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Abstract Medical imaging is an invaluable resource in medicine as it enables to peer inside the
human body and provides scientists and physicians with a wealth of information indispensable for
understanding, modelling, diagnosis, and treatment of diseases. Reconstruction algorithms entail
transforming signals collected by acquisition hardware into interpretable images. Reconstruction is
a challenging task given the ill-posedness of the problem and the absence of exact analytic inverse
transforms in practical cases. While the last decades witnessed impressive advancements in terms
of new modalities, improved temporal and spatial resolution, reduced cost, and wider applicability,
several improvements can still be envisioned such as reducing acquisition and reconstruction time
to reduce patient’s exposure to radiation and discomfort while increasing clinics throughput and
reconstruction accuracy. Furthermore, the deployment of biomedical imaging in handheld devices
with small power requires a fine balance between accuracy and latency. The design of fast, robust,
and accurate reconstruction algorithms is a desirable, yet challenging, research goal. While the
classical image reconstruction algorithms approximate the inverse function relying on expert-tuned
parameters to ensure reconstruction performance, deep learning (DL) allows automatic feature
extraction and real-time inference. Hence, DL presents a promising approach to image reconstruc-
tion with artifact reduction and reconstruction speed-up reported in recent works as part of a
rapidly growing field. We review state-of-the-art image reconstruction algorithms with a focus on
DL-based methods. First, we examine common reconstruction algorithm designs, applied metrics,
and datasets used in the literature. Then, key challenges are discussed as potentially promising
strategic directions for future research.
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Fig. 1 Data flow in a medical imaging and image interpretation system. Forward model encodes the physics
of the imaging system. The inverse model transforms the collected signals by the acquisition hardware into a
meaningful image. The success of a diagnosis, evaluation, and treatment rely on accurate reconstruction, image
visualization and processing algorithms.

1 Introduction

Biomedical image reconstruction translates signals acquired by a wide range of sensors into images
that can be used for diagnosis and discovery of biological processes in cell and organ tissue. Each
biomedical imaging modality leverages signals in different bands of the electromagnetic spectrum,
e.g. from gamma rays ( Positron emission tomography PET/SPECT)), X-rays (computed tomog-
raphy (CT)), visible light (microscopy, endoscopy), infrared (thermal images), and radio-frequency
(Nuclear magnetic resonance imaging (MRI)), as well as pressure sound waves (in ultrasound (US)
imaging) (Webb and Kagadis 2003). Reconstruction algorithms transform the collected signals into
a 2, 3 or 4-dimensional image.

The accuracy of each reconstruction is critical for discovery and diagnosis. Robustness to noise
and generalization cross modality specifications’ (e.g., sampling pattern, rate, etc.) and imaging
devices parameters’ allow a reconstruction algorithm to be used in wider applications. The time
required for each reconstruction determines the number of subjects that can be diagnosed as well
as the suitability of the technique in operating theatres and emergency situations. The number of
measurements needed for a high quality reconstruction impacts the exposure a patient or sample
will have to endure. Finally, the hardware requirements define whether a reconstruction algorithm
can be used only in a dedicated facility or in portable devices thus dictating the flexibility of
deployment.

The study of image reconstruction is an active area of research in modern applied mathemat-
ics, engineering and computer science. It forms one of the most active interdisciplinary fields of
science (Fessler 2017) given that improvement in the quality of reconstructed images offers scien-
tists and clinicians an unprecedented insight into the biological processes underlying disease. Fig. 1
provides an illustration of the reconstruction problem and shows a typical data flow in a medical
imaging system.

Over the past few years, researchers have begun to apply machine learning techniques to biomed-
ical reconstruction to enable real-time inference and improved image quality in a clinical setting.
Here, we first provide an overview of the image reconstruction problem and outline its characteris-
tics and challenges (Section 1.1) and then outline the purpose, scope, and the layout of this review
(Section 1.2).



Deep Learning for Biomedical Image Reconstruction: A Survey 3

Fig. 2 Propagation of signals from sender to receiver. While passing through a transmission channel, signals s
pick up noise (assuming additive) along the way, until the acquired sensor data y = s+N reaches the receiver. The
properties of the received signal may, via a feedback loop, affect properties of future signal transmission. Sender
and receiver modeling differ within modalities. For example the lower figure illustrates in the left ultrasound
probe used to send and collect signals (S=R); in the middle: X-ray signal propagates through the subject toward
the detector (S → R); Single molecule localization microscopy is an instance where S and R are components
of a feedback loop (S ↔ R). The signal, optical measurements of nano-meter precise fluorescent emissions, is
reconstructed in a discrete (temporal) X/Y/Z domain. An example of a feedback loop in SMLM is the auto-
tuning of the laser power in response to an increase in density (R) that compromises the spatio-temporal sparsity
required for accurate reconstruction (Cardoen et al. 2019).

1.1 Inverse Problem and Challenges

1.1.1 From Output to Input

Image reconstruction is the process of forming an interpretable image from the raw data (sig-
nals) collected by the imaging device. It is known as an inverse problem where given a set of
measurements, the goal is to determine the original structure influencing the signal collected by a
receiver given some signal transmission medium properties (Fig. 2). Let y ∈ CM represents a set
of raw acquired sensor measurements and subject to some unknown noise (or perturbation) vector
N ∈ CM intrinsic to the acquisition process. The objective is to recover the spatial-domain (or
spatio-temporal) unknown image x ∈ CN such that:

y = A(F(x),N ) (1)

where F(·) is the forward model operator that models the physics of image-formation, which can
include signal propagation, attenuation, scattering, reflection and other transforms, e.g. Radon
or Fourier transform. F(·) can be a linear or a nonlinear operator depending on the imaging
modality. A is an aggregation operation representing the interaction between noise and signal, in
the assumption of additive noise A = +.

While imaging systems are usually well approximated using mathematical models that define
the forward model, an exact analytic inverse transform A−1(·) is not always possible. Reconstruc-
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Fig. 3 (A) A problem is ill-conditioned when two different objects produce very close observed signals. When
the observed signals are identical and hence identical reconstructed images, inverse solution is non-unique. Prior
knowledge can be leveraged to rules out certain solutions that conflict with the additional knowledge about the
object beyond the measurement vectors. (B) A use case toy example of two objects with the same acquired signals.
Prior knowledge about homogeneity of object rules out the second object.

tion approaches usually resort to iteratively approximate the inverse function and often involve
expert-tuned parameters and prior domain knowledge considerations to optimize reconstruction
performance.

1.1.2 An Ill-Posed Problem

A basic linear and finite-dimensional model of the sampling process leads us to study a discrete
linear system of the imaging problem of the form:

y = Fx+N . (2)

For full sampling, in MRI for instance, we have M = N and the matrix F ∈ CM×N is a well-
conditioned discrete Fourier transform matrix. However, when (M < N), there will be many
images x that map to the same measurements y, making the inverse an ill-posed problem (Fig. 3).
Mathematically, the problem is typically under-determined as there would be fewer equations to
describe the model than unknowns. Thus, one challenge for the reconstruction algorithm is to select
the best solution among a set of potential solutions (McCann and Unser 2019). One way to reduce
the solution space is to leverage domain specific knowledge by encoding priors, i.e. regularization.

Sub-sampling in MRI or sparse-view/limited-angle in CT are examples of how reducing data
representation (M < N) can accelerate acquisition or reduce radiation exposure. Additional gains
can be found in lowered power, cost, time, and device complexity, albeit at the cost of increasing the
degree of ill-posedness and complexity of the reconstruction problem. This brings up the need for
sophisticated reconstruction algorithms with high feature extraction power to make the best use of
the collected signal, capture modality-specific imaging features, and leverage prior knowledge. Fur-
thermore, developing high-quality reconstruction algorithms requires not only a deep understanding
of both the physics of the imaging systems and the biomedical structures but also specially designed
algorithms that can account for the statistical properties of the measurements and tolerate errors
in the measured data.
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Fig. 4 (A) The marked increase in publications on biomedical image reconstruction and deep learning in the past
10 years. In red: results obtained by PubMed query that can be found at: https://bit.ly/recon_hit. Search
query identified 310 contributions, then filtering according to quality, venue, viability and idea novelty, a total of
95 contributions have been considered as representatives and have been covered in this survey( In blue). (B) The
pie chart represents the number of studies per modality covered in this survey.

1.2 Scope of this survey

The field of biomedical image reconstruction have undergone significant advances over the past few
decades and can be broadly classified into two categories: conventional methods (analytical and
optimization based methods) and data-driven or learning-based methods. Conventional methods
(discussed in section 2) are the most dominant and have been extensively studied over the last few
decades with a focus on how to improve their results (Vandenberghe et al. 2001; Jhamb et al. 2015;
Assili 2018) and reduce their computational cost (Despres and Jia 2017).

Researchers have recently investigated deep learning (DL) approaches for various biomedical
image reconstruction problems (discussed in section 3) inspired by the success of deep learning
in computer vision problems and medical image analysis (Goceri and Goceri 2017). This topic is
relatively new and has gained a lot of interest over the last few years, as shown in Fig. 4-A and listed
in Table 1, and forms a very active field of research with numerous special journal issues (Wang
2016; Wang et al. 2018; Ravishankar et al. 2019). MRI and CT received the most attention among
studied modalities, as illustrated in Fig. 4-B, given their widespread clinical usage, the availability
of analytic inverse transform and the availability of public (real) datasets. Several special issues
journals devoted to MRI reconstruction have been recently published (Knoll et al. 2020; Liang
et al. 2020; Sandino et al. 2020).

Fessler (2017) wrote a brief chronological overview on image reconstruction methods highlight-
ing an evolution from basic analytical to data-driven models. McCann et al. (2017)) summarized
works using CNNs for inverse problems in imaging. Later, Lucas et al. (2018) provided an overview
of the ways deep neural networks may be employed to solve inverse problems in imaging (e.g., de-
noising, superresolution, inpainting).As illustrated in Fig. 4 since their publications a great deal of
work has been done warranting a review. Recently, McCann and Unser (2019) wrote a survey on
image reconstruction approaches where they presented a toolbox of operators that can be used to
build imaging systems model’s and showed how forward model and sparsity-based regularization
can be used to solve reconstruction problems. While their review is more focused on the mathe-
matical foundations of conventional methods, they briefly discussed data-driven approaches, their
theoretical underpinning, and performance. Similarly, Arridge et al. (2019) gave a comprehensive
survey of algorithms that combine model and data-driven approaches for solving inverse problems
with focus on deep neural based techniques and pave the way towards providing a solid mathe-
matical theory. Zhang and Dong (2019) provided a conceptual review of some recent DL-based

https://bit.ly/recon_hit
https://bit.ly/recon_hit
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methods for CT with a focus on methods inspired by iterative optimization approaches and their
theoretical underpinning from the perspective of representation learning and differential equations.

This survey provides an overview of biomedical image reconstruction methods with a focus on
DL-based strategies, discusses their different paradigms (e.g., image domain, sensor domain (raw
data) or end to end learning, architecture, loss, etc. ) and how such methods can help overcome
the weaknesses of conventional non-learning methods. To summarize the research done to date, we
provide a comparative, structured summary of works representative of the variety of paradigms on
this topic, tabulated according to different criteria, discusses the pros and cons of each paradigm as
well as common evaluation metrics and training dataset challenges. The theoretical foundation was
not emphasized in this work as it was well investigated in the aforementioned surveys. Summary
of the current state of the art and outline of what we believe are strategic directions for future
research are discussed.

The remainder of this paper is organized as follows: in Section 2 we give an overview of con-
ventional methods discussing their advantages and limitations. We then introduce the key machine
learning paradigms and how they are being adapted in this field complementing and improving
on conventional methods. A review of available data-sets and performance metrics is detailed in
Section 3. Finally, we conclude by summarizing the current state-of-the-art and outlining strategic
future research directions (Section 6).

2 Conventional Image Reconstruction Approaches

A wide variety of reconstruction algorithms have been proposed during the past few decades, hav-
ing evolved from analytical methods to iterative or optimization-based methods that account for
the statistical properties of the measurements and noise as well as the hardware of the imaging
system (Fessler 2017). While these methods have resulted in significant improvements in recon-
struction accuracy and artifact reduction, are in routine clinical use currently, they still present
some weaknesses. A brief overview of these methods’ principles is presented in this section outlining
their weaknesses.

2.1 Analytical Methods

Analytical methods are based on a continuous representation of the reconstruction problem and use
simple mathematical models for the imaging system. Classical examples are the inverse of the Radon
transform such as filtered back-projection (FBP) for CT and the inverse Fourier transform (IFT) for
MRI. These methods are usually computationally inexpensive (in the order of ms) and can generate
good image quality in the absence of noise and under the assumption of full sampling/all angles
projection (McCann and Unser 2019). They typically consider only the geometry and sampling
properties of the imaging system while ignoring the details of the system physics and measurement
noise (Fessler 2017).

When dealing with noisy or incomplete measured data e.g., reducing the measurement sampling
rate, analytical methods results are highly deteriorated as the signal becomes weaker. Thus, the
quality of the produced image is compromised. Thaler et al. (2018) provided examples of a CT
image reconstruction using the FBP method for different limited projection angles and showed that
analytical methods are unable to recover the loss in the signal (Fig. 5), resulting in compromised
diagnostic performance.
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Fig. 5 CT Image reconstruction from sparse view measurements. (A) Generation of 2D projections from a target
2D CT slice image x for a number of N fixed angles αi. (B) Image reconstructed using conventional filtered back
projection method for different number of a projection angles N (Thaler et al. 2018)

2.2 Iterative Methods

Iterative reconstruction methods, based on more sophisticated models for the imaging system’s
physics, sensors and noise statistics, have attracted a lot of attention over the past few decades.
They combine the statistical properties of data in the sensor domain (raw measurement data),
prior information in the image domain, and sometimes parameters of the imaging system into their
objective function (McCann and Unser 2019). Compared to analytical methods iterative recon-
struction algorithms offer a more flexible reconstruction framework and better robustness to noise
and incomplete data representation problems at the cost of increased computation (Ravishankar
et al. 2019).

Iterative reconstruction methods involve minimizing an objective function that usually consists
of a data term and a regularization terms imposing some prior:

x̂∗ = argmin
x̂
‖F(x̂)− y‖+ λR(x̂) (3)

where ||F(x̂)−y‖ is a data fidelity term that measures the consistency of the approximate solution
x̂, in the space of acceptable images e.g 2D, 3D and representing the physical quantity of interest,
to the measured signal y, which depends on the imaging operator and could include images, Fourier
samples, line integrals, etc. R(·) is a regularization term encoding the prior information about the
data, and λ is a hyper-parameter that controls the contribution of the regularization term. The
reconstruction error is minimized iteratively until convergence. We note that the solution space
after convergence does not need to be singular, for example in methods where a distribution of
solutions is sampled (Bayesian neural networks (Yang et al. 2018; Luo et al. 2019)). In such cases,
the “x̂∗ ∈” notation replaces the current “x̂∗ =”. However, for consistency with recent art we use
the simplified notation assuming a singular solution space at convergence.

The regularization term is often the most important part of the modeling and what researchers
have mostly focused on in the literature as it vastly reduces the solution space by accounting for
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Fig. 6 Iterative image reconstruction workflow example. (A) Diffuse optical tomography (DOT) fibers brain
probe consisting of a set of fibers for illumination and outer bundle fibers for detection. (B) Probe scheme and
light propagation modelling in the head, used by the forward model. (C) Iterative approach pipeline. (D) DOT
reconstructed image shows the total Hemoglobin (Hb) concentrations in the brain. (Figure licensed under CC-BY
4.0 Creative Commons license.)

assumptions based on the underlying data (e.g., smoothness, sparsity, spatio-temporal redundancy).
The interested reader can refer to (Dong and Shen 2015; McCann and Unser 2019) for more details
on regularization modeling. Fig. 6 shows an example of an iterative approach workflow for diffuse
optical tomography (DOT) imaging.

Several image priors were formulated as sparse transforms to deal with incomplete data issues.
The sparsity idea, representing a high dimensional image x by only a small number of nonzero co-
efficients, is one dominant paradigm that has been shown to drastically improve the reconstruction
quality especially when the number of measurements M or theirs signal to noise ratio (SNR) is low.
Given the assumption that an image can be represented with a few nonzero coefficients (instead of
its number of pixels), it is possible to recover it from a much smaller number of measurements. A
popular choice for a sparsifying transform is total variation (TV) that is widely studied in academic
literature. The interested reader is referred Rodŕıguez (2013) for TV based algorithms modeling
details. While TV imposes a strong assumption on the gradient sparsity via the non-smooth ab-
solute value that is more suited to piece-wise constant images, TV tends to cause artifacts such
as blurred details and undesirable patchy texture in the final reconstructions (Fig. 7 illustrates an
example of artifacts present in TV-based reconstruction). Recent work aimed at exploiting richer
feature knowledge overcomes TV’s weaknesses, for example TV-type variants (Zhang et al. 2016a),
non-local means (NLM) (Zhang et al. 2016b), wavelet approaches (Gao et al. 2011), and dictionary
learning (Xu et al. 2012). Non-local means filtering methods, widely used for CT (Zhang et al.
2017), are operational in the image domain and allow the estimation of the noise component based
on multiple patches extracted at different locations in the image (Sun et al. 2016).

While sparsity measures the first order sparsity, i.e the sparsity of vectors (the number of non-
zero elements), some models exploited alternative properties such as the low rank of the data,
especially when processing dynamic or time-series data, e.g. dynamic and functional MRI (Liang
2007; Singh et al. 2015) where data can have a correlation over time. Low rank can be interpreted as
the measure of the second order (i.e., matrix) sparsity (Lin 2016). Low rank is of particular interest
to compression given its requirement to a full utilization of the spatial and temporal correlation
in images or videos leading to a better exploitation of available data. Recent work combined low
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Fig. 7 Fig. Reconstruction results of a limited-angle CT real head phantom (120 projections) using different
conventional reconstruction methods. (A) Reference image reconstructed from 360 projections, (B) Image recon-
struction using analytical FBP, (C) Images reconstructed by iterative POCS-TV with initial zero image (Guo
et al. 2016). Arrows point out to artifacts present in the reconstructed images.(Figure licensed under CC-BY 4.0
Creative Commons license.)

rank and sparsity properties for improved reconstruction results (Zhao et al. 2012). Guo et al.
(2014); Otazo et al. (2015) decomposed the dynamic image sequence into the sum of a low-rank
component, that can capture the background or slowly changing parts of the dynamic object, and
sparse component that can capture the dynamics in the foreground such as local motion or contrast
changes. The interested reader is referred to (Lin 2016; Ravishankar et al. 2019) for low rank based
algorithms modeling survey.

The difficulties of solving the image reconstruction models motivated the design of highly ef-
ficient algorithms for large scale, nonsmooth and nonconvex optimization problems such as the
alternating direction method of multipliers (ADMM) (Boyd et al. 2011; Gabay and Mercier 1976),
primal-dual algorithm (Chambolle and Pock 2011b), iterative shrinkage-thresholding algorithm
(ISTA) (Daubechies et al. 2004), to name just a few. For instance, using the augmented Lagrangian
function (Sun et al. 2016) of Eq. 3, the ADMM algorithm solves the reconstruction problems by
breaking it into smaller subproblems that are easier to solve. Despite the problem decomposition, a
large number of iterations is still required for convergence to a satisfactory solution. Furthermore,
performance is defined to a large extent by the choice of transformation matrix and the shrinkage
function which remain challenging to choose (McCann and Unser 2019).

ISTA is based on a simpler gradient-based algorithm where each iteration leverages hardware
accelerated matrix-vector multiplications representing the physical system modeling the image
acquisition process and its transpose followed by a shrinkage/soft-threshold step (Daubechies et al.
2004). While the main advantage of ISTA relies on its simplicity, it has also been known to converge
quite slowly (Zhang and Dong 2019). Convergence was improved upon by a fast iterative soft-
thresholding algorithm (FISTA)(Beck and Teboulle 2009) based on the idea of Nesterov (1983).

Overall, although iterative reconstruction methods showed substantial accuracy improvements
and artifact reductions over the analytical ones, they still face three major weaknesses: First, iter-
ative reconstruction techniques tend to be vendor-specific since the details of the scanner geometry
and correction steps are not always available to users and other vendors. Second, there are sub-
stantial computational overhead costs associated with popular iterative reconstruction techniques
due to the load of the projection and back-projection operations required at each iteration. The
computational cost of these methods is often several orders of magnitude higher than analytical
methods, even when using highly-optimized implementations. A trade-off between real-time per-
formance and quality is made in favor of quality in iterative reconstruction methods due to their
non-linear complexity of quality in function of the processing time. Finally, the reconstruction
quality is highly dependent on the regularization function form and the related hyper-parameters
settings as they are problem-specific and require non-trivial manual adjustments. Over-imposing



10 Hanene Ben Yedder et al.

Fig. 8 Visualization of common deep learning-based reconstruction paradigms from raw sensor data. (A) A two-
step processing model is shown where deep learning complements conventional methods (Section 3.1). A typical
example would be to pre-process the raw sensor data using a conventional approach f1, enhance the resulting
image with a deep learning model fθ2 then perform task processing using fθ3 . The overall function will thus be
fθ3 ◦ fθ2 ◦ f1. Vice versa, one can pre-process the raw sensor data using a DL-based approach fθ2 to enhance the
collected raw data and recover missing details then apply conventional method f1 to reconstruct image and finally
perform task processing using fθ3 . The overall function will be fθ3 ◦f1 ◦fθ2 in this case. (B) An end-to-end model
is shown: The image is directly estimated from the raw sensor data with a deep learning model (3.2) followed by
processing tasks. The overall function will be fθ3 ◦ fθ2 . (C) Task results can be inferred with or without explicit
image reconstruction (Section 3.3) using fθ3 function.

sparsity (L1 penalties) for instance can lead to cartoon-like artifacts (McCann and Unser 2019).
Proposing a robust iterative algorithm is still an active research area (Sun et al. 2019c; Moslemi
et al. 2020).

3 Deep Learning Based Image Reconstruction

To further advance biomedical image reconstruction, a more recent trend is to exploit deep learning
techniques for solving the inverse problem to improve resolution accuracy and speed-up reconstruc-
tion results. As a deep neural network represents a complex mapping, it can detect and leverage
features in the input space and build increasingly abstract representations useful for the end-goal.
Therefore, it can better exploit the measured signals by extracting more contextual information
for reconstruction purposes. In this section, we summarize works using DL for inverse problems in
imaging.

Learning-based image reconstruction is driven by data where a training dataset is used to
tune a parametric reconstruction algorithm that approximates the solution to the inverse problem
with a significant one-time, offline training cost that is offset by a fast inference time. There is a
variety of these algorithms, with some being closely related to conventional methods and others
not. While some methods considered machine learning as a reconstruction step by combining a
traditional model with deep modeling to recover the missing details in the input signal or enhance
the resulting image (Section 3.1, some others considered a more elegant solution to reconstruct an
image from its equivalent initial measurements directly by learning all the parameters of a deep
neural network, in an end-to-end fashion, and therefore approximating the underlying physics of
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the inverse problem (Section 3.2), or even going further and solving for the target task directly
(Section 3.3). Fig. 8 shows a generic example of the workflow of these approaches. Table 1 surveys
various papers based on these different paradigms and provides a comparison in terms of used data
(Table 1-Column ”Mod.”,”Samp.”,”D”), architecture (Table 1-Column ”TA”,”Arch.”), loss and
regularization (Table 1-Column ”Loss”,”Reg.”), augmentation (Table 1-Column ”Aug.”), etc .

3.1 Deep Learning as Processing Step: Two Step Image Reconstruction Models

Complementing a conventional image reconstruction approach with a DL-model enables improved
accuracy while reducing the computational cost. The problem can be addressed either in the sensor
domain (pre-processing) or the image domain (post-processing) (Fig. 8-A, Table 1-Column ”E2E”).

3.1.1 A Pre-Processing Step (Sensor Domain)

The problem is formulated as a regression in the sensor domain from incomplete data representation
(e.g., sub-sampling, limited view, low dose) to complete data (full dose or view) using DL methods
and has led to enhanced results (Hyun et al. 2018; Liang et al. 2018; Cheng et al. 2018). The main
goal is to estimate, using a DL model, missing parts of the signal that have not been acquired
during the acquisition phase in order to input a better signal to an analytical approach for further
reconstruction.

Hyun et al. (2018) proposed a k-space correction based U-Net to recover the unsampled data
followed by an IFT to obtain the final output image. They demonstrated artifact reduction and
morphological information preservation when only 30% of the k-space data is acquired. Similarly,
Liang et al. (2018) proposed a CT angular resolution recovery based on deep residual convolutional
neural networks (CNNs) for accurate full view estimation from unmeasured views while recon-
structing images using filtered back projection. Reconstruction demonstrated speed-up with fewer
streaking artifacts along with the retrieval of additional important image details. Unfortunately,
since noise is not only present in the incomplete data acquisition case, but also in the full data as
well, minimizing the error between the reference and the predicted values can cause the model to
learn to predict the mean of these values. As a result, the reconstructed images can suffer from lack
of texture detail.

Huang et al. (2019b) argue that DL-based methods can fail to generalize to new test instances
given the limited training dataset and DL’s vulnerability to small perturbations especially in noisy
and incomplete data case. By constraining the reconstructed images to be consistent with the
measured projection data, while the unmeasured information is complemented by learning based
methods, reconstruction quality can be improved. DL predicted images are used as prior images
to provide information in missing angular ranges first followed by a conventional reconstruction
algorithm to integrate the prior information in the missing angular ranges and constrain the recon-
struction images to be consistent to the measured data in the acquired angular range.

Signal regression in the sensor domain reduces signal loss enabling improved downstream results
from the coupled analytic method. However, the features extracted by DL methods are limited to the
sensor domain only while analytical methods’ weaknesses are still present in afterword processing.

3.1.2 A Post-Processing Step (Image Domain)

The regression task is to learn the mapping between the low-quality reconstructed image and its
high-quality counterpart. Although existing iterative reconstruction methods improved the recon-
structed image quality, they remain computationally expensive and may still result in reconstruction
artifacts in the presence of noise or incomplete information, e.g. sparse sampling of data (Cui et al.
2019; Singh et al. 2020). The main difficulty arises from the non-stationary nature of the noise and
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serious streaking artifacts due to information loss (Chen et al. 2012; Al-Shakhrah and Al-Obaidi
2003). These noise and artifacts are challenging to isolate as they may have strong magnitudes
and do not obey specific model distributions in the image domain (Wang et al. 2016). The auto-
matic learning and detection of complex patterns offered by deep neural networks can outperform
handcrafted filters in the absence of complete information (Yang et al. 2017a; Singh et al. 2020).

Given an initial reconstruction estimate from a direct inverse operator e.g., FBP (Sun et al.
2018; Gupta et al. 2018; Chen et al. 2017a), IFT (Wang et al. 2016), or few iterative approach
steps (Jin et al. 2017; Cui et al. 2019; Xu et al. 2017), deep learning is used to refine the initialized
reconstruction and produce the final reconstructed image. For example, Chen et al. (2017b) used
an autoencoder to improve FBP results on a limited angle CT projection. Similarly, Jin et al.
(2017) enhanced FBP results on a sparse-view CT via subsequent filtering by a U-Net to reduce
artifacts. U-Net and other hour-glass shaped architectures rely on a bottleneck layer to encode a
low-dimensional representation of the target image.

Generative adversarial networks (GAN) (Goodfellow et al. 2014) were leveraged to improve the
quality of reconstructed images. Wolterink et al. (2017) proposed to train an adversarial network
to estimate full-dose CT images from low-dose CT ones and showed empirically that an adversarial
network improves the model’s ability to generate images with reduced aliasing artifacts. Inter-
estingly, they showed that combining squared error loss with adversarial loss can lead to a noise
distribution similar to that in the reference full-dose image even when no spatially aligned full-dose
and low dose scans are available.

Yang et al. (2017a) proposed a deep de-aliasing GAN (DAGAN) for compressed sensing MRI
reconstruction that resulted in reduced aliasing artifacts while preserving texture and edges in the
reconstruction. Remarkably, a combined loss function based on content loss ( consisting of a pixel-
wise image domain loss, a frequency domain loss and a perceptual VGG loss) and adversarial loss
were used. While frequency domain information was incorporated to enforce similarity in both the
spatial (image) and the frequency domains, a perceptual VGG coupled to a pixel-wise loss helped
preserve texture and edges in the image domain.

Combining DL and conventional methods reduce the computational cost but has its own down-
sides. For instance, the features extracted by DL methods are highly impacted by the results of
the conventional methods, especially in case of limited measurements and the presence of noise
where the initially reconstructed image may contain significant and complex artifacts that may be
difficult to remove even by DL models. In addition, the information missing from the initial re-
construction is challenging to be reliably recovered by post-processing like many inverse problems
in the computer vision literature such as image inpainting. Furthermore, the number of iterations
required to obtain a reasonable initial image estimate using an iterative method can be hard to
define and generally requires a long run-time (in the order of several min) to be considered for
real-time scanning. Therefore, the post-processing approach may be more suitable to handle initial
reconstructions that are of relatively good quality and not drastically different from the high-quality
one.

3.2 End-to-End Image Reconstruction: Direct Estimation

An end-to-end solution leverages the image reconstruction task directly from sensor-domain data
using a deep neural network by mapping sensor measurements to image domain while approximating
the underlying physics of the inverse problem (Fig. 8-B). This direct estimation model may represent
a better alternative as it benefits from the multiple levels of abstraction and the automatic feature
extraction capabilities of deep learning models.

Given pairs of measurement vectors y ∈ CM and their corresponding ground truth images
x ∈ CN (that produce y), the goal is to optimize the parameters θ ∈ Rd of a neural network in an
end-to-end manner to learn the mapping between the measurement vector y and its reconstructed
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Fig. 9 Common network architectures used for image reconstruction. From left to right: a multilayer percep-
tron network based fully connected layers; an encoder-decoder architecture based convolutional layers; a residual
network, e.g. ResNet (He et al. 2016), utilizing skip connections (skip connection is crucial in facilitating stable
training when the network is very deep); and a generative adversarial network (GAN). A decoder like architecture
includes only the decoder part of the encoder-decoder architecture and may be preceded by a fully connected
layer to map measurements to the image space depending on the input data size. A U-Net (Ronneberger et al.
2015) resembles the encoder-decoder architecture while it uses skip connections between symmetric depths. A
GAN (Goodfellow et al. 2014) includes a generator and descriminor that contest with each other in a min-max
game. The generator learns to create more realistic data by incorporating feedback from the discriminator. We
refer the interested reader to (Alom et al. 2019; Khan et al. 2020) for a an in depth survey of various types of
deep neural network architectures.

tomographic image x, which recovers the parameters of underlying imaged tissue. Therefore, we
seek the inverse function A−1(·) that solves:

θ∗ = argmin
θ
L
(
A−1(y, θ), x

)
+ λR(A−1(y, θ)) (4)

where L is the loss function of the network that, broadly, penalizes the dissimilarity between the
estimated reconstruction and the ground truth. The regularization term R, often introduced to
prevent over-fitting, can apply penalties on layer parameters (weights) or layer activity (output)
during optimization. L1/L2 norms are the most common choices. λ is a hyper-parameter that
controls the contribution of the regularization term. Best network parameters (θ∗) depend on
hyper-parameters, initialization and a network architecture choice.

Recently, several paradigms have emerged for end-to-end DL-based reconstruction the most
common of which are generic DL models and DL models that unroll an iterative optimization.

3.2.1 Generic Models

Although some proposed models rely on multilayer perceptron (MLP) feed-forward artificial neural
network (Pelt and Batenburg 2013; Boublil et al. 2015; Feng et al. 2018; Wang et al. 2019), CNNs
remain the most popular generic reconstruction models mainly due to their data filtering and
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features extraction capabilities. Specifically, encoder-decoder (Nehme et al. 2018; Häggström et al.
2019), U-Net (Waibel et al. 2018), ResNet (Cai et al. 2018) and decoder like architecture (Yoon
et al. 2018; Wu et al. 2018; Zhu et al. 2018) are the most dominant architectures as they rely on a
large number of stacked layers to enrich the level of features extraction. A set of skip connections
enables the later layers to reconstruct the feature maps with both the local details and the global
texture and facilitates stable training when the network is very deep. Fig. 9 illustrates some of the
architectures that are widely adopted in medical image reconstruction.

The common building blocks of neural network architectures are convolutional layers, batch
normalization layers, and rectified linear units (ReLU). ReLU is usually used to enforce informa-
tion non-negativity properties, given that the resulting pixels values represent tissue properties
e.g., chromophores concentration maps (Yoo et al. 2019), refractive index (Sun et al. 2016), and
more examples in Table 1. Batch normalization is used to reduce the internal covariate shift and
accelerates convergence. The resulting methods can produce relatively good reconstructions in a
short time and can be adapted to other modalities but require a large training dataset and good
initialization parameters. Table 1-Column ”E2E” (check-marked) surveys many papers with various
architecture, loss, and regularization for 2D,3D and 4D different modalities.

Zhu et al. (2018) proposed a manifold learning framework based decoder neural network to
emulate the fast-Fourier transform (FFT) and learn an end-to-end mapping between k-space data
and image domains where they showed artifact reduction and reconstruction speed up. However,
when trained with an L1 or L2 loss only, a DL-based reconstructed image still exhibits blurring
and information loss, especially when used with incomplete data. Similarly, Yedder et al. (2018)
proposed a decoder like model for DOT image reconstruction. While increased reconstruction speed
and lesion localization accuracy are shown, some artifacts are still present in the reconstructed
image when training with L2 loss only. This motivated an improved loss function in their follow-up
work (Yedder et al. 2019) where they suggested combining L2 with a Jaccard loss component to
reduce reconstructing false-positive pixels.

Thaler et al. (2018) proposed a Wasserstein GAN (WGAN) based architecture for improving
the image quality for 2D CT image slice reconstruction from a limited number of projection images
using a combination of L1 and adversarial losses. Similarly, Ouyang et al. (2019) used a GAN based
architecture with a task-specific perceptual and L1 losses to synthesize PET images of high quality
and accurate pathological features. Some attempts were made to reconstruct images observed by
the human visual system directly from brain responses using GAN (Shen et al. 2019; St-Yves and
Naselaris 2018). Shen et al. (2019) trained a GAN for functional magnetic resonance imaging (fMRI)
reconstruction to directly map between brain activity and perception (the perceived stimulus). An
adversarial training strategy which consists of three networks: a generator, a comparator, and a
discriminator was adopted. The comparator is a pre-trained neural network on natural images used
to calculate a perceptual loss term. The loss function is based on L2 distance in image space,
perceptual loss (similarity in feature space) and adversarial loss.

To further enhance results and reduce artifacts due to motion and corruption of k-space signal,
Oksuz et al. (2019) proposed a recurrent convolutional neural network (RCNN) to reconstruct high
quality dynamic cardiac MR images while automatically detecting and correcting motion-related
artifacts and exploiting the temporal dependencies within the sequences. Proposed architecture
included two sub-networks trained jointly: an artifact detection network that identifies potentially
corrupted k-space lines and an RCNN for reconstruction.

To relax the requirement of a large number of training samples, a challenging requirement in a
medical setting, simulating data was proposed as an alternative source of training data. However,
creating a realistic synthetic dataset is a challenging task in itself as it requires careful modeling
of the complex interplay of factors influencing real-world acquisition environment. To bridge the
gap between the real and in silico worlds, transfer learning provides a potential remedy as it helps
transfer the measurements from the simulation domain to the real domain by keeping the general
attenuation profile while accounting for real-world factors such as scattering, etc.
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Yedder et al. (2019) proposed a supervised sensor data distribution adaptation based MLP
to take advantage of cross-domain learning and reported accuracy enhancement in detecting tis-
sue abnormalities. Zhou et al. (2019) proposed unsupervised CT sinograms adaptation, based on
CycleGAN and content consistent regularization, to further alleviate the need for real measurement-
reconstruction pairs. Interestingly, the proposed method integrated the measurement adaptation
network and the reconstruction network in an end-to-end network to jointly optimize the whole
network.

Waibel et al. (2018) investigated two different variants of DL-based methods for photo-acoustique
image reconstruction from limited view data. The first method is a post-processing DL method while
the second one is an end-to-end reconstruction model. Interestingly, they showed empirically that
an end-to-end model achieved qualitative and quantitative improvements compared to reconstruc-
tion with a post-processing DL method. Zhang and Liang (2020) studied the importance of fully
connected layers, commonly used in end-to end model (Zhu et al. 2018; Yedder et al. 2019), to
realize back-projection data from the sensor domain to the image domain and showed that while a
back-projection can be learned through neural networks it is constrained by the memory require-
ments induced by the non-linear number of weights in the fully connected layers. Although several
generic DL architectures and loss functions have been explored to further enhance reconstruction
results in different ways (resolution, lesion localization, artifact reduction, etc.), a DL-based method
inherently remains a black-box that can be hard to interpret. Interpretability is key not only for
trust and accountability in a medical setting but also to correct and improve the DL model.

3.2.2 Unrolling Iterative Methods

Unrolling conventional optimization algorithms into a DL model has been suggested by several
works (Qin et al. 2018; Schlemper et al. 2017; Würfl et al. 2018; Sun et al. 2016; Adler and
Öktem 2018) in order to combine the benefits of traditional iterative methods and the expressive
power of deep models (Table 1-Column ”E2E”). Rajagopal et al. (2019) proposed a theoretical
framework demonstrating how to leverage iterative methods to bootstrap network performance
while preserving network convergence and interpretability featured by the conventional approaches.

Deep ADMM-Net (Sun et al. 2016) was the first proposed model reformulating the iterative
reconstruction ADMM algorithm into a deep network for accelerating MRI reconstruction, where
each stage of the architecture corresponds to an iteration in the ADMM algorithm. In its iter-
ative scheme, the ADMM algorithm requires tuning of a set of parameters that are difficult to
determine adaptively for a given data set. By unrolling the ADMM algorithm into a deep model,
the tuned parameters are now all learnable from the training data. The ADMM-Net was later
further improved to Generic-ADMM-Net (Yang et al. 2017b) where a different variable splitting
strategy was adopted in the derivation of the ADMM algorithm and demonstrated state-of-the-art
results with a significant margin over the BM3D-based algorithm (Dabov et al. 2007). Similarly,
the PD-Net (Adler and Öktem 2018) adopted neural networks to approximate the proximal op-
erator by unrolling the primal-dual hybrid gradient algorithm (Chambolle and Pock 2011a) and
demonstrated performance boost compared with conventional and two step image reconstruction
models. Fig. 10 shows results of their proposed method in a simplified setting of a two-dimensional
CT image reconstruction problem.

In like manner, Schlemper et al. (2017) proposed a cascade convolutional network that embeds
the structure of the dictionary learning-based method while allowing end-to-end parameter learn-
ing. The proposed model enforces data consistency in the sensor and image domain simultaneously,
reducing the aliasing artifacts due to sub-sampling. An extension for dynamic MR reconstruc-
tions (Schlemper et al. 2018) exploits the inherent redundancy of MR data.

While, the majority of the aforementioned methods used shared parameters over iterations
only, Qin et al. (2018) proposed to propagate learnt representations across both iteration and time.
Bidirectional recurrent connections over optimization iterations are used to share and propagate
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Fig. 10 Reconstructions of the Shepp–Logan phantom in a two-dimensional CT image reconstruction problem
using different reconstruction methods (Arridge et al. 2019). (b)-(c) The standard FBP and TV-regularized recon-
struction. (d) FBP reconstruction followed by a U-Net architecture. (e) The learned primal–dual scheme (Adler

and Öktem 2018). One can observe the artifacts in the conventional methods removed by the DL-based approaches.
Overall, the unrolled-iterative method gave the best results and outperformed even the DL as a post-processing
step method. The interested reader is referred to (Arridge et al. 2019) for more details about the training setting.

learned representations across all stages of the reconstruction process and learn the spatio–temporal
dependencies. The proposed deep learning based iterative algorithm can benefit from information
extracted at all processing stages and mine the temporal information of the sequences to improve
reconstruction accuracy. The advantages of leveraging temporal information was also demonstrated
in single molecule localization microscopy (Cardoen et al. 2019). An LSTM was able to learn
an unbiased emission density prediction in a highly variable frame sequence of spatio-temporally
separated fluorescence emissions. In other words, joint learning over the temporal domain of each
sequence and across iterations leads to improved de-aliasing.

3.2.3 Semi-supervised and Unsupervised Learning Methods

The majority of deep learning methods for image reconstruction are based on supervised learning
where the mapping between signal and reconstructed image is learned. However, the performance
of supervised learning is, to a large degree, determined by the size of the available training data
which is constrained in a medical setting. In an effort to work around this requirement, Gong et al.
(2018) applied the deep image prior method (Ulyanov et al. 2018) to PET image reconstruction.
The network does not need prior training matching pairs, as it substitutes the target image with
a neural network representation of the target domain but rather requires the patient’s own prior
information. The maximum-likelihood estimation of the target image is formulated as a constrained
optimization problem and is solved using the ADMM algorithm. Gong et al. (2019) have extended
the approach to the direct parametric PET reconstruction where acquiring high-quality training
data is more difficult. However, to obtain high-quality reconstructed images without prior training
datasets, registered MR or CT images are necessary. While rigid registration is sufficient for brain
regions, accurate registration is more difficult for other regions.

Instead of using matched high-dose and a low-dose CT, Kang et al. (2019) proposed to employ
the GAN loss to match the probability distribution where a cycleGAN architecture based cyclic loss
and identity loss for multiphase cardiac CT problems is used. Similarly, Li et al. (2020b) used an
unsupervised data fidelity enhancement network that uses an unsupervised network to fine-tune a
supervised network to different CT scanning protocol properties. Meng et al. (2020) proposed to use
only a few supervised sinogram-image pairs to capture critical features (i.e., noise distribution, tissue
characteristics) and transfer these features to larger unlabeled low-dose sinograms. A weighted
least-squares loss model based TV regularization term and a KL divergence constraint between
the residual noise of supervised and unsupervised learning is used while a FBP is employed to
reconstruct CT images from the obtained sinograms.
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Fig. 11 (A) Biomedical image processing workflow usually involves two steps optimized independently (recon-
struction and image analysis) for diagnosis purposes. (B) Jointly solving these tasks using a unified model allows
joint parameters tuning and feature sharing.

3.3 Raw-to-task Methods: Task-specific learning

Typical data flow in biomedical imaging involves solving the image reconstruction task followed by
preforming an image processing task (e.g., segmentation, classification) (Fig 11-A). Although each
of these two tasks (reconstruction and image processing) is solved separately, the useful clinical
information extracted for diagnosis by the second task is highly dependent on the reconstruction
results. In the raw-to-task paradigm, task results are directly inferred from raw data, where image
reconstruction and processing are lumped together and reconstructed image may not be necessarily
outputted (Fig. 8-C, Fig 11-B)

Jointly solving for different tasks using a unified model is frequently considered in the computer
vision field, especially for image restoration (Sbalzarini 2016), and has lead to improved results
than solving tasks sequentially (Paul et al. 2013). The advantages explain the recent attention this
approach received in biomedical image reconstruction (Sun et al. 2019a; Huang et al. 2019a). For
instance, a unified framework allows joint parameters tuning for both tasks and feature sharing
where the two problems regularize each other when considered jointly. In addition, when mapping is
performed directly from the sensor domain, the joint task can even leverage sensor domain features
for further results enhancing while it can be regarded as a task-based image quality metric that
is learned from the data. Furthermore, Sbalzarini (2016) argues that solving ill-posed problems in
sequence can be more efficient than in isolation. Since the output space of a method solving an
inverse problem is constrained by forming the input space of the next method, the overall solution
space contracts. Computational resources can then be focused on this more limited space improving
runtime, solution quality or both.

Image reconstruction is not always necessary for optimal performance. For example, in single-
pixel imaging recent work (Latorre-Carmona et al. 2019) illustrates that an online algorithm can
ensure on-par performance in image classification without requiring the full image reconstruction.
A typical pipeline in processing compressive sensing requires image reconstruction before classical
computer vision (CV) algorithms process the images in question. Recent work (Braun et al. 2019)
has shown that CV algorithms can be embedded into the compressive sensing domain directly,
avoiding the reconstruction step altogether. In discrete tomography the full range of all possible
projections is not always feasible or available due to time, resource, or physical constraints. A
hybrid approach in discrete tomography (Pap et al. 2019) finds a minimal number of projections
required to obtain a close approximation of the final reconstruction image. While an image is
still reconstructed after the optimal number of projections is found, determining this optimal set
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required no reconstructions, a significant advantage compared to an approach where either an
iterative or combinatorial selection of reconstructions to determine the optimal set of projections.

4 Medical Training Datasets

The performance of learning-based methods is dictated to a large extent by the size and diversity
of the training dataset. In a biomedical setting, the need for large, diverse, and generic datasets
is non-trivial to satisfy given constraints such as patient privacy, access to acquisition equipment
and the problem of divesting medical practitioners to annotate accurately the existing data. In
this section, we will discuss how researchers address the trade-offs in this dilemma and survey the
various publicly available dataset type used in biomedical image reconstruction literature.

Table 1-Columns ”Data”, ”Site” and ”Size” summarise details about dataset used by different
surveyed papers, which are broadly classified into clinical (real patient), physical phantoms, and
simulated data. The sources of used datasets have been marked in the last column of Table 1-
Columns ”Pub”. Data” in case of their public availability to other researchers. Since phantom data
are not commonly made publicly available, the focus was mainly given to real and simulated data
whether they are publicly available or as part of challenges. Used augmentation techniques have
been mentioned in Table 1-Columns ”Aug”. Remarkably, augmentation is not always possible in
image reconstruction task especially in sensor domain given the non-symmetries of measurements
in some case, the nonlinear relationship between raw and image data, and the presence of other
phenomena(e.g., scattering). We herein survey the most common source of data and discuss their
pros and cons.

4.1 Real-World Datasets

Some online platforms (e.g., Lung Cancer Alliance, Mridata, MGH-USC HCP (2016), and Biobank)
made the initiative to share datasets between researchers for image reconstruction task. Mridata, for
example, is an open platform for sharing clinical MRI raw k-space datasets. The dataset is sourced
from acquisitions of different manufacturers, allowing researchers to test the sensitivity of their
methods to overfitting on a single machine’s output while may require the application of transfer-
learning techniques to handle different distributions. As of writing, only a subset of organs for well
known modalities e.g., MRI and CT are included (Table 1-Columns ”Site”). Representing the best
reconstruction images acquired for a specific modality, the pairs of signal-image form a gold standard
for reconstruction algorithms. Releasing such data, while extremely valuable for researchers, is a
non-trivial endeavour where legal and privacy concerns have to be taken into account by, for
example, de-anonymization of the data to make sure no single patient or ethnographically distinct
subset of patients can ever be identified in the dataset. Source of real-word used datasets on surveyed
papers has been marked in Table 1-Columns ”Pub. Data” where they sizes remain relatively limited
to allow a good generalization of DL-based methods.

4.2 Physics-Based Simulation

Physics-based simulation (Schweiger and Arridge 2014; Harrison 2010; Häggström et al. 2016)
provides an alternative source of training data that allows generating a large and diversified dataset.
The accuracy of a physical simulation with respect to real-world acquisitions increases at the cost of
an often super-linear increase in computational resources. In addition, creating realistic synthetic
datasets is a nontrivial task as it requires careful modeling of the complex interplay of factors
influencing real-world acquisition environment. With a complete model of the acquisition far beyond
computational resources, a practitioner needs to determine how close to reality the simulation needs
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to be in order to allow the method under development to work effectively. Transfer learning provides
a potential remedy to bridge the gap between real and in silico worlds and alleviates the need for a
large clinical dataset (Zhu et al. 2018; Yedder et al. 2019). In contrast, the approach of not aiming
for complete realism but rather using the simulation as a tool to sharpen the research question
can be appropriate. Simulation is a designed rather than a learned model. For both overfitting
to available data is undesirable. The assumptions underlying the design of the simulation are
more easily verified or shown not to hold if the simulation is not fit to the data, but represents a
contrasting view. For example, simulation allows the recreation and isolation of edge cases where a
current approach is performing sub-par. As such simulation is a key tool for hypothesis testing and
validation of methods during development. For DL-based methods the key advantage simulation
offers is the almost unlimited volume of data that can be generated to augment limited real-world
data in training. With the size of datasets as one of the keys determining factors for DL-based
methods leveraging simulation is essential. Surveyed papers that used simulated data as a training
or augmentation data have been marked in Table 1-Columns ”Pub”.

4.3 Challenge Dataset

There are only a few challenge (competition) datasets for image reconstruction task e.g., Low-
DoseCT (2014) FastMRI (Zbontar et al. 2018), Fresnel (Geffrin et al. 2005) and SMLM chal-
lenge (Holden and Sage 2016) that includes raw measurements. Low-quality signals can be simu-
lated by artificially subsampling the full-dose acquired raw signal while keeping their corresponding
high resolution images pair (Gong et al. 2018; Xu et al. 2017). While this method offers an alterna-
tive source of training data, the downsampling is only one specific artificial approximation to the
actual acquisition of low-dose imaging and may not reflect the real physical condition. Hence, per-
formance can be compromised by not accounting for the discrepancy between the artificial training
data and real data. Practitioners can leverage techniques such as transfer learning to tackle the
discrepancy. Alternatively, researchers collect high-quality images from other medical imaging chal-
lenges, e.g., segmentation (MRBrainS challenge (Mendrik et al. 2015), Bennett and Simon (2013)),
and use simulation, using a well known forward model, to generate full and/or incomplete sensor
domain pairs. Here again, only a subset of body scans and diseases for well-studied modalities are
publicly available as highlighted in Table 1-Columns ”Site” and ”Pub. Data” .

5 Reconstruction Evaluation Metrics

5.1 Quality

Measuring the performance of the reconstruction approaches is usually performed using three met-
rics, commonly applied in computer vision, in order to access the quality of the reconstructed
images. These metrics are the root mean squared error (RMSE) or normalized mean squared error,
structural similarity index (SSIM) or its extended version multiscale structural similarity (Wang
et al. 2003), and peak signal to noise ratio (PSNR).

While RMSE measures the pixel-wise intensity difference between ground truth and recon-
structed images by evaluating pixels independently, ignoring the overall image structure, SSIM, a
perceptual metric, quantifies visually perceived image quality and captures structural distortion.
SSIM combines luminance, contrast, and image structure measurements and ranges between [0,1]
where the higher SSIM value the better and SSIM = 1 means that the two compared images are
identical.

PSNR (Eq. 5) is a well-known metric for image quality assessment which provides similar
information as the RMSE but in units of dB while measuring the degree to which image information
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rises above background noise. Higher values of PSNR indicate a better reconstruction.

PSNR = 20.log10

(
Xmax√
MSE

)
(5)

where Xmax is the maximum pixel value of the ground truth image.
Illustrating modality specific reconstruction quality is done by less frequently used metrics such

as contrast to noise ratio (CNR) (Wu et al. 2018) for US. Furthermore, modalities such as US,
SMLM or some confocal fluorescence microscopy can produce a raw image where the intensity
distribution is exponential or long-tailed. Storing the raw image in a fixed-precision format would
lead to unacceptable loss of information due to uneven sampling of the represented values. Instead,
storing and more importantly processing the image in logarithmic or dB-scale preserves the encoded
acquisition better. The root mean squared logarithmic error (RMSLE) is then a logical extension
to use as an error metric (Beattie 2018).

Normalized mutual information (NMI) is a metric used to determine the mutual information
shared between two variables, in this context image ground truth and reconstruction (Wu et al.
2018; Zhou et al. 2019). When there is no shared information NMI is 0, whereas if both are identical
a score of 1 is obtained. To illustrate NMI’s value, consider two images X, Y with random values.
When generated from two different random sources, X and Y are independent, yet RMSE(X,Y) can
be quite small. When the loss function minimizes RMSE, such cases can induce stalled convergence
at a suboptimal solution due to a constant gradient. NMI, on the other hand, would return zero (or
a very small value), as expected. RMSE minimizes average error which may make it less suitable
for detailed distribution matching tasks in medical imaging such as image registration where NMI
makes for a more effective optimization target (Wells III et al. 1996).

The intersection over union, or Jaccard index, is leveraged to ensure detailed accurate recon-
struction (Yedder et al. 2018; Sun et al. 2019a). In cases where the object of interest is of variable
size and small with respect to the background, an RMSE score is biased by matching the back-
ground rather than the target of interest. In a medical context, it is often small deviations (e.g.
tumors, lesions, deformations) that are critical to diagnosis. Thus, unlike computer vision problems
where little texture changes might not alter the overall observer’s satisfaction, in medical recon-
struction, further care should be taken to ensure that practitioners are not misled by a plausible but
not necessarily correct reconstruction. Care should be taken to always adjust metrics with respect
to their expected values under an appropriate random model (Gates and Ahn 2017). The under-
standing of how a metric responds to its input should be a guideline to its use. As one example, the
normalization method in NMI has as of writing no less than 6 (Gates and Ahn 2017) alternatives
with varying effect on the metric. Table 1-Columns ”Metrics” surveys the most frequently used
metrics on surveyed papers.

5.2 Inference Speed

With reconstruction algorithms constituting a key component in time-critical diagnosis or interven-
tion settings, the time complexity is an important metric in selecting methods. Two performance
criteria are important in the context of time: Throughput measures how many problem instances
can be solved over a time period, and latency measures the time needed to process a single problem
instance. In a non-urgent medical setting, a diagnosing facility will value throughput more than
latency. In an emergency setting where even small delays can be lethal, latency is critical above
all. For example, if a reconstruction algorithm is deployed on a single device it is not unexpected
for there to be waiting times for processing. As a result latency, if the waiting time is included,
will be high and variable, while throughput is constant. In an emergency setting there are limits as
to how many devices can be deployed, computing results on scale in a private cloud on the other
hand can have high throughput, but higher latency as there will be a need to transfer data offsite
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for processing. In this regard it is critical for latency sensitive applications to allow deployment
on mobile (low-power) devices. To minimize latency (including wait-time), in addition to parallel
deployment, the reconstruction algorithm should have a predictable and constant inference time,
which is not necessarily true for iterative approaches.

Unfortunately, while some papers reported their training and inference times, (Table 1-Columns
”Metrics-IS”) it is not obvious to compare their time complexity given the variability in datasets,
sampling patterns, hardware, and DL frameworks. A dedicated study, out of the scope of this survey,
needs to be conducted for a fair comparison. Overall, the offline training of DL methods bypasses the
laborious online optimization procedure of conventional methods, and has the advantage of lower
inference time over all but the simplest analytical. In addition, when reported, inference times are
usually in the order of milliseconds per image making them real time capable. The unrolled iterative
network, used mainly in the MR image reconstruction (Sun et al. 2016; Yang et al. 2017b) as the
forward and backward projections can be easily performed via FFT, might be computationally
expensive for other modality where the forward and backward projections can not be computed
easily. Therefore, the total training time can be much longer. In addition when data is acquired
and reconstructed in the 3-D mode, the GPU memory becomes a limiting factor especially when
multiple unrolling modules are used or the network architecture is deep.

6 Conclusion, Discussion and Future Direction

Literature shows that DL-based image reconstruction methods have gained popularity over the last
few years and demonstrated image quality improvements when compared to conventional image
reconstruction techniques especially in the presence of noisy and limited data representation. DL-
based methods address the noise sensitivity and incompleteness of analytical methods and the
computational inefficiency of iterative methods. In this section we will illustrate the main trends
in DL-based medical image reconstruction: a move towards task-specific learning where image
reconstruction is no longer required for the end task, and the focus on a number of strategies to
overcome the inherent sparsity of manually annotated training data.

6.1 Discussion

Learning: Unlike conventional approaches that work on a single image in isolation and require
prior knowledge, DL-based reconstruction methods leverage the availability of large-scale datasets
and the expressive power of DL to impose implicit constraints on the reconstruction problem. While
DL-based approaches do not require prior knowledge, their performance can improve with it. By
not being dependent on prior knowledge, DL-based methods are more decoupled from a specific
imaging (sub)modality and thus can be more generalizable. The ability to integrate information
from multiple sources without any preprocessing is another advantage of deep neural networks.
Several studies have exploited GANs for cross-modal image generation (Li et al. 2020a; Kearney
et al. 2020) as well as to integrate prior information (Lan et al. 2019; Bhadra et al. 2020). Real-time
reconstruction is offered by DL-based methods by performing the optimization or learning stage
offline, unlike conventional algorithms that require iterative optimization for each new image. The
diagnostician can thus shorten diagnosis time increasing the throughput in patients treated. In
operating theatres and emergency settings this advantage can be life saving.

Interpretability: While the theoretical understanding and the interpretability of conventional
reconstruction methods are well established and strong (e.g., one can prove a method’s optimality
for a certain problem class), it is weak for the DL-based methods (due to the black-box nature of
DL) despite the effort in explaining the operation of DL-based methods on many imaging processing
tasks. However, one may accept the possibility that interpretabilty is secondary to performance as
fully understanding DL-based approaches may never become practical.
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Complexity: On the one hand, conventional methods can be straightforward to implement,
albeit not necessarily to design. On the other, they are often dependent on parameters requiring
manual intervention for optimal results. DL-based approaches can be challenging to train with a
large if not intractable hyper-parameter space (e.g., learning rate, initialization, network design).
In both cases, the hyper-parameters are critical to results and require a large time investment
from the developer and the practitioner. In conclusion, there is a clear need for robust self-tuning
algorithms, for both DL-based and conventional methods.

Robustness: Conventional methods can provide good reconstruction quality when the mea-
sured signal is complete and the noise level is low, their results are consistent across datasets and
degrade as the data representation and/or the signal to noise ratio is reduced by showing noise or ar-
tifacts (e.g., streaks, aliasing). However, a slight change in the imaging parameters (e.g., noise level,
body part, signal distribution, adversarial examples, and noise) can severely reduce the DL-based
approaches’ performances and might lead to the appearance of structures that are not supported
by the measurements (Antun et al. 2019; Gottschling et al. 2020). DL based approaches still leave
many unsolved technical challenges regarding their convergence and stability that in turn raise
questions about their reliability as a clinical tool. A careful fusion between DL-based and con-
ventional approaches can help mitigate these issues and achieve the performance and robustness
required for biomedical imaging.

Speed: DL-based methods have the advantage in processing time over all but the most simple
analytical methods at inference time. As a result, latency will be low for DL-based methods.
However, one must be careful in this analysis. DL-based methods achieve fast inference by training
for a long duration, up to weeks, during development. If any changes to the method are needed and
retraining is required, even partial, a significant downtime can ensue. Typical DL-based methods
are not designed to be adjusted at inference time. Furthermore, when a practitioner discovers that,
at diagnosis time, the end result is sub-par, an iterative method can be tuned by changing its
hyper-parameters. For a DL-based approach, this is non-trivial if not infeasible.

A final if not less important distinction is adaptive convergence. At deployment, a DL-based
method has a fixed architecture and weights with a deterministic output. Iterative methods can be
run iterations until acceptable performance is achieved. This is a double-edged sword as convergence
is not always guaranteed and the practitioner might not know exactly how many more iterations
are needed.

Training Dataset: Finally, the lack of large scale biomedical image datasets for training due
to privacy, legal, and intellectual property related concerns, limits the application of DL-based
methods on health care. Training DL-based models often require scalable high performance hard-
ware provided by cloud based offerings. However, deploying on cloud computing and transmitting
the training data risks the security, authenticity, and privacy of that data. Training on encrypted
data offers a way to ensure privacy during training Gilad-Bachrach et al. (2016). More formally a
homomorphic encryption algorithm Rivest et al. (1978) can ensure evaluation (reconstruction) on
the encrypted data results are identical after decryption to reconstruction on the non-encrypted
data. In practice, this results in an increase in dataset size as compression becomes less effective, a
performance penalty is induced by the encryption and decryption routines, and interpretability and
debugging the learning algorithm becomes more complex since it operates on human unreadable
data.

The concept of federated learning, where improvements of a model (weights) are shared between
distributed clients without having to share datasets, has seen initial success in ensuring privacy
while enabling improvements in quality Geyer et al. (2017). However a recent work Zhu et al.
(2019) has shown that if an attacker has access to the network architecture and the shared weights,
the training data can be reconstructed with high fidelity from the gradients alone. Data sharing
security in a federated setting still presents a concern that requires further investigations.

Simulating a suitable training set also remains a challenge that requires careful tuning and more
realistic physical models to improve DL-based algorithm generalization.
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Performance: Reconstruction is sensitive to missing raw measurements (false negative, low
recall) and erroneous signal (false positive, low precision). Sensitivity in reconstruction is critical
to ensure all present signals are reconstructed but high recall is not sufficient as in this setting a
reconstructed image full of artifacts and noise can still have high recall. Specificity may be high in
reconstructed images, where little to no artifacts or noise is present, but at the cost of omitting
information. In the following we discuss how the indicators of both are affected by training regimes,
dataset size, etc.

Deep learning reconstruction quality varies when using different loss metrics. For instance, when
a basic L1/L2 loss in image space is used solely, reconstruction results tend to be worse quality
because it generates an average of all possible reconstructions having the same distance in image
space, hence the reconstructed images might still present artifacts (Shen et al. 2019; Yedder et al.
2018). Adding feature loss in high dimensional space like perceptual loss and frequency domain
loss helps to better constrain the reconstruction to be perceptually more similar to the original
image (Yang et al. 2017a; Shen et al. 2019; Huang et al. 2019b). Furthermore, reconstruction
quality varies with dataset size. To analyze the effect of training-dataset size on reconstruction
quality, Shen et al. (2019) trained their reconstruction model with a variable number of training
samples while gradually increasing the dataset size from 120 to 6,000 samples. Interestingly, they
reported that while the reconstruction quality improved with the number of training samples,
the quality increase trend’s did not converge which suggests that better reconstruction quality
might be achieved if larger datasets are available. Similarly, Sun and Kamilov (2018) studied the
effect of decreasing the number of measurements and varying the noise level on multiple scattering
based deep learning reconstruction methods and concluded that better features extraction from
higher dimensional space are required for very low sampling cases. In addition, data are usually
imbalanced, with the unhealthy (including anomalies) samples being outnumbered by the healthy
ones resulting in reduced performance and compromised reconstruction of tumor related structures
(Wen et al. 2019).

While deep networks can take the whole image and produce outputs in a single forward pass,
input size can sometimes be a limiting factor as excessive memory cost becomes a challenge for cur-
rent GPU architectures especially for three-dimensional (3D) images with relatively high resolution.
Patch-based training divides the image into possibly overlapping patches and produces outputs for
each sub-image in independent forward passes while requiring a reduced amount of memory and
time on GPU. For patch-based training, each iteration can take a set of patches (minibatch) for a
more stable training where a proper choice of batch size is important for a network convergence
and generalization (Goceri and Gooya 2018). However, patch-based learning is mostly relevant
when training in the same domain, which is the case of deep learning as a pre/post-processing
step (Cheng et al. 2018; Wu et al. 2019; Xu et al. 2017), given the difficulty to map part of the raw
signal to a corresponding image patch in end-to-end learning.

Task-specific Learning: Prediction tasks, such as classification or prediction of treatment
directly from measurements, that is, omitting the image reconstruction tasks, is a non-trivial ap-
proach that, under the right conditions, can be very worthwhile. Since an explicit encoding of the
image is no longer needed, the architecture can be reduced in complexity or redesigned to focus
specifically on the task. In addition, focusing on task-specific performance ensures all computa-
tional resources are committed to task-specific training rather than expending focus to perhaps
unnecessary image reconstruction as an intermediate step. Indeed, as we move towards artificial
intelligence based task the field is still undecided if the reconstructed image is required at all for
state-of-the-art performance in classification, diagnosis, or treatment prediction as it becomes less
important to have a spatio-temporal image representation (i.e. the domain that humans are familiar
with). However, one cannot deny the human reliance on visual evidence. Removing the image re-
construction task then can lead to lower interpretability, and perhaps makes it harder for clinicians
to trust the outcome. Trust can be regained by increased performance and stability. We observe
that from an optimization point of view as solving a sequence of two ill-posed problems (recon-
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struction and task prediction) can be easier compared to solving the entire composite problem at
once. When the output of the first ill-posed problem is the input of the second, the search space
can be dramatically reduced (Sbalzarini 2016).

Finally, a stumbling block towards adaptation of task-specific training is the lack of standardized
datasets. Learning the translation from measurement domain to task domain leads to a field of
widely diverse combinations of measurement versus tasks domains, making it less likely to find a
standardized challenge dataset offering at least a subset of combinations. The motivation behind
task-specific learning can be as simple as a lack of image training data, forcing the practitioner
to remove the image reconstruction task altogether by necessity. An contrasting approach to task-
specific learning and image-reconstruction aided learning are multi-output or synthesizing networks.
For example, consider MRI where the acquisition device can generate T1 or T2 images, or a
combination of both, by changing acquisition parameters. A classification network that expects
both as input is then limited in application unless an intermediate network synthesizes the ‘missing‘
images. In other words, rather than omitting the reconstruction, synthesizing networks reconstruct
a set of images from a single input (Sharma and Hamarneh 2019). One can then generalize this
concept to asking what reconstruction space is ideal for the end task, rather than limiting the
method to human interpretable reconstruction (images).

6.2 Future Directions

The future of the field will be to produce higher quality images given the most limited resource bud-
get such as radiation dose, scanning time, and scanner complexity as well as from online real patient
inputs using algorithms with the fewest hand-tuned parameters and lowest power consumption.

There remain a vast range of challenges and opportunities in the field. So far, most approaches
focus on CT and MR image reconstruction while only a handful of approaches exist for the re-
construction of the remaining modalities. Hence, the applicability of deep learning models to these
problems is yet to be fully explored. In addition, proposed deep learning architectures are often
generic and are not fully optimized for specific applications. For instance, how to optimally ex-
ploit spatio-temporal redundancy, or how to exploit multi-spectral data. By addressing these core
questions and designing network layers to efficiently learn such data representation, the network
architecture can gain a boost in performance and reliability.

Joint multi-modal image reconstruction, such as DOT/CT (Baikejiang et al. 2017) and PET/
MRI (Wang et al. 2015), has been proposed on several iterative approaches to take advantage of
both imaging modalities and led to improving the overall imaging performance, especially avoiding
the spatio-temporal artifacts due to the scanning with different devices at different times and posi-
tions. The idea relies on leveraging the information provided by feature similarity between multiple
modalities. While this direction has great interest, it has only just begun to receive considera-
tion (Cui et al. 2019) and remains a direction for further exploration. Collecting suitably calibrated
and registered data on hybrid multi-modality imaging systems remains a key challenge as well.

Attention driven sampling received increasing interest recently especially in a limited data rep-
resentation context. While adapting the sampling to the reconstruction algorithm showed improved
image quality compared to conventional sampling strategies (Jin et al. 2019), it could be computa-
tionally more expensive with unknown convergence behavior. The development of efficient sampling
learning algorithms would be a promising research direction. In optical coherence tomography the
application of wavelet based compressive sensing has been shown capable to reconstruct with a
little as 20% of the samples (Lebed et al. 2013). The potential demonstrated through handcrafted
sampling strategies indicates that DL-based methods could also exploit this opportunity.

Deep learning models require computationally powerful machines (GPU) to provide online re-
construction and achieve promised performance. Network pruning and sparsifying, recently pro-
posed for computer vision tasks (Alford et al. 2018; Aghasi et al. 2017; Huang and Wang 2018),
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present a promising direction yet to be explored on image reconstruction tasks in order to allow
DL-based model processing on CPU and mobile devices. This will be of great interest to emer-
gent mobile scanners (e.g., DOT (Shokoufi and Golnaraghi 2016), US (Georgeson and Safai 2017),
CT (Rykkje et al. 2019)).

Reducing the encoding size in bits of network weights without altering the quality of the pre-
diction has been demonstrated on several references deep learning image processing networks Sun
et al. (2019b). A reported decrease in training time of 30-60% is only one benefit. By reducing
network weights from 64 or 32 bits to 8 or smaller (i.e., weights quantization) the network requires
a smaller memory footprint. As a result, networks that are at the time of writing too large to fit
on a single GPU can be reduced to fit on a single GPU. Conversely, networks too large to deploy
on edge devices (handheld scanner, mobile phones, etc.) can become easily deployable in the field
without changing their architecture. Finally and not least important, the reduction in training time
results in a significant reduction in the environmental impact of the training procedure.

Finally, as performance evaluation metrics are more computer vision task-oriented, they tend
to be insufficient in the biomedical imaging context as they do not provide real diagnostic accuracy
significance. We advocate a shift toward task-oriented evaluations given that reconstructed images
are usually used for a specific diagnosis or treatment purpose. While such a measure may be
expensive, especially if they require human experts’ feedback, they will be critical in creating
algorithms that can advance the biomedical imaging practice.

The application of novel DL approaches to medical image reconstruction is spanning an increas-
ingly large number of modalities. A clear trend is present in recent art moving towards unsupervised
approaches, inspired by a constraint in realistic or real world training data. An extension of this
principle is illustrated by task-specific training where the reconstruction task is omitted altogether
in favor of a singular focus on the actual end task such as classification or diagnosis. Related to
the sparsity of manual annotated training data is generalizability with works focusing on sacri-
ficing challenge dataset performance in favor of generalizability. Hybrid learning, the concept of
reconstructing an image using a secondary modality as prior shows promise in this regard as well.
With interpretability in DL still a hot topic we observe the beginning of a trend that moves away
from interpretability by omitting any intermediate results as showcased in task-specific learning.
The potential for reduced trust by the end user is offset by ‘trust by results’: if a diagnosis is more
accurate without a reconstructed image, is the image needed at all? Novel concepts such as feder-
ated learning and homomorphic encryption to protect distributed clinical data are quickly finding
adoption in the field.
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ä
g
g
st

rö
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D. Waibel, J. Gröhl, F. Isensee, T. Kirchner, K. Maier-Hein, and L. Maier-Hein. Reconstruction of initial pressure
from limited view photoacoustic images using deep learning. In Photons Plus Ultrasound: Imaging and
Sensing 2018, volume 10494, page 104942S. International Society for Optics and Photonics, 2018.

G. Wang. A perspective on deep imaging. IEEE Access, 4:8914–8924, 2016.
G. Wang, M. Kalra, V. Murugan, Y. Xi, L. Gjesteby, M. Getzin, Q. Yang, W. Cong, and M. Vannier. Vision

20/20: Simultaneous CT-MRI—Next chapter of multimodality imaging. Medical Physics, 42(10):5879–5889,
2015.

G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. Image reconstruction is a new frontier of machine learning.
IEEE Transactions on Medical Imaging, 37(6):1289–1296, 2018.

H. Wang, N. Wu, Y. Cai, L. Ren, Z. Zhao, G. Han, and J. Wang. Optimization of reconstruction accuracy of
anomaly position based on stacked auto-encoder neural networks. IEEE Access, 7:116578–116584, 2019.

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang. Accelerating magnetic resonance
imaging via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI),
pages 514–517. IEEE, 2016.

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality assessment. In The
Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, volume 2, pages 1398–1402.
Ieee, 2003.

A. Webb and G. C. Kagadis. Introduction to biomedical imaging. Medical Physics, 30(8):2267–2267, 2003.
W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume registration by maxi-

mization of mutual information. Medical image analysis, 1(1):35–51, 1996.
B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler. Transform learning for magnetic resonance image reconstruc-

tion: From model-based learning to building neural networks. arXiv preprint arXiv:1903.11431, 2019.
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