
Metamer mismatching in practice versus theory
XIANDOU ZHANG,1 BRIAN FUNT,2,* AND HAMIDREZA MIRZAEI2

1School of Media & Design, Hangzhou Dianzi University, Hangzhou 310018, China
2School of Computing Science, Simon Fraser University, Vancouver, BC V5A 1S6, Canada
*Corresponding author: funt@sfu.ca

Received 8 October 2015; revised 4 January 2016; accepted 10 January 2016; posted 11 January 2016 (Doc. ID 251604);
published 25 February 2016

Metamer mismatching (the phenomenon that two objects matching in color under one illuminant may not match
under a different illuminant) potentially has important consequences for color perception. Logvinenko et al.
[PLoS ONE 10, e0135029 (2015)] show that in theory the extent of metamer mismatching can be very significant.
This paper examines metamer mismatching in practice by computing the volumes of the empirical metamer
mismatch bodies and comparing them to the volumes of the theoretical mismatch bodies. A set of more than
25 million unique reflectance spectra is assembled using datasets from several sources. For a given color signal
(e.g., CIE XYZ) recorded under a given first illuminant, its empirical metamer mismatch body for a change to a
second illuminant is computed as follows: the reflectances having the same color signal when lit by the first
illuminant (i.e., reflect metameric light) are computationally relit by the second illuminant, and the convex hull
of the resulting color signals then defines the empirical metamer mismatch body. The volume of these bodies is
shown to vary systematically with Munsell value and chroma. The empirical mismatch bodies are compared to the
theoretical mismatch bodies computed using the algorithm of Logvinenko et al. [IEEE Trans. Image Process. 23,
34 (2014)]. There are three key findings: (1) the empirical bodies are found to be substantially smaller than the
theoretical ones; (2) the sizes of both the empirical and theoretical bodies show a systematic variation with
Munsell value and chroma; and (3) applied to the problem of color-signal prediction, the centroid of the empirical
metamer mismatch body is shown to be a better predictor of what a given color signal might become under a
specified illuminant than state-of-the-art methods. © 2016 Optical Society of America
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1. INTRODUCTION

Metamer mismatching [1] refers to the fact that two objects
reflecting metameric light under one illumination may reflect
nonmetameric light under a second, so two objects having the
same color under one illuminant may have different colors
under a second. Metamer mismatching has important conse-
quences for human vision and computer vision since the light
illuminating an object is frequently changing, for example, as it
moves from direct sun to shadow, or when the lights are turned
on in a room, or the image is taken at a different time of day, or
the object is viewed under fluorescent light at one moment and
tungsten light at another.

Foster et al. [2] investigated the frequency with which non-
identical reflectances form metameric pairs under various day-
light illuminants and found it to be rare. However, the relative
frequency with which two objects reflecting metameric light
under one illuminant then reflected nonmetameric light under
a second illuminant was much higher. Based on 50 spectral-
reflectance images of natural scenes under various phases of
daylight ranging from correlated color temperatures of 4000

to 25,000 K, they found that the frequency of occurrence
of a metameric pair under one illuminant becoming distin-
guishable under a second illuminant was 10−2 to 10−1. In a
subsequent study, Feng and Foster [3] employed the condi-
tional entropy of colors to predict the frequency of metamerism
in natural scenes and again found it to be relatively low.
Morovic and Haneishi [4] calculated the probabilities of meta-
mer mismatching in 40 multispectral images with the illumi-
nants changed from D65 to 173 different spectral power
distributions and found a similar low frequency of metameric
pairs. Prasad andWenhe [5] consider the issue of metamer mis-
matching between three digital camera models and the human
observer.

In contrast to these studies of the frequency of metamer mis-
matching in a typical scene, our focus here is not on the fre-
quency of metamer mismatching but rather on the potential
amount of metamer mismatching when it occurs. Given only
the color signal produced in response to light reflected from an
object of unknown reflectance under a given illuminant, we
address the issue of what precisely can be said about what
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the color signal from that same object is likely to be under a
different illuminant. Logvinenko et al. [6] addressed this issue
in terms of the degree of metamer mismatching (i.e., the vol-
ume of the metamer mismatch volumes/bodies) that can arise
in theory. Here, we focus on the degree of metamer mis-
matching that arises in practice.

As Logvinenko et al. [6] argue, metamer mismatching im-
poses limits on color constancy since even when the full spectra
of the two illuminants are known there is an inherent ambigu-
ity in terms what a given color signal (i.e., camera sRGB or CIE
XYZ coordinates) under a first illuminant will become under a
second illuminant. In the color constancy and computer vision
fields, it is generally assumed that the color of an object is an
intrinsic property of the object, and hence the focus is on dis-
counting the effects of the illuminant in order to recover the
intrinsic color of the object. The intrinsic color is frequently
expressed as the color signal that would be obtained from
the object under some standard, “canonical” illuminant.
However, Logvinenko [7] proves that color cannot be an intrin-
sic property of an object. His argument is straightforward: If
two objects, A and B, are metameric matches (i.e., reflect light
that generates an identical color signal) under the first illumi-
nant but do not match under the second illuminant, then
which of the two objects is to be considered the carrier of
the “intrinsic” color? Clearly, a single color signal that becomes
two different color signals cannot possibly map to some unique
“intrinsic color” coordinate.

Metamer mismatching means that a color signal under a first
light can become any color signal from an infinite convex set of
color signals under a second light. This convex set is often
called the metamer mismatch volume, or sometimes, the meta-
mer mismatch body. In the present context the latter terminol-
ogy is preferred because we wish to explore the volumes of
metamer mismatch volumes/bodies and the multiple meanings
of “volume” in a phrase such as “the volume of the metamer
mismatch volume” can become very confusing. We will refer
instead to “the volume of the metamer mismatch body” with
the body referring to the (three-dimensional) convex set of
color signals and the volume being the volume of that convex
set.

To establish the extent of metamer mismatching in practice,
we examine empirically the metamer mismatch bodies arising
under several typical illumination changes for a large set of re-
flectance spectra obtained from multispectral images and other
datasets of reflectances. A preliminary study [8] showed how
the empirical mismatch bodies varied systematically with
Munsell chroma and value. The present study expands the
set of reflectances and illumination conditions used for testing
and also compares the empirical metamer mismatch bodies to
the theoretical metamer mismatch bodies calculated using the
method of Logvinenko et al. [9].

The theoretical metamer mismatch body is based on the
premise that the reflectances generating color signals on the
boundary of the object color solid are special two-transition re-
flectances. The reflected values of such two-transition reflectan-
ces are either zero or one and make at most two transitions from
zero to one or vice versa across the visible spectrum. Clearly, two-
transition reflectances with either zero or one values seldom

appear in practice, but there is no obvious, nonarbitrary way
(e.g., an arbitrary degree of “smoothness”) to constrain the set
of reflectances further. The tests reported here show that the
average volumes of the empirical and theoretical metamer mis-
match bodies are clearly related, with the empirical bodies being
substantially smaller than the theoretical ones.

Given a color signal arising from an object under a first il-
luminant, all that can be said definitely about its color signal
under a second illuminant is that it could be any one of the
color signals within its metamer mismatch body. Despite this
lack of certainty, it is frequently the case (e.g., when white bal-
ancing an image) that we need to predict what the object’s color
signal is most likely to be under a second illuminant. Of course,
any prediction can only be a guess since any of the color signals
within the metamer mismatch body is a plausible answer.
However, when forced to choose, what is a good choice to
make? We explore this issue by making predictions based on
several different measures (e.g., mean, median, centroid) of
the metamer mismatch body and compare the mean prediction
error to that obtained using the CAT02 [10] chromatic
adaptation transform that underlies the CIECAM02 [11] color
appearance model and to Mirzaei and Funt’s [12] Gaussian
metamer method of color signal prediction.

2. REFLECTANCE AND ILLUMINANT SPECTRA

In order to analyze the effects of metamer mismatching in prac-
tice, we construct a large dataset of reflectance spectra along
with a sampling of illuminant spectra. The reflectance data
are divided into disjoint training and test sets. Even though
there is no machine learning involved, we use the term “training
set” since we will be predicting results for the test data based on
a prior set of reflectance data.

A. Dataset of Training Reflectances

A large dataset of spectral reflectances was assembled by
gathering spectra from various sources in order to create a
representative dataset of the spectral reflectances of natural
and man-made objects that are likely to occur in practice. All
the spectral reflectances are sampled from 400 to 700 nm at a
10 nm sampling interval.

The dataset was assembled from six main sources. The first
group includes 11 multispectral images consisting of rocks,
trees, leaves, grass, earth and urban scenes, and medieval
and early modern illustrated works [2]. The second group in-
cludes 32 multispectral images [13] containing scenes of faces,
hair, paints, food, drinks, and some other natural and man-
made items. The third group includes 13 multispectral images
[14] containing scenes of people, houses, hands, fruits, flowers,
and other natural and man-made items. The fourth group in-
cludes nine hyperspectral images containing scenes of textile,
wood, leaves, painting, paper, and skin [15]. The fifth group
includes 21 multispectral images mainly composed of different
man-made items [16]. These five groups of images were all ac-
quired with multispectral imaging systems. The sixth group
includes spectral reflectances of man-made, natural, and indus-
trial objects, which were measured using a spectrophotometer
[17]. In total this leads to a set of 35,420,169 reflectance
spectra.
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Since many of these reflectance spectra are from multispec-
tral images, it is likely that there will be many extremely similar
or duplicate spectra in the datasets. To eliminate these similar/
duplicate spectra, the numerical precision of the spectral data is
first reduced to integer values 0–50 (i.e., multiplied by 50 and
rounded), and then any spectra that are identical at that level of
precision are removed. The spectra retained are kept at their
full, initial precision. Although a little ad hoc, computationally
this method is much faster than computing a distance metric
(e.g., angular difference) between the approximately 1015 pairs
of spectra. The final dataset contains 25,303,486 distinct
reflectance spectra.

B. Dataset of Test Reflectances

For testing, a second, smaller set of reflectance spectra is created
by combining the 1600 reflectances of the Munsell glossy
edition [18] papers, the 1950 reflectances of the Natural
Color System (NCS) [19] samples, along with the 218 reflec-
tances from the “Natural Colors” subset of the University of
Eastern Finland’s (UEF) spectral database [20] and 1301 reflec-
tances of natural objects in the ASTER Spectral Library from
the Jet Propulsion Laboratory (JPL) [21]. The total test set
contains 5,069 reflectances.

C. Chromaticities of the Reflectances

As an indicator of how complete the set of reflectances is we
computed the CIE1931 2-deg observer XYZ values under CIE
D65 (daylight) of all the spectral reflectances in the training and
test sets and plotted them in xy-chromaticity space [i.e.,
x � X∕�X � Y � Z �, y � Y ∕�X � Y � Z �] as shown in
Fig. 1. The plot shows that the full training set (black dots)
covers a very significant portion of the xy-chromaticity
diagram.

Fig. 1. Chromaticities of the reflectances in the various datasets
under D65 plotted in the xy-chromaticity diagram. (a) Black dots in-
dicate the samples from the full training dataset; red (gray in grayscale
reproduction) dots are the Munsell papers; and green (white) dots in-
dicate the Finland “Natural Colors” reflectances. (b) Black dots as in
(a), bright purple (gray) dots indicate the NCS papers, and cyan
(white) dots indicate the JPL reflectances.

Fig. 2. Relative spectral power distributions of the 11 illuminants
used for testing. (a) Illuminants D50, D65, D100, D150, and D200;
(b) illuminants F4, F8, F11, LED1, and LED2.
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D. Illuminant Spectra

Eleven illuminants, namely, the CIE standard illuminants A,
D50 (5000 K), D65 (6504 K), D100 (10000 K), D150
(15000 K), D200 (20000 K), F4, F8, and F11, along with

two cellular/mobile phone LEDs, are used in evaluating the
metamer mismatch bodies and color-signal prediction results.
They were chosen as a representative test set since A is a typical
tungsten light bulb; D50, D65, D100, D150, and D200 are

Fig. 3. Average volumes of theoretical metamer mismatch bodies obtained for all Munsell hues plotted as a function of Munsell chroma and value
for the illuminant conditions D50, D200, A, F4, and LED1, respectively, changing to D65. Red dots indicate the actual data points. The surface is
interpolated through the data points to aid in visualization. The plot colors are those provided byMatlab’s “parula” colormap and are provided simply
to aid in visualization. They indicate relative magnitude.
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typical daylights with different correlated color temperatures;
and F4, F8, and F11 are typical fluorescents with varying de-
grees of spikiness in their spectra. The two LEDs are typical
light sources widely used in cellular/mobile phones. The rela-
tive spectral power distributions of these illuminants are
shown in Fig. 2. In the calculations described below all the
illuminants are first normalized so that CIE Y is 100 for the
ideal reflector.

3. METAMER MISMATCH BODY VOLUMES

Since the range of possible color signals a given color signal
under the first illuminant can become under the second illu-
minant is only limited by the metamer mismatch body, an in-
teresting question is, How does the volume of the metameric
mismatch body vary with the initial color signal? To address
this question, we computed both the theoretical and empirical
metameric mismatch bodies for each of the 1600 reflectances
from the Munsell color atlas for a change from each of the 10
other illuminants (Fig. 2) to D65.

A. Theoretical Metamer Mismatch Body Volumes

Using the method and code from Logvinenko et al. [9] we cal-
culated the volumes of the metamer mismatch bodies for the
color signals obtained from each of the 1600 Munsell reflectan-
ces for the illuminant condition of an illuminant change
from D50 to D65 (denoted D50→D65), and similarly each
of the conditions D100→D65, D150→D65, D200→D65,
F4→D65, F8→D65, F11→D65, A→D65, LED1→D65,
and LED2→D65. Figure 3 shows how the theoretical volume
varies with the value and chroma of the Munsell samples for the
five illuminant conditions D50→D65, D200→D65, A→D65,
F4→D65, and LED1→D65. Each red dot is a data point rep-
resenting the average volume of the metamer mismatch bodies
obtained for all hues of the samples having a given Munsell
value and chroma.

Comparing the different panels of Fig. 3, it is clear that the
overall shape of the plots is similar across all the illuminant con-
ditions. Each plot clearly peaks for the achromatic (i.e., chroma
zero) Munsell paper having value 7.5 and then decreases with
increasing chroma. The achromatic sample with value 7.5
actually is the neutral gray with approximately constant reflec-
tance of roughly 50%, as shown in Fig. 4. The results are
consistent with those of Logvinenko et al. [9], showing that
the theoretical metamer mismatch body is generally larger
for color signals near the center of the object color solid
(i.e., where the color signal of the light from the ideal 50%
reflector resides) and zero for color signals on the boundary
of the object color solid.

The figures also show that the average metamer mismatch
body volumes decrease smoothly from neutral gray to the high-
est chroma samples forming the boundary of the Munsell atlas.
Although the plot shapes are qualitatively similar, quantitatively
the size of the metamer mismatch bodies depends strongly on
the illumination condition. As is evident from Table 1, the
lights of similar chromaticity can lead to mismatch bodies of
very different sizes, with the size more dependent on the type
of light than its chromaticity.

B. Empirical Metamer Mismatch Body Volumes

The size of the theoretical metamer mismatch bodies shows a
very distinct dependence on chroma and value but is based on
the limiting case of two-transition reflectance functions. Can
we expect similar trends in practice? To investigate this ques-
tion, we calculated metamer mismatch bodies empirically using
the large training set of reflectances described in Section 2.

Although the training set contains 25,303,486 distinct re-
flectances, it is still limited, and for many color signals there are
not enough exact metameric matches to compute a metamer
mismatch body reliably. Hence, we relaxed the definition of
a metameric match slightly and consider any color signal within
a small distance T to be a metameric match. In other words,
two CIE XYZ color signals, (X c; Y c ; Z c) and (X i; Y i; Z i), will
be considered metameric matches whenever

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X i − X c�2 � �Y i − Y c�2 � �Z i − Zc�2

p
< T : (1)

Using this definition of metameric matching, given a color
signal (X c; Y c; Z c), we find all the reflectances in the training

Fig. 4. Spectral reflectances of the neutral gray Munsell papers
N 1/, N 7.5/, and N 9/ of value 1, 7.5, and 9, respectively.

Table 1. Comparison of the Mean Volumes of the
Theoretical Metamer Mismatch Bodies for the 1600
Munsell Samples for a Change from Each of the Different
Illuminants to D65a

Illuminant
Condition

First
Illuminant’s

CIE xy

Distance to
D65 CIE xy �
�0.31; 0.33�

Mean
Theoretical
Volume

A→D65 (0.45, 0.41) 0.16 143
F4→D65 (0.46, 0.42) 0.18 6594
LED1→D65 (0.44, 0.41) 0.15 1494

D50→D65 (0.35, 0.36) 0.04 5.2
F8→D65 (0.36, 0.37) 0.06 63
LED2→D65 (0.34, 0.37) 0.05 1999

D100→D65 (0.28, 0.29) 0.05 5.6
D150→D65 (0.26, 0.27) 0.08 18
D200→D65 (0.25, 0.26) 0.09 27

F11→D65 (0.40, 0.39) 0.11 9474
aLights of similar CIE xy-chromaticity are grouped together.
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set generating metameric color signals under the first illumi-
nant. Using this set of reflectances, the empirical metameric
mismatch body is then determined as the convex hull of the
color signals generated by these reflectances under the second
illuminant.

Threshold T is chosen so that there are enough approxi-
mately metameric samples to compute the convex hull of the
metamer mismatch body reliably. In particular, T is chosen so
that at least 60 approximately metameric samples are found
for 90% of the Munsell samples. The trade-off is that a small

Fig. 5. Volumes (averaged across all Munsell hues) of the empirical metamer mismatch bodies as a function of Munsell chroma and value for the
illuminant conditions (a) D50→D65, (b) D200→D65, (c) A→D65, (d) F4→D65, and (e) LED1→D65. Red dots indicate the actual data points
with the surface interpolated through the data points to aid in visualization. The plot colors are as in Fig. 3.
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T means more accurate metamers and potentially a more ac-
curate metamer mismatch body, but too restrictive a T leads
to too few samples, and hence an inaccurate estimate of the
metamer mismatch body. T � 1 is used in the calculations
reported in this section.

Figure 5 plots how the volume of the empirical metameric
mismatch body varies with the chroma and value of the
Munsell samples for each of the illuminant conditions
D50→D65, D200→D65, A→D65, F4→D65, and
LED1→D65. In comparing the empirical volumes depicted
in Fig. 5 to the theoretical volumes from Fig. 3 it is clear that
the volumes of the empirical metamer mismatch bodies are
generally much smaller but show the same general pattern—
peaking for the achromatic Munsell paper having value 7.5
and generally decreasing with increasing chroma.

Table 2 compares—for each of 10 illumination conditions—
the mean empirical volume to the mean theoretical volume. The
mean in each case is taken over all samples in the test set. The
table also lists the mean number of approximately metameric
(T � 1) samples found. For some test samples, too few meta-
mers were found in the training set to compute the empirical
metamer mismatch body reliably. In particular, if fewer than
60 metamers were found, then the test sample was excluded
from further consideration for the given illumination condition.
The numbers excluded in this way are listed in Table 2. The
maximum fraction excluded is approximately 22%.

Based on the data from Table 2, Fig. 6 plots the cube root of
the empirical volume as a function of the cube root of the theo-
retical volume, where a linear fit has R-squared 0.90. Although
the metamer mismatch bodies tend to be more ellipsoidal than
spherical, the cube root provides an approximate measure of a
metamer mismatch body’s “diameter” since volume varies as
diameter cubed. The largest color difference between any two

samples in a metamer mismatch body can be expected to relate
more closely to the body’s diameter than to its volume.
The relatively shallow slope (0.15) of the line indicates the
“diameter” of the empirical bodies is 15% of that of the cor-
responding theoretical bodies.

4. COLOR SIGNAL PREDICTION METHODS AND
RESULTS

As mentioned above, given a color signal under one illuminant,
all that can be definitively determined about what the color
signal will become under a second illuminant is that it will
lie within the theoretical metamer mismatch body. Of course,
if the reflectance that led to the given color signal is known,
then the new color signal can be simply calculated. However,
in human vision and color imaging the reflectance is not avail-
able, and any prediction must be made based on the color signal
alone. We describe a new method of making such a prediction
based on the properties of the empirical metamer mismatch
body and compare it to existing methods of color-signal
prediction.

A. Metamer-Based Prediction Method

Mirzaei and Funt [12] proposed a method of color-signal pre-
diction based on relighting a “wraparound Gaussian metamer.”
Given a color signal under the first illuminant, the idea is to
find a Gaussian-like (the precise details are irrelevant for the
present discussion) reflectance function producing that same
color signal under the first illuminant and then to calculate
what that reflectance’s color signal would be under the second
illuminant. They report excellent results using this Gaussian
metamer (GM) method.

The GM method would appear to be limited in that the
form of the metameric reflectance is fixed as something
Gaussian-like. In comparison, the empirical metamer mis-
match body is based on relighting the many reflectances from
the training set, producing color signals that are approximately
metameric to the given color signal under the first illuminant.
The training set also contains only real reflectances, in other

Table 2. Comparison of the Mean Empirical Volumes to
the Mean Theoretical Volumes for the 10 Illumination
Conditionsa

Illumination
Condition

Mean
Theoretical
Volume

Mean
Empirical
Volume

Mean
Number
Metamers

Number
Samples
Excluded

A→D65 140 18 45576 112
F4→D65 6522 105 65157 66
LED1→D65 1459 22 46714 120

D50→D65 5 5 28403 235
F8→D65 60 7 31101 209
LED2→D65 1913 20 31912 198

D100→D65 5 3 18978 326
D150→D65 16 4 16632 339
D200→D65 24 4 15742 349

F11→D65 9121 68 34500 167
aThe table also lists the mean number of (approximate) metamers found

within the threshold distance T � 1. For some of the 1600 samples in the
Munsell set not enough such metamers from the training set could be found
to estimate the empirical metamer mismatch body accurately. The right-most
column lists the number of Munsell samples excluded based on fewer than
60 metamers being found. Both the mean and theoretical volumes are based
on the same subsets of Munsell samples. Lights of similar CIE xy-chromaticity
are grouped together as in Table 1.

Fig. 6. Comparison across 10 different illumination conditions of
the mean of the cube roots of the volumes (i.e., mean of the body
“diameters”) of the empirical metamer mismatch bodies as a function
of mean of the cube roots of the volumes of the theoretical metamer
mismatch bodies for the Munsell samples. The linear fit shown has
slope of 0.15 with R-squared of 0.90.
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words, ones measured in practice rather than an idealized
Gaussian-like reflectance function. We hypothesize that basing
the color signal prediction on the properties of the empirical
metamer mismatch body rather than a single idealized reflec-
tance will lead to more accurate predictions on average.

The empirical metamer mismatch body represents the range
of possible color signals that might arise under the second illu-
minant so the centroid of the body’s convex hull is onemethod of
predicting the color signal under the second illuminant. Other
choices we investigate are the mean of the possible color signals
under the second illuminant and, similarly, their median.

In the previous section, the threshold T � 1 was used to en-
sure there would be enough metameric samples in the training
set to estimate themetamermismatch body accurately. For color
signal prediction, we expand the set of reflectances and reduce
the threshold to T � 0.3. We found the lower threshold re-
sulted in better performance. The smaller threshold means that
the samples classed as metamers are closer to being true meta-
mers, and this leads to better predictions. In any case, the results
do not depend very strongly on the choice of threshold.

We also expanded the set of reflectances by adding scaled
versions of the reflectances in the original dataset because
inspection of the dataset revealed that the majority of the
reflectances r�λ� were “dark,” having max�r�λ�� < 0.5 for
400 nm ≤ λ ≤ 700 nm. To increase the total number of spec-
tra and to better represent “brighter” reflectances, for each
reflectance in the original dataset we added reflectances
r 0�λ� � 2r�λ� so long as max�r 0�λ�� ≤ 1.0 for 400 nm ≤
λ ≤ 700 nm. The expanded dataset contains 41,941,743
distinct reflectance spectra. Better predictions are obtained with
this expanded dataset than the original dataset. In the previous
section, we refrained from using the expanded dataset in our
analysis of the volumes of the metamer mismatch bodies since
there is no guarantee that such scaled reflectances will be found
in practice, and we did not want them to affect the volume
estimates. In the case of color signal prediction, however, what
matters is the accuracy of the resulting predictions.

We also found that outliers were affecting the prediction
results. In particular, some of the reflectances in the dataset that
were obtained from the multispectral images contained very

large spikes at individual wavelengths. Such spikes are likely
caused by sensor noise and not from actual scene reflectances.
These noise samples lead to outlier CIE XYZ values under the
second illuminant that are far from the majority of the samples
defining the metamer mismatch body. For color signal predic-
tion, such outliers were removed using the median absolute
deviation method [22]. Note that the average empirical
volumes reported in the previous section include these spiky
spectra since we did not want to prejudge what is and is
not a naturally occurring reflectance. In contrast to the situa-
tion of color signal prediction where outliers matter because a
prediction is made on the basis of a single metamer mismatch
body, outliers will have little effect on the final average volumes
since the averaging is over thousands of samples.

B. Prediction Results

The spectral reflectances of the Munsell, NCS, UEF Natural,
and JPL datasets described above are used for testing.
These datasets are distinct from the training set. Predictions
are made for a change from illuminants A, D50, D100,
D150, D200, F4, F8, F11, and two LEDs to D65 as the
“canonical” illuminant. The centroid, mean, and median meth-
ods were all tested. The results for all three methods are
comparable, but the centroid method generally outperforms
the others, so only the results for it are reported here.

For comparison, the GM method and the von Kries–based
CAT02 chromatic adaptation transform are tested as well.
CAT02 is the chromatic adaptation step underlying the
CIECAM02 color appearance model. CAT02 includes a spec-
tral sharpening transform [23]. Chong et al. [24] propose a
tensor-based method of choosing the basis for the diagonal
transform. The prediction error is measured using the
CIEDE2000 [25] color difference measure.

The results for the full test dataset of reflectances are listed
in Table 3. The results indicate that the prediction accuracy of
the GM method is higher than that of the CAT02 method,
which is consistent with the conclusion of Mirzaei and Funt
[12]. It is also clear that the proposed centroid method outper-
forms both the CAT02 and GM predictions in almost all cases.
However, evaluating performance based on the mean and

Table 3. Color Signal Prediction Error of the Three Methods Each Applied to the Combined Set of Test Reflectances and
Reported in CIEDE2000 (Mean, Median, 95th Percentile, Standard Deviation) for the 10 Illuminant Conditionsa

Centroid GM CAT02

Illuminant
Condition Mean Median 95th Stdev Mean Median 95th Stdev Mean Median 95th Stdev

A→D65 1.07 0.76 2.95 0.98 1.40 1.03 3.82 1.17 1.83 1.50 4.48 1.31
F4→D65 1.66 1.22 4.51 1.46 1.77 1.33 4.92 1.52 3.69 2.76 10.32 3.24
LED1→D65 0.99 0.72 2.57 0.96 1.28 0.98 3.82 1.09 1.62 1.25 4.48 1.30

D50→D65 0.31 0.24 0.81 0.27 0.42 0.30 3.82 0.36 0.50 0.44 4.48 0.32
F8→D65 0.48 0.35 1.23 0.51 0.68 0.46 2.02 0.61 0.72 0.64 1.62 0.45
LED2→D65 0.76 0.58 1.87 0.73 1.04 0.89 3.82 0.72 2.08 1.81 4.48 1.48

D100→D65 0.36 0.29 0.88 0.27 0.45 0.31 3.82 0.40 0.54 0.49 4.48 0.34
D150→D65 0.52 0.42 1.31 0.40 0.70 0.47 3.82 0.63 0.85 0.76 4.48 0.54
D200→D65 0.60 0.48 1.50 0.47 0.81 0.54 3.82 0.74 0.99 0.88 4.48 0.63

F11→D65 1.44 1.02 4.10 1.37 1.59 1.12 4.28 1.42 1.57 1.16 4.66 1.50
aLights of similar CIE xy-chromaticity are grouped together as in Table 1.
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median statistics needs to be done with a note of caution. As
Hordley and Finlayson [26] point out, these error distributions
are generally not normally distributed because they are bounded
by zero on the left. As a further way to evaluate the relative per-
formance, the prediction errors for the three methods are histo-
grammed in Fig. 7. The distribution again shows that the
centroid method outperforms the other two methods.

In predicting what a color signal will become under a second
illuminant, we can expect that the larger its metamer mis-
match body, the greater the prediction error is likely to be
on average—a larger body represents a wider range of possible
answers, and any prediction method is forced to choose only
one. Figure 8 shows that the prediction error does increase as
expected with increasing size of the empirical metamer mis-
match body. Plots (not shown) of the error as a function of
the size of the theoretical metamer mismatch bodies are
qualitatively similar.

5. DISCUSSION

Based on a set of over 25 million spectral reflectances of real
objects, estimates of the size of the potential metamer mismatch
bodies were computed for the color signals generated from
5,069 test reflectances under 10 different illumination condi-
tions. The average volumes of these empirically determined
bodies were compared to the average volumes of the corre-
sponding theoretically determined bodies and found to be
roughly proportional but significantly smaller. The size of
the bodies is important because metamer mismatching imposes
a limit on the accuracy with which it is possible to predict the
effect a change in illumination will have on a given color signal.
The theoretical metamer mismatch body provides an upper
limit on the size of a given metamer mismatch body, and the
empirical body provides a measure of the lower limit. It is a
lower limit since adding a reflectance spectrum to the training

Fig. 7. Histogram of the CIEDE2000 prediction errors for the cent-
roid, GM, and CAT02 methods across the combined set of test reflec-
tances and all 10 illuminant pairs. The height of each bar indicates the
number of samples falling within the respective interval, [0,1), [1,2),
[2,3), [3,4), [4,5), or [5,∞).

Fig. 8. Mean prediction error in CIEDE2000 units as a function of
the cube root of the volume of the empirical metamer mismatch body
(i.e., body “diameter”) for the three prediction methods: (a) centroid
method; (b) GM method; (c) CAT02 method.
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set will either lead to a color signal inside the current metamer
mismatch body and have no effect, or else lie outside it and
therefore increase its size. The empirical bodies also represent
a lower limit since the reflectance data is based on a 10 nm
sampling interval using samples having a roughly 10 nm band-
width [2]. In effect, the measured spectra are smoothed versions
of the real spectra, and any such smoothing will potentially re-
duce the calculated amount of metamer mismatching. Since it
is real spectral power distributions that enter the eye, the em-
pirical metamer mismatch bodies reported here are likely to
underestimate the true amount of metamer mismatching to
a certain extent.

As a general rule, the volumes of the metamer mismatch
bodies (both empirical and theoretical) were found to decrease
with increasing distance of the color signal from mid-gray, as
can be seen in Fig. 5. Concomitantly, the average error in pre-
dicting how a given color signal will change with a change in
illumination was also found to decrease with increasing distance
for the color signal from mid-gray. In terms of predicting what a
given color signal may change to under a new illuminant, the
centroid of the empirical metamer mismatch body performs
better overall than the GMmethod, which in turn outperforms
CAT02.

Funding. National Natural Science Foundation of China
(NSFC) (61205168); Public Welfare Project of Zhejiang
Province (2016C31G2040041); National Science and
Technology Support Program of China (2012BAH91F03);
Natural Sciences and Engineering Research Council of
Canada (NSERC).

Acknowledgment. The authors would like to thank the
anonymous reviewers for their exceptionally pertinent and con-
structive critical reviews.

REFERENCES

1. G. Wyszecki andW. S. Stiles, Color Science: Concepts and Methods,
Quantitative Data and Formulae (Academic, 1982).

2. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster,
“Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A
23, 2359–2372 (2006).

3. G. Y. Feng and D. H. Foster, “Predicting frequency of metamerism in
natural scenes by entropy of colors,” J. Opt. Soc. Am. A 29,
A200–A208 (2012).

4. P. Morovic and H. Haneishi, “Quantitative analysis of metamerism for
multispectral image capture,” in Proceedings of 9th International
Symposium on Multispectral Color Science (Academic, 2007),
pp. 88–96.

5. D. K. Prasad and L. Wenhe, “Metrics and statistics of frequency of
occurrence of metamerism in consumer cameras for natural scenes,”
J. Opt. Soc. Am. A 32, 1390–1402 (2015).

6. A. D. Logvinenko, B. Funt, H. Mirzaei, and R. Tokunaga, “Rethinking
color constancy,” PLoS ONE 10, e0135029 (2015).

7. A. D. Logvinenko, “Object-color manifold,” Int. J. Comput. Vis. 101,
143–160 (2013).

8. X. Zhang, B. Funt, and H. Mirzaei, “Metamer mismatching and its con-
sequences for predicting how colors are affected by the illuminant,” in
Proceedings of IEEE International Conference on Computer Vision
Workshops (IEEE, 2015).

9. A. D. Logvinenko, B. Funt, and C. Godau, “Metamer mismatching,”
IEEE Trans. Image Process. 23, 34–43 (2014).

10. M. D. Fairchild, Color Appearance Models (Academic, 2013).
11. “A color appearance model for color management systems:

CIECAM02,” CIE Publication No. 159 (CIE Central Bureau, 2004).
12. H. Mirzaei and B. Funt, “Object-color-signal prediction using

wraparound Gaussian metamers,” J. Opt. Soc. Am. A 31, 1680–1687
(2014).

13. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized as-
sorted pixel camera: post-capture control of resolution, dynamic
range and spectrum,” http://www.cs.columbia.edu/CAVE/databases/
multispectral/.

14. Joensuu Spectral Image Database, “Spectral color research
group,” University of Eastern Finland, http://www.uef.fi/fi/spectral/
spectral‑database.

15. S. Moan, S. George, M. Pedersen, J. Blahova, and J. Hardeberg,
“A database for spectral image quality,” Proc. SPIE 9396, 93960P
(2015).

16. S. Hordley, G. Finlayson, and P. Morovic, “A multi-spectral image
database and an application to image rendering across illumination,”
in Proceedings of Third International Conference on Image and
Graphics (Academic, 2004), http://www2.cmp.uea.ac.uk/Research/
compvis/MultiSpectralDB.htm.

17. C. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real
color gamuts using a new reflectance database,” Color Res Appl.
39, 442–451 (2014).

18. Munsell Book of Color—Glossy Edition (X-Rite Corporation, Grand
Rapids, Michigan).

19. A. Hard and L. Sivik, “NCS–natural color system: a Swedish standard
for color notation,” Color Res. Appl. 6, 129–138 (1981).

20. J. Parkkinen, T. Jaaskelainen, and M. Kuittinen, “Spectral represen-
tation of color images,” in Proceedings of IEEE 9th International
Conference on Pattern Recognition (IEEE, 1988), pp. 14–17, http://
www2.uef.fi/fi/spectral/natural‑colors.

21. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER
spectral library,” Version 2.0, Remote Sensing Environ. 113, 711–715
(2009).

22. C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting out-
liers: do not use standard deviation around the mean, use absolute
deviation around the median,” J. Exp. Soc. Psychol. 49, 764–766
(2013).

23. G. Finlayson, M. Drew, and B. Funt, “Spectral sharpening: sensor
transformations for improved color constancy,” J. Opt. Soc. Am. A
11, 1553–1563 (1994).

24. H. Chong, S. Gortler, and T. Zickler, “The von Kries hypothesis and a
basis for color constancy,” in Proceedings of IEEE International
Conference on Computer Vision (IEEE, 2007), pp. 1–8.

25. “Improvement to industrial color-difference evaluation,” CIE
Publication No. 142 (CIE Central Bureau, 2001).

26. S. D. Hordley and G. D. Finlayson, “Reevaluation of color constancy
algorithm performance,” J. Opt. Soc. Am. A 23, 1008–1020 (2006).

Research Article Vol. 33, No. 3 / March 2016 / Journal of the Optical Society of America A A247

http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.uef.fi/fi/spectral/spectral-database
http://www.uef.fi/fi/spectral/spectral-database
http://www.uef.fi/fi/spectral/spectral-database
http://www.uef.fi/fi/spectral/spectral-database
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
http://www2.uef.fi/fi/spectral/natural-colors
http://www2.uef.fi/fi/spectral/natural-colors
http://www2.uef.fi/fi/spectral/natural-colors
http://www2.uef.fi/fi/spectral/natural-colors

