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Abstract. Medical image segmentation annotations suffer from inter/
intra-observer variations even among experts due to intrinsic differences
in human annotators and ambiguous boundaries. Leveraging a collection
of annotators’ opinions for an image is an interesting way of estimating
a gold standard. Although training deep models in a supervised setting
with a single annotation per image has been extensively studied, gener-
alizing their training to work with data sets containing multiple annota-
tions per image remains a fairly unexplored problem. In this paper, we
propose an approach to handle annotators’ disagreements when training
a deep model. To this end, we propose an ensemble of Bayesian fully
convolutional networks (FCNs) for the segmentation task by considering
two major factors in the aggregation of multiple ground truth annota-
tions: (1) handling contradictory annotations in the training data origi-
nating from inter-annotator disagreements and (2) improving confidence
calibration through the fusion of base models predictions. We demon-
strate the superior performance of our approach on the ISIC Archive
and explore the generalization performance of our proposed method by
cross-data set evaluation on the PH2 and DermoFit data sets.

1 Introduction

The semantic segmentation task in computer vision involves partitioning an
image into a set of multiple non-overlapping and semantically interpretable re-
gions [8], and this entails assigning pixel-wise class labels to the entire image,
making it a dense prediction task. Segmentation is a crucial task in the visual
computing pipeline and is often used to improve several downstream tasks such
as classification and depth estimation [37]. Following the seminal work of Long et
al. [22], deep learning-based semantic image segmentation models have gained
prominence because of their superior performance over traditional approaches.
The majority of deep learning-based semantic segmentation models, however,
rely on supervised learning of dense pixel annotations for the labels in images.
State of the art supervised learning algorithms rely upon training using large
volumes of data to yield acceptable results, and previous work has shown the
importance of sufficient annotated data for visual tasks [26,10,32]. Particularly,
Sun et al. [32] showed that the performance of segmentation models in terms of
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overlap based measures exhibits a logarithmic relationship with the amount of
training data used for representation learning for semantic segmentation.

Collecting ground truth annotations for semantic segmentation is consider-
ably more expensive than doing so for other visual tasks such as classification
and object detection because of the dense annotations involved. While this can
partly be ameliorated by crowd-sourcing the annotation process to non-experts,
the presence of multiple object classes in a scene, coupled with factors such as
illumination, shading, and occlusion, makes delineating the exact object bound-
aries an ambiguous and tedious task, leading to inter-annotator disagreements.
The presence of multiple annotations (Figure 1) further leads to the challenge
of deciding upon an ideal ground truth against which the model’s performance
is assessed. Moreover, there exists a tradeoff between the precision and the gen-
eralizability of an ‘ideal’ segmentation ground truth, since an overtly precise
delineation may not be reflective of the typical uncertainty encountered in prac-
tice when localizing the boundary [36]. A similar trade-off exists between the
quality and the efficiency of these annotations: high quality dense annotations,
although useful, take up more time than relatively less informative approxi-
mate annotations (e.g., bounding boxes or simplified polygons). These problems
are exacerbated further for medical images since medical imaging data sets with
accurate pixel-level annotations are much smaller than their natural image coun-
terparts [33], which can be attributed to the high cost associated with expert
annotations, the difficulty in quantifying a true reference standard, the labo-
rious nature of making dense annotations which is even more difficult for 3D
medical image volumes, and patient data privacy concerns. To add to this, the
manual annotation of anatomical regions of interest can be very subjective and
presents considerable inter- and intra-annotator disagreements even amongst
experts across multiple medical imaging modalities [35,5,34,27,7], making it dif-
ficult to converge on a single gold standard annotation for model training and
evaluation.

One of the seminal works on comparing a segmentation model’s performance
by comparing against a collection of (human-annotated) segmentations is that
proposed by Warfield et al. [36], where they proposed an expectation maxi-
mization algorithm for the simultaneous truth and performance level estima-
tion (STAPLE). Given a collection of segmentation masks, STAPLE generates a
probabilistic estimate of the true segmentation mask as well as the segmentation
performance of each of the segmentations in the collection. This was followed
by several other extensions of STAPLE which addressed its limitations such as
susceptibilities to large variations in inter-annotator uncertainty and annotator
performance [3,12,19,21].

More recently, Mirikharaji et al. [25] showed that leveraging different lev-
els of annotation reliability using spatially-adaptive reweighting while learning
deep learning based segmentation model parameters helps improve performance,
and demonstrated superior segmentation accuracy using a large number of low
quality, ‘noisy’ annotations along with only a small fraction of precise annota-
tions. Hu et al. [9] used a modified probabilistic U-Net [15] model to generate
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ISIC_0013073 (2 annotations) ISIC_0000056 (3 annotations) ISIC_0009872 (4 annotations) ISIC_0011227 (4 annotations)

ISIC_0000174 (4 annotations) ISIC_0000549 (4 annotations) ISIC_0010183 (5 annotations) ISIC_0000401 (5 annotations)

Fig. 1: Sample skin lesion images from the ISIC Archive which contain multiple
lesion boundary annotations (denoted by different colors).

quantifiable aleatoric and epistemic uncertainty estimates for segmentation us-
ing a supervised learning framework which modeled inter-annotator variability
as aleatoric uncertainty ground truth. Ribeiro et al. [27] proposed an approach
to improve inter-annotator agreement by conditioning the segmentation masks
using morphological image processing operations (opening and closing), con-
vex hulls and bounding boxes to remove details specific to any single particular
annotator. They argue that the conditioning could be deemed as denoising op-
erations, removing the annotator specific details from the segmentation masks.
The same authors then proposed to train their segmentation model on a subset
of the images, derived by filtering out all samples whose mean pairwise Cohen’s
kappa score was less than 0.5, thus using only those segmentations which largely
agree between annotators [28].

Despite the obvious benefits of improving segmentation performance, it is
also crucial to analyze the predictive uncertainty of deep networks in medical
image segmentation. In machine learning, the uncertainty has been classified into
aleatoric and epistemic types. The aleatoric, which reflects the inherent noise in
the data, has been estimated using a second auxiliary output in the network [14].
Bayesian neural networks (BNNs) have adopted Monte Carlo (MC) dropout [6]
to reflect the epistemic uncertainty associated with the network parameters.
Thanks to their simplicity, MC dropout uncertainty estimation has been studied
in the context of general semantic segmentation [13] as well as medical im-
age segmentation [16,31]. However, the uncertainty estimates obtained using
MC dropout tend to be miscalibrated, i.e., they do not correspond well with
the model error [20]. Recently, there have been efforts to improve the uncer-
tainty calibration using ensemble learning. Particularly, Lakshminarayanan et
al. demonstrated the advantage of ensemble learning, i.e., averaging a collection
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of models trained from different initializations, in yielding more accurate predic-
tive uncertainty estimates for classification and regression tasks [17]. Mehrtash et
al. studied the performance of ensemble learning for predictive uncertainty in
medical image segmentation [23]. Particular to skin lesion segmentation, Jungo et
al. thoroughly studied the reliability of existing uncertainty estimation methods
and showed their benefits and limitations [11].

Deep neural networks have been shown to potentially overfit to noisy la-
bels [38] and our motivation for this work is to avoid single annotator bias [18].
Therefore, we seek training deep segmentation models to learn from multiple
annotations as available instead of discarding some annotations. Rather than
selecting a subset of images to learn from [28], we instead propose a generalized
approach of annotation weighting by leveraging different groups of consistent
annotations in an ensemble method towards efficiently learning from all avail-
able annotations. We also utilize uncertainty estimates [14,17] in an ensemble
learning framework to improve predictive uncertainty and calibration confidence
in the final prediction.
Contribution claims: We consider two major factors in the aggregation of
multiple ground truth annotations: (1) handling contradictory annotations in the
training data originating from inter-annotator disagreements, and (2) improving
the model’s confidence calibration through deep ensembling. Our hypothesis is
that given a new image, leveraging different experts’ skills independently and
fusing them in an ensemble model, while considering their estimated uncertainty,
makes for a more reliable final prediction.

2 Method

2.1 Problem Statement and Method Overview

Let X = {Xn}N1 and Y = {Yn}N1 be a set of images and segmentation ground
truth masks, respectively. In a supervised learning scheme, a network is trained
to learn a function fθ : Xn 7→ Ŷn parametrized by θ, which maps an image
Xn to the corresponding estimated segmentation mask Ŷn. Approximating the
mapping function fθ using a single annotation per image has been well studied
in the literature. However, training supervised models in the presence of multiple
annotations remains largely unexplored.

Let us assume that K annotators have independently annotated a random
subsets of the images resulting in a set of segmentation ground truths Y =
{{Ymn}Mn

m=1}Nn=1, where Mn denotes the number of available annotations for
Xn. It is obvious that inconsistent annotations for a given image could mislead
the network and substantially deteriorate the performance of the model. Let
M indicate the maximum number of annotations per image retrieved from the
entire data set. Instead of aggregating multiple annotations to estimate a sin-
gle ground truth before the training phase, we propose to (1) learn a set of M
mapping functions F = {fθi} through ensembling M base deep models trained
over the union of available annotations and (2) minimize the confusion induced
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Fig. 2: An overview of our proposed framework for skin lesion segmentation
with multiple annotations. (top left) Multiple users annotating different, po-
tentially overlapping, subsets of the original data. (top right) Each set of non-
contradictory labels is considered as ground truth and, along with the remaining
annotations that are deemed potentially noisy, are used to train a different base
model. (bottom) At inference, each base model’s prediction, along with its esti-
mated aleatoric uncertainty maps are fused to obtain the final prediction.

from observing multiple annotations through a spatial re-weighting scheme dur-
ing training. (3) Lastly, we demonstrate that our proposed ensemble learning
framework not only improves the segmentation performance but also provides a
well-calibrated predictive uncertainty.

2.2 Detailed Method

Figure 2 illustrates the overview of our ensemble learning framework for
skin lesion segmentation with multiple annotations. A näıve solution to handle
contradictory annotations, arising from having multiple annotations per image
during the training, is to partition the entire data set into M disjoint subsets,
denoted by {Ci}Mmax

i=1 , such that each Ci includes at most one unique annotation
for every image, where Mmax is the maximum number of annotations per image
across the entire data set. These disjoint subsets can then be used to train indi-
vidual base models independently. Even though this solution prevents exposing
each ensemble base model to multiple annotations per image and encourages
a diverse set of model performance, however, each disjoint set includes a small
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number of training samples which can adversely affect the generalization capa-
bility of individual base models. To address this issue, we combine all images
along with all available annotations into a union data set, denoted as U , and
use it to train base networks. Furthermore, we partition images with multiple
annotations into non-contradictory subsets {Ci} where each image is paired with
a single segmentation mask. Following [25], we utilize these non-contradictory
subsets to assess the quality of annotations in U . Specifically, spatially-adaptive
weight maps associated with varying annotations in U are learned to adjust the
contribution of each annotated pixel in the optimization of deep network based
on its consistency with clean annotations in {Ci}.

In more details, for each base model i, i ∈ 1, ...,Mmax, we define a cross-
entropy loss, denoted as L = {LCice} over each non-contradictory set Ci in {Ci}.
We then learn a set of spatial weight maps Wi = {{W i

mn}
Mn
m=1}Nn=1 for all anno-

tations U based on the gradients of the cross-entropy losses with respect to the
weights maps, i.e. ∇W iLCice . This way, Wi is optimized to cancel out the contri-
butions of annotations inconsistent with Ci while optimizing the parameters for
ith base network, i.e. θi. Mathematically:

Wi∗ = arg min
Wi, Wi>0

∑
n∈Ci

Lnce(Ŷ
i
n, Yn; θi). (1)

Note that every image in Ci has only one ground truth.Wi are encoded in L and
they are optimized along with the network parameters θi for each individual base
model. By integrating the information in the optimized Wi, we can determine
the degree by which a pixel-level annotation from any of annotators is considered
noisy for model i, depending on how similar this annotation is to the annotations
in Ci. Therefore:

L(Ŷ in, Ymn; θi,W i
mn) = −

∑
q∈Xn

W i
mnqYmnq log Ŷ inq, (2)

Ŷ inq = softmax(U inq). (3)

Once the individual base models are trained, the final prediction of the entire
ensemble for the Xn is obtained by using a weighted fusion [29], that is:

Ŷn =

Mmax∑
i=1

αinŶ
i
n, (4)

where αin is the combination coefficient for prediction by model i. The simplest
way to determine αin is to consider equally weighted averaging and set them
to 1/M . Another popular technique is to set αin coefficients according to the
confidence of the model [30]. In this work, we explore both aggregation techniques
in our experimental evaluations.
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For the uncertainty-driven aggregation of base models, we leverage aleatoric
uncertainty, which models irreducible observation noise, to estimate how con-
fident a base model is about its prediction, and utilize the confidence when
combining the base models’ prediction maps. Following Kendall et al. [14], we
approximate the aleatoric uncertainty for each pixel q ∈ Xn by placing a Gaus-
sian distribution over the logit space before applying a sigmoid function in the
last layer and reformulate the network output as:

U inq ∼ N
(
f inq, (σ

i
nq)

2
)
, (5)

where fi and σi are the network i outputs.
We use the aleatoric uncertainty in two forms: (1) considering the pixel-wise

uncertainty values as spatially-adaptive coefficients and (2) averaging the pixel-
wise uncertainty into a single scalar image-level coefficient.

3 Experiments

3.1 Data

For training, we used the International Skin Imaging Collaboration (ISIC)
Archive data [1] which contains the largest dermoscopic public data set captured
by diverse devices in international clinical centers. All images are 8-bit RGB color
dermoscopy images. Similar to [28], we utilized 2,223 images with more than one
segmentation ground truth mask (2,094 with two, 100 with three and 36 with
four and 3 with five) to train our model. We split all 2,223 images to 80% for
training and 20% for validation. To create our non-contradictory annotation sets,
all training data are randomly partitioned into five groups of overlapping images
but unique ground truth annotations. ISIC ground truth masks were generated
using three different pipelines with different levels of border irregularities all
involving a dermatologist with expertise in dermoscopy: (1) an automatic algo-
rithm followed by an expert review; (2) a semi-automatic algorithm controlled by
an expert; and (3) manually drawing a polygon by an expert. A large variation
of disagreement based on Cohen’s Kappa scores with the mean 0.67 is reported
in [27]. Figure 1 shows some examples of skin lesion images with multiple lesion
boundary annotations from this data set.

To thoroughly assess the segmentation performance of our proposed ensemble
framework, we leveraged three publicly available data sets in our evaluations. All
the images in the used data sets are cropped into 96× 96 pixels and normalized
using the per-channel mean and standard deviation across the entire data set.
A brief description of these test data sets are provided as follows:

ISIC: Ribeiro et al. randomly selected a test set of 2,000 images with just one
segmentation ground truth from ISIC Archive [28]. We used the exact set in our
experimental evaluations for fair comparisons.
PH2: The (Pedro Hispano Hospital) data set contains 200 8-bit RGB color
dermoscopic images [24]. All images are acquired under the same condition using
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Table 1: Comparing the segmentation performance based on Jaccard index on
three data sets.

Method ISIC Archive [1] PH2 [24] DermoFit [2]

A baseline 68.00% 81.30% 70.30%

B model 0 69.22% 82.82% 72.57%

C model 1 69.75% 82.40% 71.05%

D model 2 70.33% 83.46% 72.80%

E model 3 70.37% 83.31% 73.04%

F model 4 69.73% 82.29% 70.87%

G equally weighted fusion (ours) 72.11% 84.96 % 74.22%

H pixel-level confidence (ours) 71.46% 84.52% 73.91%

I image-level confidence (ours) 72.08% 85.20% 74.33%

J less is more [28] 69.20% 81.25% 72.55%

Tuebinger Mole Analyzer system at 20× magnification.
DermoFit: This data set has 1300 8-bit RGB color clinical images [2]. The
images are captured with a Canon EOS 350D SLR camera at the same distance
from the lesion under controlled lighting conditions.

3.2 Base Models and Implementation Details

Our architecture is an encoder-decoder architecture with residual and skip
connections porting the information in the encoder modules to the corresponding
decoder modules [4]. Since the images in our training data set are paired with
at most five annotations (Mmax = 5), our ensemble framework consists of five
base deep neural networks. Each network outputs two spatial maps in the last
layer: the dense segmentation prediction and the predicted aleatoric uncertainty
map. In training the aleatoric loss, 10 Monte Carlo samples from logits are
taken. Stochastic gradient descent with an initial learning rate of 10−4 is used
to optimize the network parameters. The batch size for optimizing the spatial
weight maps and network parameters is 64 and 2. The momentum and weight
decay are set to 0.99 and 5 ×105, respectively.

3.3 Results

Table 1 compares the segmentation performance of our baseline models as
well as the individual base models across different prediction fusion schemes using
the Jaccard index. In addition, we compare the performance of our proposed
method against the work by Ribeiro et al. [28] where a subset of samples with
small annotator disagreements are also taken into account during the training.
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Table 2: Comparing predictive uncertainty based on negative log-likelihood
(NLL) and Brier score (Br) on three data sets. Lower NLL and Br values corre-
spond to a better predictive uncertainty estimate.

Data set ISIC Archive PH2 DermoFit

Method NLL Br NLL Br NLL Br

A MC dropout model 0 0.073 0.019 0.166 0.048 0.272 0.082

B MC dropout model 1 0.075 0.020 0.151 0.044 0.310 0.099

C MC dropout model 2 0.075 0.019 0.149 0.044 0.283 0.087

D MC dropout model 3 0.078 0.020 0.152 0.042 0.291 0.091

E MC dropout model 4 0.075 0.019 0.155 0.045 0.312 0.100

F deep ensemble (ours) 0.070 0.018 0.144 0.041 0.254 0.078

In our based models, we follow Ribeiro et al. [28] and minimize the loss function
with respect to the randomly selected image annotations in each training batch.

For the fusion stage, we examine three approaches as listed below:

• Uniformly weighted fusion: The predictions from the base models are
combined by averaging the output probabilities.

• Pixel level confidence-based fusion: The predictions from the models
are fused using normalized confidence spatial maps computed by inverting
the predicted aleatoric outputs.

• Image level confidence-based fusion: The aleatoric uncertainty maps are
aggregated into an image level aleatoric scalars and the predictions of the
base models are combined based on the image-level normalized confidence
scalars computed by inverting the uncertainty scalars.

Our results demonstrate that leveraging all available annotations effectively
in an ensemble framework consistently improves the performance of the segmen-
tation performance both in a held-out test set and over two other distinct data
sets. Looking into different variants of our deep ensemble method, it is evident
that aggregating the aleatoric uncertainty into the image-level scalar and lever-
aging them in the fusion stage (row H) either outperforms or exhibits competitive
performance against the uniform averaging scheme (row G).

While modeling predictive uncertainty in clinical applications without a ‘real’
gold standard is helpful in decision making, miscalibrated uncertainty with over-
confident predictions leads to an unreliable outcome. To evaluate the calibration
quality of our ensemble annotation aggregation against Bayesian FCNs, we im-
plemented Bayesian epistemic uncertainty using dropout for each base model.
Similar to Bayesian SegNet [13], we added five dropout layers in the central part
of the encoder and the decoder after each convolutional layer. Dropout probabil-
ity is set to 0.3 and they are kept active at the inference time. 15 feed-forwards
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are executed to perform MC sampling and the output mean is considered as the
final segmentation prediction.

To evaluate the quality of the predictive uncertainty, we use two widely used
metric in the literature [17,6]; negative log-likelihood (NLL) and Brier score (Br).
Given a segmentation network with sigmoid non-linearity in the output layer,
NLL and Br for Xn are calculated as follows:

NLL =
−1

|Xn|
∑
q∈Xn

Ynq log Ŷnq + (1− Ynq) log(1− Ŷnq) (6)

Br =
1

|Xn|
∑
q∈Xn

[Ynq − Ŷnq]2 (7)

Consistent with prior studies on deep ensembling [17,23], Table 2 indicate
that our annotation aggregation ensemble with five base models consistently
improves the confidence calibration and predictive uncertainty for three data
sets in comparison to modeling epistemic uncertainty by MC dropout.

4 Conclusion

Approaches to train deep segmentation models do not trivially generalize to
data sets with multiple image annotations. We propose an ensemble paradigm
to deal with discrepancies in segmentation annotations. A robust-to-annotation-
noise learning scheme is utilized to efficiently leverage the multiple experts’
opinions toward learning from all available annotations and improve the gen-
eralization performance of deep segmentation models. The quality of predictive
uncertainty in clinical applications without true gold standards is critical. Our
model captures two types of uncertainty, aleatoric uncertainty modeled in the
training loss function and epistemic uncertainty modeled in the ensemble frame-
work to improve confidence calibration.
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