EVOLUTION OF DECEIT AS A SECOND-LINE DEFENSE:

 $H_{t+1} = H_t e^{r-aPt}$ $P_{t+1} = H_t (1-e^{-aPt})$

A QUESTION POSED:

Could a mutant fake marker invade of population of "honest" caterpillars?

REFINE QUESTION

Could a mutant fake marker invade of population of "honest" caterpillars that employ hiding as a first line of defense?

SCENARIO

THE CHROMOSOME: 2 loci, 4 alleles

False Mark

- High
- Medium
- Low
- No

- Strong
- Medium
- Weak
- None

THE CHROMOSOME

A binary string that represents the phenotype that expresses a specific strategy:

- e.g. 1100
- 1 1 translates into good hider
- 0 0 translates into no mark

AN EXAMPLE

Strategy 0010 has a value of 2
i.e. 0*1 + 1*2 + 0*4 + 0*8

Strategy 1001 has a value of 9 i.e.
 1*1+0*2+0*4+1*8

SIMULATION

- Deterministic
- Some proportion of hosts are found based upon relative hiding value
- Some proportion of found hosts are attacked based upon mark strength and wasp rules

UNLIKE PREY-

Hosts don't disappear after attack but they may change identity

FITNESS IS DETERMINED BY:

- Escape from parasitoids
- Cost of defense
 Hiding≥ false-mark

THREE SCENARIOS:

Parasitoids are hard wired (frequency independent)

Parasitoids are flexible

Parasitoid's flexibility evolves

STARTING POPULATION

FREQUENCY INDEPENDENT

PARASITOID ACCEPTANCE PLASTICITY

- Within generation as number of "parasitized" hosts increases
- Among generations as fake marker phenotypes change in frequency

PLASTIC PARASITES

THE NEW GA

- Actually two GA's, one for the host population and one for the parasitoid population
- The parasitoid chromosome has one gene for sensitivity to mark strength and another for sensitivity to mark frequency in the environment

PARASITES EVOLVE

$$FIT(p) = \frac{a\left(Hf_{h} + \sum_{n=1}^{N} Ff_{h}o_{p,n} + Df_{d}o_{p,d}\right)}{1 + a\left(\frac{H}{t_{o}} + \frac{\sum_{n=1}^{N} Fo_{p,n}}{t_{o}} + \frac{\sum_{n=1}^{N} F(1 - o_{p,n})}{t_{r}} + \frac{\sum_{n=1}^{N} Do_{p,d}}{t_{o}} + \frac{\sum_{n=1}^{N} D(1 - o_{p,d})}{t_{r}}\right)}$$

PARASITOID'S PAYOFF

ACCEPT

- FIT(a | p) = $fp t_o$
- FIT($a \mid h$) = $fh t_o$

REJECT

• FIT = $-t_r$

PARASITES EVOLVE

AN INSIGHT

False marking as a second line of defense only spreads through the prey population under limited circumstances

(our test is conservative!)

HOST DYNAMICS

$$\gamma_n(t+1) = \gamma_n(t)(1-\mu)$$

where $\mu = \gamma_n \alpha_n \frac{1}{\sum_{n=1}^N \gamma_n \alpha_T} \rho\left(\frac{m}{T} \beta_n, \sigma\right) \theta$

where α_n = hide genotype n,

- $\frac{m}{T}$ = fraction of marked hosts in population T,
- β_n = false mark genotype n,
- ρ = parasitoid response
- σ = parasitoid response shape pararameter
- θ = proportion of hosts encountered per epoch

