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1 Introduction

Izadi and Hamarneh’s method for segmenting gastrointestinal polyps from
colonscopy images uses an adversarial and enhanced convolutional neural net-
works (AECNN). As the number of training images is small, the core of
AECNN relies on fine-tuning an existing deep CNN model (ResNet152). AECNN’s
enhanced convolutions incorporate both dense upsampling, which learns to up-
sample the low-resolution feature maps into pixel-level segmentation masks,
as well as hybrid dilation, which improves the dilated convolution by using
different dilation rates for different layers. AECNN further boosts the perfor-
mance of its segmenter by incorporating a discriminator competing with the
segmenter, where both are trained through a generative adversarial network
formulation.

2 Methodology

The architecture of our method is shown in Figure 1. Given the limited
number of training images, we fine-tune a fully convolutional version of the
ResNet152 [2] model, pre-trained on ImageNet [6], for segmenting the gastroin-
testinal polyps in colonoscopy images. To tackle the problem of low-resolution
feature maps caused by max-pooling operations, we utilize the method of Wang
et al. [7] to incorporate a dense upsampling convolution (DUC) module, as the
final component of the network, which learns to upsample the low-resolution
feature maps into pixel-level segmentation maps. Compared to non-learnable
upsampling techniques, e.g., bilinear interpolation, the DUC technique leads
to finer boundaries. We also exploit dilated convolutional operations [8], which
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Fig. 1 The schematic of the proposed AECNN model for polyp segmentation. The error
in the Discriminator is backpropagated through the Segmenter to make it produce more
realistic segmentation masks.

enlarge the valid receptive field of our model, in order to improve the segmen-
tation performance especially for large polyps. Wang et al. [7] also highlighted
the “gridding effect” problem with dilated convolutions and proposed a simple
yet effective solution to tackle it. Instead of using the same dilation rate after
the downsampling stage, they suggested different dilation rates for each sub-
sequent layer in a sawtooth wave-like fashion. Particularly, a number of layers
are grouped together to form a “rising edge” of the wave that has an increasing
dilation rate, and the next group repeats the same pattern. We also found, in
our experiments, the approach of Wang et al. effective for segmenting objects
with large.

Inspired by the works of Pan et al. [5] and Luc et al. [3], we further boost the
performance of our model by adding a discriminator network to distinguish
ground truth from generated prediction maps. Specifically, we feed the loss
value of the discriminator network back to the segmenter. When the segmenter-
discriminator are trained alternately, the adversarial scenario causes the two
networks to compete against each other: The segmenter learns to produce pre-
diction maps that are difficult for the discriminator to distinguish from the
ground truth mask, while the discriminator attempts to correctly distinguish
the true (i.e. ground truth) from the synthesized label masks. Our qualitative
experiments show that this adversarial competition leads the segmenter model
to uniformly highlight the polyp regions and ignore irrelevant features in the
final prediction map. As data augmentation, we inflate the training set by
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applying rotation, horizontal and vertical flipping. All images are also resized
to 240× 320. We post-process the binarized prediction results with one itera-
tion of morphological closing and opening operations with a 5× 5 structuring
element to remove any remaining isolated pixels or small holes.

3 Generative Adversarial Networks

Generative adversarial networks [1], GANs for short, have been recently intro-
duced as way to train generative models in the scope of deep learning. Typi-
cally, GAN models consists of two sub-models, a generator and a discriminator
which are trained jointly in an adversarial atmosphere. The generator network
G receives a noise sample z from a random distribution pz and produces a
realistic sample x via capturing the data distribution pdata while the discrimi-
nator D takes the generated sample x as the input and determines whether it
came from the true distribution ptrue or the one learned by G. Once trained
adversarially, the generator G attempts to produce realistic data samples that
fools the discriminator. On the other hand, the discriminator’s ultimate goal
is to perfectly distinguish between the synthetic and real samples. Both G and
D are trained simultaneously in a two-player training framework using the
following objective function:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz
(z)[log(1−D(G(z)))] (1)

Conditional generative adversarial network [4], CGAN for short, is a variant
of GANs where generator and/or discriminator are conditioned on some extra
information. The conditioning is typically performed by exposing the informa-
tion as inputs to the networks. Specific to binary image segmentation, extra
information is the ground truth segmentation binary mask y and appears as
the input to the discriminative model during the training. The objective func-
tion for CGAN is as follows:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x|y)] +Ez∼pz
(z)[log(1−D(G(z)))] (2)

It is noteworthy that for image segmentation, the input of the generator z is
the image to be segmented.

4 References

The following are the most important references listed in descending order of
importance: [7], [5], then [3].
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