Dynamic Modeling, Week 2

Greg Baker
November 19, 2003

All notes and code available at:

1

1.1

http://www.cs.sfu.ca/ ggbaker/reference/modeling/

Patch Selection Dynamic Program

Main program

This is a revised version of patch selection that moves the parameters and common
definitions into a separate file. It will be shared by the dynamic program and Monte
Carlo program. This way, there are no duplicate numbers to keep in sync.

Starting with “from param import *” runs the code in param.py. Now we have the
parameter definitions from that file.

param.py defines some variables and a function

— “from numarray import *” gets everything from the numarray module.

— numarray is needed to create the big arrays that we need (£, dec).
In dynamic.py, the main() function is now the starting point (more on that later)

The zeros function comes from numarray. It creates an array with the given dimen-
sions, filled with Os.

Types for numarray arrays:

— Int for integers: -10, 2291, 0, 4294967295
— Float for real numbers: 36.923076, -229.00219, 2.34e12 (= 2.34 x 10'?)

The rest of main() is pretty straightforward. It calls some other functions to do the
backwards iteration.

The last two lines dump the two big arrays to files, so they can be used in other
programs. This lets us do a bunch of analysis with only one dynamic run.

1.2

1.3

update(f, dec, t)
Fill in all values in £ and dec for time t.

x = 0 is easy—fitness is 0.0, there is no decision (it’s already 0, so we might as well
leave it)

For every other x value, check all possible decisions. Select the one with max fitness.
choices is a Python “list”. The first line in the for x loop sets it to an empty list.
The for d loop calculates the fitness for each possible decision.

choices.append() adds another item to the end of the list.

After the for dloop, choices contains the fitness values for each of the three decisions.

— eg. [17.08, 19.10, 15.85]
— the fitness value for decision 0 (first foraging patch) is 17.08.

The 1istmax function returns the position of the largest value in the list, and the value
itself.

>>> listmax([17.08, 19.10, 15.85])
(1, 19.10)

In this case, we make decision 1 (foraging patch 2) and have fitness 19.10.

Note that the decisions are 0, 1, 2 (not 1, 2, 3). This is easier with Python’s zero-based
arrays.

These values are entered into the dec and f arrays, so we can use them later.

v, x, t, f)
Calculate reproductive success, assuming decision d from energy x at time d.
The if /elif/else block in Python selects one of the chunks of code to execute.

— Conditions are checked in order. When the first true one is found, execute that
code.

— If none are true, execute the else code.

Decisions 0 and 1 (d<2) are foraging patches. Calculate fitness from formulas in the
model.

Decision 2 is the reproduction patch. Fitness it reproduction plus new energy state.

Restrictions on reproduction: can’t reproduce if * < z,,. Can have at most c;3 off-
spring.

Each offspring costs one energy unit. Can’t go below = =).

2 Seal Foraging Dynamic Program

Mostly the same as the patch selection model. Some key differences:
e Linear interpolation needed

— Handled by the interpolate_xy function

— Instead of using f [new_x, new_y, new h, new_t] elsewhere, call interpolate_xy
(f, new x, new.y, new h, new t) to take care of any fractional z and y values
and return the correct fitness value.

— Uses the formula from Clark-Mangel.

— Also takes care of bounds checking—won’t let go past 0 or ;-
e More complicated fitness function makes V more complicated.
— Every fitness value is multiplied by the probability of survival for that habi-

tat/decision. These are pre-calculated in param.py.

— Some decisions take more than one time unit, so we have to make sure there is
time before T to complete the decision.

— Some decisions are impossible. Return —1 fitness if it is—that decision won’t be
taken.

3 Forward Iteration

e After the backwards iteration, we have an array, dec, full of decisions. Let’s use that.

1. Choose some starting values for the state variables and set ¢ = 0.

2. Have a look at the decision for that ¢ and state variables. Output the decision.
3. Determine how the state variables will change after that decision.
4

. Move the individual to that position in the matrix—change ¢ and state variables
as appropriate.

5. Repeat until t =T or it dies.

You can then look at the decisions and overall behaviour. Is it realistic?

If not, you can (a) accept it or (b) change your model.

Some state transitions may depend on chance—it might find food, get eaten, etc.

— If so, you’ll have to randomly decide whether the chance comes up or not.

— So, not every forward iteration will be the same. Run several to see what happens
on average.

If you are doing linear interpolation, it comes up here too.

5

— eg. If we get the new value z = 2.9, what do we do?

— Probabilistically round to an integer. Eg. round to three 90% of the time and to
two 10% of the time.

Patch Selection Monte Carlo

Main Program

Sends output to a file that can be read into a spreadsheet/stats program. (How that’s
done is explained below.)

Does a fixed number of simulations, runs.

At each simulation step (decision by the individual), get the decision from dec and
determine what happens next.

Move to the next state and time and count any reproduction before we move on.

If we’re eaten or starved, the simulation is over.

next_state(x, t, d)

Take a given energy, time and decision. Figure out what happens next.
Mirrors the calculations done in V in the dynamic program.

For anything that might happen, use the rv function to generate the randomness.
Return the state for the possibility that came true.

Returns (z,t,7,e): x is the energy state, t is the time, r is the reproduction in this
time step, e is one if we were eaten.

Seal Foraging Monte Carlo

Mostly the same as the patch selection model. Some key differences:

e Since linear interpolation was used in the dynamic program, we need to deal with it

here as well.

— The prob_round function does the probabilistic rounding. The same as rv, but
with an integer part.

e Different file output:

— Also outputs a human-readable file.

— The state function coverts the terminal condition code to a word for easy reading.

— Formatting a line for the spreadsheet file is handed off to the ss_l1ine function.
It used in two places; this keeps them the same.

Only lines with changed states are outputted

— Nothing printed unless one of z,y, h, d change.
— Too much output otherwise.

— The variable last holds the list (x,y,h,d). If that changes, we need to do the
output.

The possibility of getting eaten is handled in the main program, not next_state. (No
reason, just a style difference.)

No reproduction is possible during the simulation, so we don’t have to keep track of it.

Formatting Output

Create data for a spreadsheet /stats program is easy, as long as its formatted correctly.
To output to a file:

1. Open the file for writing: data = open(montefile, ’w’)
2. Write to the data file handle: data.write("to the file")
3. Write as much as you need.

4. Close the file: data.close()

data.write doesn’t automatically start a new line with each statement (print does).
To go to a new line, type \n.

Data that you want to import into a spreadsheet should be formatted in tab-separated
columns. To print a tab, type \t.

eg. output a row with values A, 32.2, 10 in the first three columns:
data.write("A\t32.2\t10\n")

The best way to output variable values is the Python formatting operator, %. The %
operator is a way to create formatted output from a template:

"template string" J, (replacements)
Any percent signs in the template string will be replaces with the values after the %.

>>> print "((%i)) [[hgll" % (10, 12.345)
((10))[[12.345]1]

>>> a=10-2
>>> print "%i\t%i\t%i\n" % (a, a/2, 15)
8 4 15

e For an integer, use %i and %g for a float. The replacements are taken in order.

7 Testing

e You can put the main code for your program in a function called main and put this at
the bottom of the file:

if _name__ == ’_main__’:
main()

e This lets you import your code for testing or run it by itself.
e eg. in the Python interpreter (with the patch selection model):

>>> from dynamic import * (suck in all of the functions, etc from dynamic.py)
>>> f = zeros((xmax+1,tmax+1), Float) (create the arrays)

>>> dec = zeros((xmax+1,tmax+1), Int)

>>> print f[:,tmax] (output all values of x with t=tmax)

Lo. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ...]

>>> initialize(f) (run initialize so we can see what it does)

>>> print f[:,tmax] (check £ after)

[0. 7.05882353 12.63157895 17.14285714 20.86956522 ...]
>>> update(f, dec, tmax-1) (fill in the tmax-1 column)

>>> print f[:,tmax-1] (check £ after)

[0. 9.91304348 14.75294118 18.66666667 21.9014778 ...]
>>> print dec[:,tmax-1] (check dec after)
[01111111111110000002222222 ...]
>>> listmax([17.08, 19.10, 15.85]) (test listmax)

(1, 19.10)

>>> chop(13, 0, 10) (test chop)

10

This lets us check various parts of the program by hand. Without the __main__ trick,
the import would have made the whole program run—not what we wanted.

e Also, adding a few print statements to output suspicious values at key times can be
very useful.

