Dynamic Modeling, Week 4

Greg Baker
December 3, 2003

All notes and code available at:

http://www.cs.sfu.ca/ ggbaker/reference/modeling/

1 Debugging and Testing

e You need to be sure your program is working correctly.
e It’s impossible to check a whole program at once. You have to test piece-by-piece.
e You can test functions by importing your program into the Python interpreter:

>>> from dynamic import * (suck in all of the functions, etc from dynamic.py)
>>> f = zeros((xmax+1,tmax+1), Float) (create the arrays)

>>> dec = zeros((xmax+1,tmax+1), Int)

>>> print f[:,tmax] (output all values of x with t=tmax)

o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ...]

>>> initialize(f) (run initialize so we can see what it does)

>>> print f[:,tmax] (check £ after)

[0. 7.05882353 12.63157895 17.14285714 20.86956522 ...]
>>> update(f , dec, tmax-1) (fill in the tmax-1 column)

>>> print f[:,tmax-1] (check £ after)

[0. 9.91304348 14.75294118 18.66666667 21.9014778 ...]
>>> print dec[:,tmax-1] (check dec after)
[01111111111110000002222222 ...1]
>>> listmax([17.08, 19.10, 15.85]) (test 1istmax)

(1, 19.10)

>>> chop(13, 0, 10) (test chop)

10

e If you're suspicious of particular values (possibly because they’re causing an error),
print them out and make sure they’re right. Add a line like:

print t,x,h

This will let you check the values (before the error) and see what’s going on.

e As you make changes, try running your program and make sure the output changes
appropriately. If not, you probably didn’t make the change you thought.

Getting to your data

Both a backward and forward iteration generate a lot of data—more than you could
look through manually.

It’s easy to write programs to go through the fitness and decision arrays and do a
particular operation—just write some for loops to skim through the arrays.

e examples:

— output fitness values for a particular state for all times
— list all conditions where the decision is to return to the haulout

— check to see at what time the decisions change

Any output can be formated for a spreadsheet/stats program and imported for further
analysis or graphing.

Stationarity

Running the forward iteration (Monte Carlo) is much faster than the backward (dy-
namic program).

e Do the individuals always behave the same way if they're far enough from the end of
time?

e If so, there’s no point in calculating the decisions for long periods of time—they’re all
the same anyway. The model is “stationary.”

We can use stationarity to do long forward simulations.

For times before the start of the dynamic arrays, just use the decisions from ¢ = 1:
t
0 T

dynamic decision array: ‘

forward iteration:

|
|

0 77
|

use decisions from t=1 use calculated decisions

e You need to first convince yourself that the model is stationary—use a checking pro-
gram like the ones described above.

e Then, modify the Monte Carlo program to look at the right place in the decision array.

— Maybe, define a function like:

def array_time(t):

if t < monte_steps - tmax + stationary_point:
We’re back before the stationary point.
Use the stationary point.
return stationary_point

else:
We have a real calculated decision value.
Use it.
return tmax-(monte_steps-t)

— Then, references to the decision array become:
dec[x,y,h,array_time(t)]

— ...and set monte_steps to whatever you like.

How many state values?

The total calculation time and memory for your dynamic program will be proportional
to the number of entries in the array.

This will be the product of the array’s indices, €g. Tmar X Ymaz X Amaz X T

e Decreasing the number of possible values for any one state will proportionally decrease
calculation time and memory.

So, how few is too few?

— Less state values means more linear interpolation

— ...and more chance in the Monte Carlo simulation.

Linear interpolation won’t be a problem if: (i) you keep enough states to capture
the features of the fitness landscape and (ii) the fitness landscape is generally
smooth.

In the Monte Carlo, the values being probabilistically rounded will be smaller,
so there would be more variation in the times taken to lose/gain value. But, the
expected behaviour should be the same. You may have to run more simulations
to get good averages.

e How many is that again?

— At least 10. Probably less than 100.

— Try it and see if less states changes the behaviour (holding everything else con-
stant).

Slice of Arrays

Output fitness and decision values for a particular
x,y,h through the whole time window.

parameters in param.py
from dynamic import x*

filename="timeslice%i.txt" % (xmax)

print "Loading data..."
f = fromfile(fitfile, Float, (xmax+1,ymax+1,hmax,tmax+1))
dec = fromfile(decfile, Int8, (xmax+1,ymax+1,hmax,tmax+1))

data = open(filename, ’w’)
x=b
y=10
h=1

data.write("x=%i\ny=%i\nh=%i\n\n" % (x,y,h))
data.write("t\tdecision\tfitness\n")
print "Writing output file..."
for t in range(tmax+1):
if t%10==0:
data.write("%i\t%i\t%g\n" % (t,dec[x,y,h,t],f[x,y,h,t]))

data.close()

Check for Stationarity

Check to see when decisions destabilize—-if it’s late, our model
looks stationary.

parameters in param.py
from param import *

print "Loading data..."
#f = fromfile(fitfile, Float, (xmax+1,ymax+1,hmax,tmax+1))
dec = fromfile(decfile, Int8, (xmax+1,ymax+1,hmax,tmax+1))

the starting time for the test
t0 =1

print "Checking for differences..."
found=0
for t in xrange(t0,tmax):
if t%100==0:
print t
for x in range(xmax+1):
for y in range(ymax+1):
for h in range(hmax):
if dec[x,y,h,t0] != declx,y,h,t]:
print ("Difference at x=%i, y=%i, h=¥i, t=/i: "
+ " init=Y%i, now=%i")\
% (x,y,h,t,dec[x,y,h,t0],dec[x,y,h,t])

found=1
if found:
print "All decisions identical for t=4i to %i." % (t0,t-1)
break;

raw_input ("Press return to exit");

