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Abstract
This paper describes a method of improving the quality of

the color in color images by colorizing them. In particular, color
quality may suffer from improper white balance and other factors
such as inadequate camera characterization. Colorization gen-
erally refers to the problem of turning a luminance image into
a realistic looking color image and impressive results have been
reported in the computer vision literature. Based on the assump-
tion that if colorization can successfully predict colors from lumi-
nance data alone then it should certainly be able to predict col-
ors from color data, the proposed method employs colorization to
‘color’ color images. Tests show that the proposed method quite
effectively removes color casts—including spatially varying color
casts—created by changes in the illumination. The colorization
method itself is based on training a deep neural network to learn
the connection between the colors in an improperly balanced im-
age and those in a properly balanced one. Unlike many tradi-
tional white-balance methods, the proposed method is image-in-
image-out and does not explicitly estimate the chromaticity of the
illumination nor apply a von-Kries-type adaptation step. The col-
orization method is also spatially varying and so handles spatially
varying illumination conditions without further modification.

Introduction
A popular application of deep learning has been to the prob-

lem of automatic colorization; namely, the generation of a plausi-
ble full color image from a greyscale (i.e., luminance) image. For
example, Iizuka et al. [1] and Zhang et al.[2] have shown that sys-
tems employing a convolutional neural network (CNN) can pro-
duce quite realistic colorizations that fool observers at least some
of the time. Our hypothesis is that with some minor modifica-
tions, the same techniques can be used to colorize a color image.
The main goal of colorizing color images is to white balance im-
ages automatically, especially those with spatially varying scene
illumination.

For white balancing, we adapt a modification of the coloriza-
tion method proposed by Iizuka et al.[1]. Their network is very
large with the pretrained model requiring 663MB. We use the
modification of that network introduced by Johnson et al. [3] that
leads to a much smaller network requiring only 1/20th the storage.
In comparison to most existing white balancing methods, the pro-
posed neural network approach requires neither pre-processing
nor post-processing—everything is learned and applied in an end-
to-end fashion. We train our model on the Microsoft COCO [4]
image dataset, which includes 50,000 images for training and an
additional 10,000 for validation.

Another term for white balancing in the context of digital
images is color constancy. Hence the proposed method also ad-
dresses the color constancy problem; however, we avoid further
use of that term since Logvinenko et al. [5] proved that color
constancy defined as the determination of the intrinsic color of

surfaces from trichromatic data simply does not exist in principle.
Our ‘color constancy’ goal, therefore, is not to extract intrinsic
surface properties but rather to remove color casts from images.

The vast majority of white balancing methods reported in
the research literature use a two-step approach. The first step is
to estimate the chromaticity of the scene illumination (often as-
sumed to be constant) and the second is to adjust the image data
by scaling the sharpened [6] color channels independently (i.e.,
von Kries rule or diagonal model) based on the estimated illu-
minant. In comparison, the colorization-based method proposed
here forgoes the illumination-estimation step and directly predicts
the output from the input on a pixel-by-pixel, spatially-varying
manner.

Approach

The proposed approach is based on deep convolutional neu-
ral networks [7], which have been proven able to learn complex
mappings from large amounts of training data. Previous work
Iizuka et al. [1] has shown deep Convolutional Neural Networks
perform colorization well. However, their proposed model is
cumbersome, taking weeks to train and hundreds of megabytes
to store. Thus we employ an alternative network structure that
Johnson et al. [3] originally developed for transferring the style
of one image to a second image. We find that its fully convolu-
tional nature to be effective for the standard luminance-to-color
colorization task as well. Therefore we adapt this network struc-
ture to the color-to-color colorization task.

Our network has several properties that are common to many
neural network models. In particular, our model:

• Processes images of any resolution;
• Incorporates hierarchical features;
• Works directly end-to-end without requiring any human in-

tervention.

An overview of our model is shown in Figure 1. Further details
about its components are given in Table 1. As an encoder-decoder
style of network, it consists of three main components: (1) an En-
coder to compress the feature map size; (2) a sequence of Shave
Blocks to distill the information passing through the network; and
(3) a Decoder to restore the image from the distilled information.
Given an input image with possibly poor colors, the output is a
recovered image of improved color. All parameters are trained in
an end-to-end fashion. No human interaction is required for either
training or use.

Encode/Input: The Encoder layer consists of three consecu-
tive conv convolutional layers followed by a BatchNorm [8] layer
and a ReLU layer that together compress the input image data.
The final output of each layer is the result of applying various
image filters that extract learned features from the previous layer.
During the Encoder stage, the size of the feature maps is reduced
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Figure 1: Overview of the proposed color-by-colorization network for automatic white balancing of color images. Blue indicates a
composition of a convolutional (conv) layer, a batch normalization (BN) layer, and a rectified linear unit (ReLU). Orange indicates a
block that includes a shave layer in parallel to a composite Conv-BN-ReLU-Conv-BN convolutional layer. The results from the parallel
paths are then summed.

Encode Shave Block Decode
type kernel stride output
conv 9x9 1x1 32
conv 3x3 3x3 64
conv 3x3 3x3 128

type kernel stride output
conv 3x3 1x1 128
conv 3x3 1x1 128
shave - - 128
sum - - 128

type kernel stride output
deconv 3x3 2x2 64
deconv 3x3 2x2 32
conv 9x9 1x1 3

Table 1: Specifications of the different components used in the color-by-colorization network. Kernel indicates the size of the convolution
(conv) kernel. Stride controls the subsampling of the input data. Output refers to the number of convolution filters of the given size and
stride used in the respective convolutional layer.

by a factor of 64, while the number of feature maps increases from
3 to 128.

Shave Block: A typical neural network simply stacks layers
with connections occurring only between adjacent layers. How-
ever, recently Kaiming He et al. [9] showed the advantage of
adding ‘skip connections’ between non-adjacent layers. Given
the apparent effectiveness of this strategy, we include in the net-
work design a Shave Block having two branches, one branch in-
cluding two Conv layers and the other including one Shave layer.
The Shave layer is similar to an identity layer but has its output
rescaled to match the size of the output of the other branch. This
allows the network to skip conv layers even when the dimensions
of the layers’ outputs do not match.

Decode/Output: After the last Shave block finishes distill-
ing information, two deconv layers, which are followed by Batch-
Norm [8] and ReLU, expand the resulting feature maps back to
the original image dimensions. A conv layer then further pro-
cesses the result. A Tanh activation function follows the last layer
to ensure the results are in the range [−1,1].

Implementation Details
Since the goal of the network is to predict plausible colors

from an imperfect input color image, the network’s loss function
is defined as

Loss(Ipredict , Itrue)=
∑i, j∈M,c∈{R,G,B}(Ipredict(i, j,c)− Itrue(i, j,c))2

3∗N

where M is the matrix storing the RGB values from the N image
pixels.

The network minimizes the loss function Loss(Ipredict , Itrue).
Since all pixel values are normalized to [−1,1] in experiments, we
use Tahn as the activation function in the output layer.

Tanh(x) =
ex− e−x

ex + e−x ∈ (−1,1)

Dataset
CNNs require a large volume of training data, usually 5,000

images or more. Unfortunately, existing color constancy datasets
(NUS Color Constancy [10], SFU-Gray-Ball [11] and Gehler Col-
orchecker dataset [12] are not that large. As a result, we start with
the Microsoft COCO [4] dataset (a large-scale dataset originally
developed for object detection, segmentation, and captioning) and
modify it. COCO includes 80,000 images for training, 40,000 im-
ages for validation and 40,000 images for testing.

We generate training data by perturbing the COCO images
using various different transformations. For training, a perturbed
image and its corresponding original image are taken as the input
and ground truth, respectively. The perturbation transformations
used are as follows.

1. Global von Kries Transformation: For numbers R1,R2 cho-
sen randomly from the interval (0.6,1.4)

IR(x,y) = IR(x,y)∗R1

IB(x,y) = IB(x,y)∗R2
(1)

2. Linearly Interpolated von Kries Transformation in the x-
direction or the y-direction.

IR(x,y) = IR(x,y)∗ interp(0.6,1.4)

IB(x,y) = IB(x,y)∗ interp(0.6,1.4)
(2)

The interpolation can be either increasing or decreasing.
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Figure 2: Examples of the proposed color by colorization processing. The lefthand column shows the input images and the righthand
column shows the images recovered via the proposed colorization method. The first three rows are examples of a global, spatially uniform
color shift as per Eq. 1. The bottom two rows are examples of a spatially varying color shift as per Eq. 2. The Mean Angle is the mean
angular difference between the given input or recovered image and the original image across all non-dark (i.e., (R+G+B)> 150) pixels.
The recovered images are visually much more similar to the original image than the input images. In other words, they demonstrate that
the simulated illumination change has been substantially removed.

Thus we have 5 different transformations simulating various de-
grees of variation in the chromaticity of the illumination across
the scene.

Training
All tests are run on an Intel i7-6950k at 2.4 Gigahertz with

an NVIDIA GTX 1080Ti GPU. Training is based on 83,000 im-
ages of the COCO 2014 training dataset with perturbed versions
added. Images are perpetuated 4 different ways for each epoch.
The Adam [13] optimizer is used for training. The learning rate
is initialized to 10−3 and then reduced by half (i.e., η ′ = 0.5∗η)
every 3,000 iterations. The batch size is set to 30 and we train
the model for 30 epochs (i.e., 30 full passes over the training set).
Training takes roughly 16 hours.

Results
For testing, we perturbe a normal color image with the same

type of random synthetic illumination variation as used during
training. For generality, test images were collected from three
sources

1. MS COCO validation set [4]
2. NUS Color dataset [10]
3. Random images from the Internet

It is worth noting that none of these images are seen during
training process, especially the NUS Color dataset and random

images, which are from completely different sources. In other
words, the set of test images is completely separate from the set
of training images. The results indicate that the proposed color-
by-colorization method is good at generalization.

Examples of the proposed method’s results on an image from
NUS Color Dataset [10] with five different perturbed versions as
input are shown in Figure 2. Four additional examples using per-
turbed versions of images from the Internet are shown in Figure
3.

Unfortunately, it is not possible to make a direct performance
comparison to existing illumination estimation methods because
they are based on the assumption that the illumination’s chro-
maticity is constant throughout the scene. In addition, the pro-
posed method corrects the image colors without explicitly esti-
mating the illuminant chromaticity, even locally. As a result, we
evaluate the method’s performance by comparing the angular dif-
ference between the input and processed images on a pixel-by-
pixel basis. In the case of a black pixel (R=G=B=0) the angle
is undefined. Similarly, the ‘color’ of very dark pixels can be
quite variable without creating a noticeable difference in the im-
age. Hence, we calculate the mean and median angular differ-
ences only over pixels for which R+G+B > 150. The mean and
median per-pixel-thresholded-angular-differences are tabulated in
Table 2, where the mean and median are over all the per-image
mean errors for each image in the entire test set.

Figures 2 and 3 illustrate the kind of improvement in the im-



Dataset and Setting Mean Median Minimum Maximum Best 25% Worst 25%

NUS Canon EOS-1Ds Mark III
Test v.s. Original 8.3 7.9 0.64 21 4.5 13

Recovered v.s. Original 6.5 6.1 1.2 14 3.7 9.8

NUS Fujifilm X-M1
Test v.s. Original 7.6 7.3 0.52 16 3.5 12

Recovered v.s. Original 5.1 4.8 1.1 13 3.0 7.7

NUS Nikon D5200
Test v.s. Original 7.6 7.2 0.25 19 3.6 12

Recovered v.s. Original 4.7 4.4 1.0 16 2.4 11

NUS Samsung NX2000
Test v.s. Original 7.7 7.0 0.49 18 3.6 13

Recovered v.s. Original 4.3 3.8 1.0 13 2.1 7.1

NUS Sony SLT-A57 (*)
Test v.s. Original 7.5 7.2 0.29 17 3.4 12

Recovered v.s. Original 5.0 4.7 1.2 13 2.7 7.9

MS COCO
Test v.s. Original 7.5 7.0 0.46 19 3.5 12

Recovered v.s. Original 4.3 3.9 0.43 16 2.1 7.1
Table 2: Statistics of the pixel-wise angular difference relative to the original images. The mean, median, maximum and minimum are
taken over the per-image-mean-thresholded-angular-differences across all images in the given dataset. Best 25% and Worst 25% are the
means taken over the 25% of the images with the lowest and highest mean errors, respectively.

age color that the proposed method provides. In terms of a nu-
merical evaluation, Table 2 shows that the proposed method on
average reduces the mean angular error to 65% of its initial value.

Conclusion
Inspired by the success in colorizing greyscale images re-

ported by researchers in the computer vision field, we investigate
applying the same general techniques to the problem of ‘coloriz-
ing’ color images. Since it is impossible to know at this point
exactly what it is that a deep neural network learns, we can only
speculate as to precisely why they are successful in colorizing
greyscale images. However, it would appear that the networks are
learning something about image content since colorization meth-
ods always manage to color the sky blue, beaches a sandy color,
faces a flesh tone, and so on. In terms of color correcting or color
balancing color images, the majority of illumination estimation
methods used for those purposes do not exploit knowledge of the
image content. The fact that colorization methods (likely) do is
therefore an important advantage to using them.
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Figure 3: Results for images from the Internet that are completely separate from the COCO dataset. These examples show that as a
general rule the color-by-colorization method performs better on images of natural scenes than for those primarily contaning manmade
objects.
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