

STRUCTURED INDOOR MODELING

<u>Satoshi Ikehata</u>

Hang Yan

Yasutaka Furukawa

Washington University in St. Louis Department of Computer Science & Engineering

Indoor scenes are structured

Point cloud

StPense gretph associated with its structure

Structured representation in computer vision

[Yao and Fei-Fei, 2010]

[Gupta, Efros and Hebert, 2010]

[Hedau, Hoiem and Forsyth, 2012]

Dense reconstruction methods

Polygons [Hiep et al.]

Point cloud [Furukawa et al.]

Depthmap [Campbell et al.]

Node: Structural element - Contains geometry

Edge: "Consist of"

Scene consists of rooms

Room consists of walls, floor and ceiling

Edge: "Connected"

Walls are connected sharing a room corner

Wall and door are connected

Structured Indoor Modeling

Floor-plan generation

Indoor viewer

Inverse CAD

How to recover structure graph? II Sequential grammar rule applications (Assumption: Manhattan-world and single-story building)

Room segmentation rule

Room reconstruction rule

[1] R. Cabral and Y. Furukawa. Piecewise planar and compact floorplan reconstruction from images. Proc. CVPR, 2014.

[1] E. J. Candes et al. Robust principle component analysis? Journal of the ACM, 58(3), 2011.

[2] A. Delong et al. Fast approximate energy minimization with label costs. International Journal of Computer Vision, 96(1), 2012.

Structure grammar for indoor scenes (Manhattan-world + single story)

Flexible model compilation guarantees manifoldness in architectural elements

Structured reconstruction changes

- geometric representation
- reconstruction algorithm based on an element type

Experimental results

4M - 10M input points

1.6K-3.6K output polygons (excluding objects)

- 934 sec 3198 sec for graph reconstruction
- 0.5 sec 2.0 sec for model compilation

Inverse CAD on SketchUp

Our model has only 1750 faces from 5,000,000 input points

Comparison with other methods

Poisson [Kazhadan2013]

Vgcut [Furukawa2009]

Structured modeling (Ours)

Summary and future work

Contributions

Structure grammar for multi-story, non-Manhattan building Extension to the general 3-D object

Thank you very much!

Dataset and source codes will be released

This research is supported by National Science Foundation under grant IIS 1540012. We thank Floored Inc. for providing us with the dataset and support.