (2014) by 26% and 10% higher accuracy on mo-
tor and cognitive outcomes, repsectively. Other than the per-
formance of the GraphNet-regularized model predicting cog-
nitive outcome scores, we found all of these performance dif-
ferences to be statistically significant (using a two-proportion
z-test, p < 0.05).

We also compared our results to those from our previ-
ously proposed BrainNetCNN, a convolutional neural network
(CNN) model for brain network data (Kawahara et al. (2016)).
While BrainNetCNN was tested on the same preterm neonate
connectome data, only 3-fold cross-validation was used (versus
1000 rounds of leave-2-out) as BrainNetCNN requires much
longer to train than the proposed regularized linear model.
Thus, while our proposed method outperformed BrainNetCNN
in terms of correlation, some of the di↵erence in the results may
be due to the discrepancy between validation schemes.

Figs. 5 and 6 display the predictive subnetworks learned by
our best performing proposed method (averaged over all rounds
of cross validation) as Circos ideograms and rendered spatially
as a set of tracts in the brain, respectively. It is reasonable to
visualize the structure of the subnetworks averaged over di↵er-
ent rounds of cross-validation since they remained stable across
rounds: 93.6% of all edges were consistently in or out of the
subnetwork 95% of the time (on average for cognitive and mo-
tor subnetwork). Notable anatomical features of these subnet-
works are discussed in Section 4.

We examined the structure of the learned subnetworks to
analyse the e↵ect of the proposed regularization terms. By
including the L1 regularization term, the learned subnetworks
were very sparse, having an average of 71.6% and 98.2% of
edge weights set to zero for motor and cognitive scores, respec-
tively, up from only 6.7% (for either score) without the L1 term.
Adding the backbone network prior reduced the number of low
SNR edges (i.e., Bj, j = 1) by 18.6% percent for motor score
prediction and 11.2% for cognitive score prediction. Adding
the connectivity prior improved subnetwork e�ciencies (a mea-
sure of network integration described in Brown et al. (2014))
by a factor of 6.8 (from 0.0059 to 0.0403) and 2.2 (from 0.2807
to 0.6215) for subnetworks predictive of motor and cognitive
scores, respectively. In Section 4 we discuss notable features of
these subnetworks.

As was hypothesized in Section 1.2, the Laplacian term of the
GraphNet regularized model discouraged sparsity. None of the
edge weights in either the predictive motor outcome or cogni-
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Figure 5: Circos ideograms for the preterm neonate structural connectome subnetworks best predictive of motor (left) and cognitive (right) neurodevelopmental
outcomes, averaged over 1000 rounds of cross-validation. Thickness of a curve represents relative strength of that connection in the subnetwork. Colour denotes
whether a curve is inter-hemispheric (green) or intra-hemispheric on the left (red) or right (blue) side of the brain. The brightness of each region indicates the relative
connectedness. The red arrow highlights the especially strong connection between the left and right medial superior frontal gyri in the cognitive subnetwork.

Figure 6: Preterm infant structural connectome subnetworks best predictive of cognitive (top row) and motor (bottom row) Bayley-III scores. Subnetwork edges
are mapped on to the mean shape of all tracts between those connected regions (from one representative subject’s scan). The thickness of each curve represents the
relative edge weight. The red arrows locate the superior terminations of the corticospinal tract, which are relatively strong in the predictive motor subnetwork.
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Motor Cognitive
Method r AOC acc. r AOC acc.

T-test + CFS (Zhu et al. (2014)) 0.159 27.39 45.1 0.021 28.05 49.7
Elastic Net (Munsell et al. (2015)) 0.270 24.58 58.8 0.207 24.83 54.8
GraphNet (Grosenick et al. (2013)) 0.326 23.30 63.5 0.256 25.72 57.5

SVM + Network Measures (Brown et al. (2015)) - - 62.9 - - 52.6
BrainNetCNN* (Kawahara et al. (2016)) 0.310 - - 0.188 - -

Linear Regression 0.270 24.78 58.8 0.245 24.72 55.2
+ L1 regularization 0.314 18.55 64.0 0.244 24.75 55.2
+ Non-neg. Constraint 0.433 14.53 68.8 0.317 17.73 57.7
+ Backbone Prior 0.436 14.47 68.6 0.327 17.82 58.5
+ Connectivity Prior 0.442 14.25 70.8 0.343 17.38 59.5

or Bounded Connectivity 0.441 14.01 72.5 0.442 15.37 59.0

Table 3: Prediction of 18-month Bayley-III neurodevelopmental outcomes from structural connectomes of preterm neonates. Cor-
relation (r) between ground-truth and predicted scores, area over REC curve (AOC) values and classification accuracy of scores at
or below 85 (acc.) for each model, assessed via 1000 rounds of leave-2-out cross validation (* except BrainNetCNN which was
validated with 3-fold cross validation). Note that our previous method (Brown et al. (2015)) performed binary classification only.
BrainNetCNN results are from our previous paper in which the model was only validated as a regressor (i.e., no two-class accuracy)
and not measured in terms of AOC (Kawahara et al. (2016)).

Method r AOC acc.
T-test + CFS (Zhu et al. (2014)) 0.213 1.952 58.2

Elastic Net (Munsell et al. (2015)) 0.421 1.490 64.3
GraphNet (Grosenick et al. (2013)) 0.405 1.542 64.8

Linear Regression 0.328 1.640 59.8
+ L1 regularization 0.414 1.464 63.7
+ Backbone Prior 0.414 1.464 64.0
+ Connectivity Prior 0.419 1.493 66.7

or Bounded Connectivity 0.423 1.484 64.6
+ Non-neg. Constraint 0.294 1.728 63.5

Table 4: Comparison of di↵erent models for the prediction of
autism spectrum categories from functional connectomes in the
ABDIE dataset. Pearson’s correlation (r) between ground-truth
and predicted categories, area over REC curve (AOC) values
and binary classification accuracy of controls versus ASD are
reported for each model, assessed via 10-fold cross validation.

tive outcome subnetworks learned by the GraphNet regularized
model were set to zero. In contrast, an average of 28% of the
edge weights in the subnetworks learned with the Elastic Net
regularizer were set to zero.

3.2. Prediction of autism spectrum category from ABIDE con-
nectomes

For the ABIDE dataset, we posed the task of predicting an
autism category from a functional connectome as a regres-
sion problem, attempting to predict a continuous, approximate
category value from 0 (control) to 4 (full autism). Because
the larger dataset (1013 scans versus 168 for preterm neonate
dataset) allows for more training data per round, we used a 10-
fold cross validation scheme.

Table 4 shows that the best correlation between predicted
and ground-truth autism spectrum categories improves as the
L1, backbone network and connectivity regularization terms
are added to the training objective function. Replacing the
connectivity prior term with the bounded connectivity prior

term improves this measure even further, providing the best
predicted/ground-truth correlation value of r = 0.423. How-
ever, in contrast to the results on the preterm neonate structural
connectomes, we found that the non-negativity constraint gen-
erally reduced predictive performance on this dataset (and thus,
in Table 4, we report results with the non-negativity constraint
enforced last).

Binary prediction of controls versus ASD also exhibited
progressively increasing accuracy with the additions of the
L1, backbone network and connectivity regularization terms,
achieving a top accuracy of 66.7% when all the priors were
included. The bounded connectivity term, however, does not
outperform the original connectivity term in terms of this mea-
sure. Compared to the results on the infant data, Elastic Net and
GraphNet regularized models performed relatively well, nearly
matching our top performing proposed models with respect to
correlation and 2-class accuracy. In contrast, using a t-test and
then CFS to define the subnetworks performs relatively poorly,
as it did for the infant data.

Similarly to the subnetwork extracted by our method for the
preterm neonate data, functional connectome subnetworks pre-
dictive of autism categories, learned by our best performing
proposed method (i.e., with the bounded connectivity term),
were stable across folds: 80.4% of edges were consistently zero
or non-zero in all 10 folds. These subnetworks were also sparse:
75.6% of edges in the mean subnetwork, averaged across the
10 rounds of cross valdiation, were set to zero. Further, only
10% of the 2474 edges penalized by the backbone network prior
were non-zero in this subnetwork. This subnetwork is visual-
ized as a Circos ideogram in Fig. 7 and spatially as edges con-
necting regions in the brain in Fig. 8. Note that we could not
render Fig. 8 as fiber bundle curves (as was done done in Fig. 6)
since the ABIDE dataset did not contain the dMRI data to re-
construct the white matter fibers.
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Figure 7: Circos ideogram representing the subnetwork of weights learned by
our top performing model on the functional connectome ABIDE data, averaged
across 10 folds. Red curves represent positive weights and blue curves represent
negative weights. The thickness of a curve represents the relative magnitude of
the weight on that connection.

4. Discussion

The experiments on both datasets confirmed our hypothesis
that including prior knowledge about the organization of the
brain into our learning model, helps to regularize that model
and enables it to predict with higher accuracy. Testing on
both the preterm neonate structural connectome and the func-
tional ABIDE connectomes, it was found that the structure of
the learned subnetworks was stable across rounds of cross-
validation. The stability of the subnetworks suggests that the
models were not over-fitting to the training data or noise but
instead were selecting groups of connections that e↵ect or are
a↵ected by ASD or neurodevelopmental outcomes.

In Fig. 1, the backbone networks of the two datasets were
visualized, exposing those connections that are most consistent
across subjects in the two cohorts. The edges of the preterm
neonate backbone network prior (Fig. 1a-d) are distributed sim-
ilarly to what we would expect in a healthy young infant: The
majority of the connections are intra-hemispherical, cortico-
cortico connections with only a few strong inter-hemispherical
connections and a reasonable degree of bilateral symmetry
(Brown et al. (2014)). Fig. 1e shows that the backbone network
of the functional connectomes in the ABIDE dataset are also
bilaterally symmetric and include many strong cortico-cortico
(functional) connections. In contrast to the preterm infatnt
structural connectome, the backbone network for the ABIDE
data also includes many strong connections between left and
right hemispheric region pairs, which we expect to find in nor-
mative functional connectomes (Just et al. (2007); Meindl et al.
(2010)).

In terms of the preterm neonate data specifically, the results

in Table 3 suggest that prediction of cognitive outcomes is more
di�cult than prediction of motor outcomes. This agrees with
the findings in our previous work (Kawahara et al. (2016)). As
was mentioned in that paper, the greater challenge in predicting
cognitive outcome scores may be due to the fact that cogni-
tive development is known to be more a↵ected by the child’s
environment than motor development (Grunau et al. (2009)).
A longer term follow-up study of this cohort is currently un-
derway and may improve our understanding of these complex
factors.

As expected, the predictive motor subnetwork clearly in-
cludes the corticospinal tract and pyramidal tracts (red arrow
in Fig. 6. These connections were relatively more heavily
weighted in the motor subnetwork versus the cognitive subnet-
work. The corticospinal tract and the pyramidal tracts in par-
ticular are known to be important for motor function (Asanuma
(1981)).

The predictive cognitive subnetwork was more sparse and
had generally lower weights than the motor subnetwork (as
visualized by less dense, more transparent streamlines), due
to the larger L1 weight used for best prediction of the cog-
nitive scores. However, the left and right medial superior
frontal gyri (SFGmed) and the connection between these two
regions that had stronger weights (factor of 2.1) in the cogni-
tive network than in the motor network, (red arrow in Fig. 6).
These regions contain the presupplementary motor area which
is thought to be responsible for a range of cognitive functions
(Zhang et al. (2012)). Thus, the learned cognitive subnetwork,
like the learned motor subnetwork, heavily weights connections
and regions that are associated with brain functions important
for those outcomes.

When validating the proposed method on the ABIDE func-
tional connectome dataset, it was found that the non-negativity
constraint was detrimental to prediction results (Table 4). In
contrast, enforcing non-negativity of subnetwork weights im-
proved prediction accuracy on the preterm neonate structural
connectome dataset. This is likely due to both the di↵erences in
the modality from which the connectomes were constructed and
in what is being predicted. It has been reported in the literature
that functional connectivity in subjects with ASD can be both
decreased and increased between di↵erent regions of the brain,
as compared to normal controls (Mizuno et al. (2006); Noo-
nan et al. (2009); Salmi et al. (2013)). Thus, to predict ASD,
the subnetwork model may learn to weight certain connections
positively and others negatively (Figure 8). Conversely, causes
of adverse neurodevelopmental outcomes that a↵ect structural
white matter connectivity (e.g., injury and infection, Back &
Miller (2014)) are predominantly associated with reduced con-
nectivity (Chau et al. (2013)), and so a reasonable predictive
model can be composed of only non-negative edge weights.

In Figs. 7 and 8 the negative subnetwork weights are visu-
alized as blue edges and are weights that reduce the predicted
autism spectrum category (i.e., down towards 0 for controls)
for stronger functional connectivity between two regions in a
given subject. Thus, these are edges that we expect to typically
have reduced functional connectivity in ASD subjects. Two of
the strongest negatively weighted edges were found to be be-

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 8: Functional subnetworks best predictive of autism spectrum categories, averaged across 10 folds and rendered spatially on the brain from sagittal (left),
coronal (middle) and axial (right) views. Positive and negative subnetwork edge weights are represented by red and blue edges respectively. Edge thickness
represents relative weight magnitude. Node size represents relative weighted nodal degree and the names of brain regions associated with each node are listed for
those nodes with the highest degrees.

tween the left and right angular gyri (ANG-L and ANG-R) and
from the left anterior cingulate gyrus (ACG-L) to the right mid-
dle temporal pole (TPO-mid). This aligns with the findings of
Salmi et al. who found that ASD subjects had reduced func-
tional connectivity from the left angular gyrus and from the left
anterior cingulate cortex (among other regions) (Salmi et al.
(2013)).

Previous studies have investigated prediction of ASD using
the ABIDE dataset. For instance, Abraham et al. examined bi-
nary classification of ASD versus controls using a variety of dif-
ferent processing pipelines and learning models (Abraham et al.
(2016)). Using a 10-fold cross validation strategy, they found
that their top prediction pipelines achieved accuracies of 65.7%
to 67.9%. These results are comparable to our best acheived
accuracy of 66.7%. They also reported that choices of data sub-
set (e.g., only data from particular sites), parcellation technique
and functional covariance measure had significant impacts on
predicition accuracy. While the primary purpose of our experi-
ments were to show the relative improvments of including our
additional priors, it seems plausible that our best prediction ac-
curacy on this dataset could likely be improved by fine tuning
the preprocessing procedure. Also note that Abraham et al. also
had more rigorous quality control criteria and inspected each
scan for visual quality, ultimately selecting only 871 subjects
of the original 1112 (versus 1013 used by our study). This sug-
gests that the dataset used by our study represents a broader
range of image qualities, which likely makes accurate predic-
tion more di�cult.

While the proposed method performed better than compet-
ing methods on both prediction tasks, neither task is yet near to
being satisfactorily solved (e.g., 95-99% accuracy). One limita-
tion of our method may be that the linearity of the model cannot
capture the complexities of the relationships between connec-
tome data and target labels. Thus, a key future area of research
is to investigate whether our proposed regularization terms can
be applied to more complex, non-linear machine learning mod-
els. While BrainNetCNN, the only deep model we tested (Ta-

ble 3), performed relatively poorly, we expect that these results
could be greatly improved by regularizing the model with the
proposed priors and by reducing the number of learnable pa-
rameters per layer, especially on larger datasets like the ABIDE
dataset.

Another limitation of our learning model is that it does not
leverage any metadata features that may be available at the
time of prediction (e.g., subject age, sex, and other clinical
variables). Investigation into how to best expand the proposed
model to incorporate non edge-wise features may enable further
improvements to its predictive performance.

Finally, there is an established link between adverse cogni-
tive outcomes in infants born very preterm and ASD (Johnson
et al. (2010)). Because the same AAL atlas was used for con-
structing connectomes from both datasets, there is an oportu-
nity to explore the relationship between structural subnetworks
predictive of cognitive outcomes and functional subnetworks
predictive of ASD. In particular, we examined the intersection
set of region-pairs that were learned by our model to be both i)
positively correlated with normal cognitive neurodevelopmen-
tal outcomes in structural connectomes (Fig. 5 right) and ii)
positively correlated with control (instead of with ASD) labels
in functional connectomes (blue connections in Fig. 7, which
have negative edge weights). Note that we do not examine edge
weights that are positively correlated with ASD labels (i.e., pos-
itive edge weights), since there are no equivalent edge weights
(predictive of abnormal cognitive outcomes) in the cognitive
outcome subnetwork due to the non-negativity constraint en-
forced in that optimization. The edge weights of this intersec-
tion set subnetwork are defined by taking the product of the
normalized edge weight magnitudes of i) the subnetwork most
predictive of cognitive outcomes on the preterm neonate dataset
and ii) the negatively weighted edges of the subnetwork most
predictive of ASD on the ABIDE dataset. In both cases, these
subnetworks were averaged over all rounds of their respective
cross-validation schemes.

Fig. 9 shows that 173 shared, non-zero edges were discov-
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Figure 9: Common connections found in both the structural subnetwork best
predictive of cognitive neurodevelopmental outcomes and the negative weights
of the functional subnetwork best predictive of ASD. The thickness of a curve
represents the product of the normalized weight magnitudes of that edge be-
tween the two subnetworks.

ered in the intersection set. The two edges with the highest
multiplied weight include a connections between the right in-
sula (INS-R) and right supramarginal gyrus (SMG-R) as well as
a connection between the left and right parahippocampal gyri
(PHG-L and PHG-R). Notably, PHG-L, PHG-R and SMG-R
have all been found to have significantly altered functional con-
nectivity in ASD subjects performing language comprehension
tasks and the PHG-R, in particular, has been found to be associ-
ated with understanding sarcasm and social context (Just et al.
(2004); Rankin et al. (2009)).

These results, however, must be interpreted carefully. While
functional connectivity is well correlated with structural con-
nectivity, functional connectivity fluctuates in time and can be
observed between regions with no structural connection (Honey
et al. (2009b)). Additionally, while the atlas used for both
datasets comprises the same AAL defined brain regions, the
preterm neonate brains are imaged at an early stage in devel-
opment when the structural connectivity is changing rapidly
(Brown et al. (2014)). Thus, it is possible that certain con-
nections observed in the neonate brains will weaken or dissap-
pear as they develop towards the age group represented in the
ABDIE cohort. More exploration of the relationships between
preterm birth and ASD, structural and functional connectomes,
and neonate and adult brain structures is required to address
these issues.

5. Conclusions

We proposed a framework for learning subnetworks of struc-
tural or functional connectomes that are predictive of targeted
clinical variables. We found that by introducing our novel
network backbone prior, the learned subnetworks were robust
to noise and included few edges with low SNR weights. By
including either of the two proposed connectivity priors, the
learned subnetworks were highly integrated, a property we ex-
pect for subnetworks pertinent to specific outcomes or disor-
ders. Compared to other methods, our approach achieved the
best accuracies for identifying patients with ASD, and pre-
dicting cognitive and motor neurodevelopmental outcomes of
preterm neonates. Edges and regions learned to be most im-
portant for predicting labels in both datasets fit well with estab-
lished neuroscience on neurodevelopment and ASD. We also
discovered a set of connections that predicted both ASD in
functional connectomes and adverse cognitive neurodevelop-
mental outcomes in structural connectomes. Ongoing follow-
up of the preterm cohort will allow us to determine the longer-
term significance of these findings. In future work, we plan
to apply the proposed regularization terms to deep, nonlinear
learning models and to leverage a wider variety of features in
order to predict neurological disorders and neurodevelopmental
outcomes with even higher accuracy.
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