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Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumina-
tion across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of
the scene illumination can be found from the interpolated function. The resulting illumination-estimation method
can be used to provide color constancy under changing illumination conditions and automatic white balancing for
digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a
training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set,
incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can es-
timate the color of the incident illumination quite accurately, and the proposed training set pruning significantly
decreases the computation. © 2011 Optical Society of America

OCIS codes: 330.0330, 330.1690, 330.1710, 330.1720, 100.2000.

1. INTRODUCTION
A new approach to illumination estimation for color con-
stancy and automatic white balancing is developed based
on the technique of thin-plate spline (TPS) interpolation.
Assuming there is a single, dominant scene illuminant, we
describe the overall scene illumination in terms of its
chromaticity components r and g [r ¼ R=ðRþ Gþ BÞ, g ¼
G=ðRþ Gþ BÞ]. These chromaticity components can be
viewed as functions of the chromaticity image (each input
RGB pixel value converted to rg chromaticity space) I of
the scene; namely, r ¼ f rðIÞ and g ¼ f gðIÞ. The problem of
estimating the rg chromaticity of the illuminant then becomes
that of estimating the two functions r ¼ f rðIÞ and g ¼ f gðIÞ.
The proposed method estimates these functions by inter-
polating over the ground-truth r and g chromaticity values
measured from a training set of images.

Interpolation is a common problem, and there are many
well-established interpolation methods [1]. The majority of
these methods, such as bilinear or bicubic interpolation, are
based on interpolation over training data sampled on a uni-
form grid. However, since there is no clear way to sample uni-
formly the space of images, interpolation over a nonuniformly
sampled space is required. TPS is an effective interpolation
method under these conditions and has been widely used
in the context of deforming one image into registration with
another [2]. In the case of illumination estimation, TPS maps
an input rg-chromaticity image to the r-chromaticity and
g-chromaticity values of the scene illumination.

The intuition underlying the use of TPS for illumination es-
timation is similar to that of other training methods such as
the neural network approach [3] or the use of Support Vector
Regression [4]. Each “learns” a function from the training
data. The advantage of one of these techniques over the other
will eventually be measured in terms of their relative perfor-
mance as well as memory and processing requirements.

However, one specific advantage of TPS over neural nets
and Support Vector Regression is that it is easy to envision
the nature of what TPS is learning since it straightforwardly
creates a simple function that smoothly interpolates the train-
ing data points. A second advantage of TPS is that it is much
more straightforward to apply than either neural nets or
Support Vector Regression. It could be that some neural
net or Support Vector Regression implementation would work
as well as TPS, but there is the problem of determining what
that implementation might be. Neural nets have many more
variables—number of nodes, hidden layers, interconnections,
and so on—than TPS and so are more difficult to tune. It could
be that some neural net would work as well, but how to design
it? Similarly, there are many choices in the way Support
Vector Regression is applied in terms of the kernel functions,
preprocessing, and so on, so once again it is possible that
some Support Vector Regression implementation could work
as well as TPS, but again, which implementation?

In terms of the algorithm’s efficiency, the most important
factor is to reduce the training set’s size since both the com-
putation and memory requirements grow polynomially with
the number of training images. Therefore, when the training
set becomes large, both the training and the testing become
infeasible. We address this problem by finding representative
training images and pruning the remaining ones.

2. TPS METHOD
As is typical of interpolation methods in general, TPS con-
structs a function that matches a given set of data values
fyig, corresponding to a given set of data vectors fxig, in
the sense that yi ¼ f ðxiÞ. TPS interpolation was originally
designed for two-dimensional image registration [2,5–7]. In
the color context, it has been extended to three dimensions
and successfully applied to the problem of camera and color
display calibration [8]. Compared with other methods, TPS
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has been found to be quite stable and accurate in terms of
finding a unique solution without having to tune a lot of para-
meters. Here we extend TPS to D dimensions and apply it to
the problem of estimating the chromaticity of a scene’s overall
incident illumination from an image of that scene.

TPS for illumination estimation requires a “training” set, T,
of N chromaticity images along with their corresponding illu-
mination chromaticities. For the ith RGB image containing n

pixels, its chromaticities are formed into aD ¼ 2n vector, Ii. T
contains the pairs ðIi; ðri; giÞÞ. Solving TPSmeans determining
the parameters (ws and as below) that control the two map-
ping functions f r and f g, such that

�
ri ¼ f rðIiÞ
gi ¼ f gðIiÞ : ð1Þ

Given a chromaticity image Is ¼ ðIs;1; Is;2;…; Is;d;…; Is;DÞ,
where Is;d stands for the dth element of image s, the mapping
function f r is defined as (function f g is defined similarly)

f rðIsÞ ¼
XN
i¼1

wiUð‖Is − Ii‖Þ þ a0 þ
XD
j¼1

ajIs;j; ð2Þ

where UðxÞ ¼ x2 logx and ‖⋅‖ is the operator for Euclidean
distance. There are N weights wi that control the nonlinear
terms and Dþ 1 coefficients aj that control the additional
linear terms.

Each element of the training set (an image plus its illumina-
tion chromaticity) provides two equations, as shown in
Eq. (1). In addition, a smoothness constraint is usually im-
posed that minimizes the bending energy. In the original
TPS formulation [1], the bending energy function Jðf Þ of
the function f ðx1; x2Þ is defined over R2 as

Jðf Þ ¼
ZZ

ℜ2
ðf 2x1x1 þ 2f 2x1x2 þ f 2x2x2Þdx1x2: ð3Þ

The bending energy models the energy required to bend a
thin sheet of metal to pass through the control points and is
measured by the second derivatives of the surface. The bend-
ing energy of a plane is zero. Here we use the generalized
function J in D-dimensional domain RD with order D of
derivatives. Hence, Eq. (3) can be generalized over x ¼
ðx1; x2;…; xDÞ yielding

Jðf rÞ ¼
X

θ1þθ2þ…þθD¼D

�
D!

θ1!θ2!…θD!

Z
RD

�
∂Df r

∂x
θ1
1 ∂x

θ2
2 …∂x

θD
D

�
2

× dx1dx2…dxD

�
; ð4Þ

where fθi ∈ N j1 ≤ θi ≤ Dg and Jðf rÞ is the total bending en-
ergy described in terms of the curvature of f r by higher order
of derivatives (the bending energy for f g is defined similarly).

Following [9–11], the energy Jðf rÞ in Eq. (4) over all images
fIiji ¼ 1;…; Ng in the training set T will be minimized when
the following constraint holds:

XN
i¼1

wi ¼
XN
i¼1

Ii;1wi ¼
XN
i¼1

I2;1wi ¼ … ¼
XN
i¼1

Ii;Dwi ¼ 0; ð5Þ

In order to solve TPS in estimating the parameter set, both
Eqs. (1) and (5) need to be satisfied at the same time. Given
a training set T containing N images of size D, there are
(N þ Dþ 1) linear equations and unknowns that can be un-
iquely solved by matrix operations. This is true for each of
f r and f g. In particular, we can define U, Q, w, a, and c, such
that

Uwþ Qa ¼ c QTw ¼ 0; ð6Þ

where

U ¼

2
66664

0 U1;2 � � � U1;N

U2;1 0 U2;N

..

. ..
. . .

. ..
.

UN;1 UN;2 � � � 0

3
77775

Q ¼

2
66664
1 I1;1 I1;2 � � � I1;D
1 I2;1 I2;2 � � � I2;D

..

. ..
. ..

. . .
. ..

.

1 IN;1 IN;2 � � � IN;D

3
77775;

w ¼ ðw1; w2;…; wNÞT and a ¼ ða0; a1;…; aDÞT ;
c ¼ ðr1; r2;…; rNÞT or c ¼ ðg1; g2;…; gNÞT ;
Ui;j ¼ Uð‖Ii − Ij‖Þ:

The vector c represents the chromaticities of the correspond-
ing N illumination chromaticities fðri; giÞg in the training set
T. Symbol 0 is a vector of Dþ 1 zeros. The linear system
described in Eq. (6) can be rewritten in an even more compact
form as

�
U Q
QT �0

�
×
�
w
a

�
¼

�
c
0

�
or L ×W ¼ C: ð7Þ

Here, the matrix �0 contains ðN þ 1Þ × ðN þ 1Þ zeros.
Equation (7) forms a linear system of N þ Dþ 1 equations,

which are then easily solved by W ¼ L−1 × C. Once the para-
meter set W ¼ ðw; aÞ is calculated, the illumination ðrs; gsÞ of
an input image Is can be estimated by applying Eq. (1) for r
and g separately.

The complexity of TPS-based interpolation is primarily
related to the matrix operations. For example, the training
phase of TPS requires a matrix inverse operation, which
has a complexity of OððN þ DÞ3Þ in general. The testing phase,
on the other hand, only requires OðlogNDÞ operations.

3. REDUCING THE TRAINING DATA SET
TPS interpolates data between points defined by the training
set. This implies we have to have the entire training set avail-
able during testing. Since the training stage of TPS requires a
matrix inversion operation of an (N þ Dþ 1)-by-(N þ Dþ 1)
matrix, the matrix inversion step becomes infeasible when the
training-set size or image dimension is large, in the sense of
both CPU computation and memory usage.

To reduce the training-set size, we need to select good
representatives from the initial training set. For example, if
there are two similar images in the training set, then likely
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one can be removed without much loss in overall accuracy.
The problem is how to decide which training images can
be discarded and which should be retained. As one possible
solution, we propose using the k-median algorithm to cluster
the training data T and then retain only the subset T0 consist-
ing of the k cluster centroids of T. The k-median algorithm is
similar to the standard k-mean clustering algorithm except
that, as its name implies, it is based on the median rather than
the mean. The advantage of k-medians for TPS is that the med-
ian image defining each cluster’s center is necessarily one of
the input images. In contrast, with k-means a cluster’s center
is defined by the mean of the cluster, which is not necessarily
a member of the original data set.

To find a large number of clusters from a large data set, the
k-median computation can be quite intensive, especially when
the dimensionality of the data is high as well, so we have
implemented an incremental k-median approach [12]. This
approach requires much less memory and only sublinear
computational time. The incremental k-median algorithm is
an approximate clustering method that incrementally updates
the existing clusters based on a divide-and-conquer strategy.
The whole data set is divided into trunks that are clustered
individually, and their centers are merged to generate the
final result [12]. In general, the complexity of a batch k-median
algorithm is non-deterministic polynomial-time hard (NP-
hard). The complexity of incremental k medians reduces this
to Oðmnþ nk logðnkÞÞ, where n is the size of data set, k is the
number of clusters, and m is a constant factor related to
the size of available memory [12]. Figure 1 shows a plot of
the 220 clusters (out of 11,346 images [13]) found by k

medians denoted by red circles superimposed onto a two-
dimensional projection of a principal component analysis
(PCA) basis of the training images.

Another way to reduce the training set is to reduce the di-
mensionality of the images. Many previous methods [3,4,14]
have used a color histogram as the input data; however, for
TPS we use image thumbnails as input. Initial tests indicated
that TPS worked as well or better based on thumbnails than it
did on histograms, so all the results reported here are based

on thumbnails as input. The thumbnails are 8 × 8 images cre-
ated by averaging the underlying pixels in the original input
image. These thumbnails in chromaticity coordinates become
input vectors of size 8 × 8 × 2 ¼ 128. Therefore, the dimen-
sionality of the input data is D ¼ 128. Our tests in Section 4
show that thumbnails with size 8 × 8 are sufficient for use
in estimating the illumination.

4. TESTS
We implemented the TPS illumination-estimation method and
incremental k medians in Matlab and conducted tests to com-
pare its performance to that of other illumination-estimation
methods.

A. Evaluation Measures
Several different error measures are used to evaluate perfor-
mance. For each image, the distance between the measured
actual illumination chromaticity ðra; gaÞ and that estimated by
an algorithm ðre; geÞ is calculated as

EL2-dist ¼ ½ðra − reÞ2 þ ðga − geÞ2�1=2; ð8Þ

For a test set of M images, we report the root mean square
(RMS), median, and maximum (Max) distances [15]. Addition-
ally, we report the mean L2 distance of the best 75% (labeled
“B75” in the tables) and mean of the worst 25% (labeled
“W25”) estimates. RMS is defined in the standard way as

RMS ¼ 1
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

E2
L2-dist

vuut ð9Þ

Given illumination chromaticity components r and g, the
third component can be obtained as b ¼ 1 − r − g from which
the angular error in degrees between two three-dimensional
(3D) chromaticity vectors is defined as

EAng ¼ cos−1
"

ðra; ga; baÞ · ðre; ge; beÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a þ g2a þ g2a

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ g2e þ g2e

p
#
·
2π
360

: ð10Þ

In the case that one of the three components of our
estimate is less than zero, it is truncated to zero. As with
the distance measure, we also compute the median, RMS,
and Max angular error over the test set of images.

To evaluate whether there is a significant difference in the
performance of competing methods, the Wilcoxon signed
rank is applied [15]. The threshold for rejecting the null
hypothesis is set to the 5% significance level.

B. Tests of Training Based on Real Images
The first of the tests with real images used for training is based
on Barnard’s calibrated 321 linear (gamma ¼ 1) SONY images
[16]. The illumination error is evaluated using both leave-one-
out cross-validation [16] and threefold cross-validation [17].
In the leave-one-out procedure, one image is selected for
testing, and the remaining 320 images are used for training
in order to determine the required parameters. This is
repeated 321 times, with a different image left out each time.
In the threefold procedure, one third of the images are
randomly selected for testing, and the remaining two thirds
are used for training. This is repeated three times, with a

Fig. 1. (Color online) k-median (with k ¼ 220) clustering of the
11,346 training real-world images [13]. The x axis and y axis stand
for the first and second principal component vectors. Each red circle
represents a cluster detected. Circle size is proportional to the
standard derivation of the cluster. This shows graphically that
the 220 colors cover the underlying data set quite well.
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different subset selected for testing each time. In Tables 1 and
2, the TPS results along with corresponding results of the
following methods are listed: MaxRGB [18], MaxRGB with
preprocessing [19], GrayWorld [20], Shades of Gray [21]
(Minkowski norm ¼ 6), first- and second-order edge-based
approaches [22] (Minkowski norm ¼ 6, sigma ¼ 2), Gray Sur-
face Identification [23], Color by Correlation [24], Gamut Map-
ping [25], and N -jet [26] and Support Vector Regression [4].

Second, we test our method on the Gehler et al. [17] “Color-
Checker” data set. The ColorChecker data set contains 568
images taken with two high-quality digital single-lens reflex
cameras (Canon 5D and Canon1D) with all settings in auto
mode. All images were saved in Canon RAW format. As well,
the data set includes TIFF versions created from the RAW
images using the automatic mode of the Canon Digital Photo
Professional program to convert the images into TIFFs. Each
image contains a Macbeth ColorChecker for reference. The
image coordinates (measured by hand) of each ColorCheck-
ers’ squares is provided with the data set [17].

Because the TIFF images in the ColorChecker data set were
produced automatically, they contain clipped pixels, are
nonlinear (i.e., have gamma or tone curve correction applied),
are demosaiced, and include the effect of the camera’s white
balancing. To avoid these problems, we chose to reprocess
the raw data and created almost-raw 12bit PNG format (loss-
less compression) images from the Canon RAW format data
by decoding them using dcraw [27]. To preserve the original
digital counts for each of the RGB channels, demosaicing was
not enabled. The cameras both output 12bit data per channel,
so the range of possible digital counts is 0 to 4095. The raw
images contain 4082 × 2718 (Canon 1D) and 4386 × 2920
(Canon 5D) 12bit values in an RGGB pattern. To create a
color image, the two G values were averaged, but no further
demosaicing was done. This results in a 2041 × 1359 (for
Canon 1D) or 2193 × 1460 (for Canon 5D) linear image
(gamma ¼ 1) in camera RGB space. The Canon 5D has a black
level of 129, which was subtracted. The Canon 1D’s black level
is zero.

Table 1. Performance Comparison of MaxRGB [18] and MaxRGB with Preprocessing of the Images (MaxRBG�) by

Bicubic Resizing to 64 × 64 [19], GrayWorld (GW)[20], 3D Support Vector Regression (SVR) [4], Shades of Gray (SoG)

[21], Edge-Based [22], Gray Surface Identification (GSI) [23], Color by Correlation (CbyC) [24], Gamut Mapping [25],

N-Jet [26], and TPS
a

Angular Error L-2 Distance (×102)

Method Median RMS Max Median B75 RMS W25 Max

Do-nothing 15 19 11 11 11 13 24 24
MaxRGB 6.5 12 36 4.5 3.7 8.3 11 25
MaxRGBþ (Table 1 in [19]) 3.2 8.6 27 2.3 1.7 5.8 10 17
GW 7.0 13 36 5.6 4.0 11 19 33
Database GW (Table 7 [24]) 6.9 12 - - - - - -
SoG (p ¼ 6) 4.1 9.0 29 2.8 2.3 6.2 11 20
Edge-based (first order) 3.7 8.5 28 2.6 2.3 6.0 10 19
Edge-based (second order) 4.5 9.1 36 3.1 2.8 6.2 11 24
GSI 3.9 10 34 2.7 2.3 7.2 13 23
CbyC I (bright pixels only) Hordley and Finlayson (Table 7 in [24]) (310 out of 321) 3.2 10 - - - - - -
CbyC Gijsenij et al. (Table 3 in [26]) (290 out of 321) 6.8 - - - - - - -
Gamut Mapping Gijsenij et al. (Table 3 in [26]) (290 out of 321) 3.1 - - - - - - -
N -jet (complete 1-jet) (Table 3 in [26]) (290 out of 321) 2.1 - - - - - - -
SVR (3D) 2.2 8.0 25 3.1 - 3.5 - 11
TPS (leave-one-out) 0.6 2.1 10 0.6 0.5 1.6 2.7 7.2
TPS (threefold cross-validation) 1.2 3.6 23 1.0 0.8 2.9 4.9 14
aResults involve real-data training and testing using the 321 SONY images. For TPS the images are converted to 8 × 8 thumbnails; the other algorithms use the original

images. Errors for Color by Correlation and Support Vector Regression are based on leave-one-out cross-validation. Errors for TPS are based on both leave-one-out
cross-validation and threefold cross-validation and are reported in terms of both the angular and distance error measures. See Subsection 4.B for error labels.

Table 2. Comparison of Several Different Algorithms in Table 1 via the Wilcoxon Signed-Rank Test with

Rejection of the Null Hypothesis at the 5% Significance Level
a

MaxRGB MaxRGBþ GW SoG Edge1 Edge2 CbyC SVR GSI TPS

MaxRGB ¼ − ¼ − − − − − − −

MaxRGBþ þ ¼ þ þ þ þ − ¼ þ −

GW ¼ − ¼ − − − − − − −

SoG þ − þ ¼ ¼ þ ¼ ¼ ¼ −

Edge1 þ − þ ¼ ¼ þ ¼ ¼ ¼ −

Edge2 þ − þ − − ¼ − ¼ ¼ −

CbyC þ þ þ ¼ ¼ þ ¼ ¼ ¼ −

SVR þ ¼ þ ¼ ¼ ¼ ¼ ¼ ¼ −

GSI þ − þ ¼ ¼ ¼ ¼ ¼ ¼ −

TPS þ þ þ þ þ þ þ þ þ ¼
aHere CbyC represents “Color by Correlation using bright pixels only” by Hordley and Finlayson [24]. A “þ” means the algorithm listed in the corresponding row is

better than the one in corresponding column. A “−” indicates the opposite, and an “¼” indicates that the performance of the respective algorithms is statistically
equivalent. (Since TPS by leave-one-out and threefold validation ranked the same in the Wilcoxon test, they are not listed separately in the table.)
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The ColorChecker has six achromatic squares. We used
the median of the RGB digital counts from the brightest
achromatic square containing no digital count >3300 as the

ground-truth measure of the illumination’s chromaticity.
The threshold eliminates any clipping or possible nonlinearity
as the intensities approach the maximum of 4095. The median

Table 3. Performance Comparison of MaxRGB [18] andMaxRGBwith Preprocessing (LabeledMaxRGB�) of the

Images by Bicubic Resizing to 64 × 64 [19], GrayWorld [20], Shades of Gray [21], Edge-Based [22], Color by

Correlation [24], Gamut Mapping [25], N-Jet [26], Bayes-GT (with Threefold Cross-Validation) [17], and TPS
a

Angular Error L2 Distance (×102)

Median RMS Max Median B75 RMS W25 Max

Do-nothing 4.8 13 37 3.1 3.0 9.3 30 30
GW 3.7 6.2 25 2.6 2.1 4.5 7.5 20
MaxRGB 9.1 13 51 7.8 5.9 12 19 55
MaxRGBþ 3.4 8.0 33 2.5 2.0 6.5 12 30
SoG (p ¼ 6) 4.5 8.7 36 3.5 2.9 7.5 13 37
Edge-based (first order) 3.8 9.4 38 3.0 2.7 8.0 14 40
Edge-based (second order) 4.4 10 47 3.5 3.2 8.7 15 50
Gamut Mapping(full data set training) 4.3 8.4 32 3.2 2.6 6.8 12 24
N -jet (complete one-jet) 4.2 8.2 32 3.2 2.6 6.5 11 24
N -jet (complete two-jet) 4.1 8.0 32 3.1 2.5 6.3 11 24
Bayes-GT 5.8 8.9 34 5.0 3.8 7.3 12 28
TPS (threefold) 2.8 4.6 17 2.1 1.6 3.4 5.6 16
TPS (leave-one-out) 2.4 4.1 19 1.7 1.4 3.1 5.0 13

aResults involve real-data training and testing using the 568 Canon images in the ColorChecker data set [17]. For TPS the images are converted to 8 × 8 thumbnails;
the other algorithms use the original images. Sometimes the Gamut Mapping and one-jet methods fail to provide an illumination estimate (four times for Gamut
Mapping, one for one-jet). In such cases, we assign the illumination estimate as white with chromaticity ð1=3; 1=3Þ. The TPS errors are based on leave-one-out
cross-validation and threefold cross-validation. (Gamut Mapping was trained using the entire data set.)

Table 4. Comparison of Several Different Algorithms in Table 3 via the Wilcoxon Signed-Rank Test with Rejection

of the Null Hypothesis at the 5% Significance Level
a

MaxRGB MaxRGBþ GW SoG Edge1 Edge2 Gamut One-Jet Two-Jet Bayes-GT TPS

MaxRGB ¼
MaxRGBþ þ ¼
GW þ − ¼
SoG þ − − ¼
Edge1 þ − − þ ¼
Edge2 þ − − þ − ¼
Gamut Mapping þ − − þ − þ ¼
One-jet þ − − þ − þ þ ¼
Two-jet þ − − þ − þ þ þ ¼
Bayes-GT þ − − − − ¼ − − − ¼
TPS þ þ þ þ þ þ þ þ þ þ ¼
aA “þ”means the algorithm listed in the corresponding row is better than the one in corresponding column. A “−” indicates the opposite, and an “¼” indicates that the

performance of the respective algorithms is statistically equivalent. (Since TPS evaluated either by leave-one-out or threefold cross-validation ranks the same in the
Wilcoxon test, they are not listed separately in the table.)

Table 5. Performance Comparison of MaxRGB [18], MaxRGB with Preprocessing (Labeled MaxRGB�) of the

Images by Bicubic Resizing to 64 × 64 [19], GrayWorld [20], Shades of Gray [21], Edge-Based [22], and TPS
a

Angular Distance L2 Distance (×102)

Methods Median RMS Max Median B75 RMS W25 Max

Do-nothing 17 19 37 16 13 15 16 17
MaxRGB 7.4 13 51 5.6 4.9 11 18 55
MaxRGBþ 3.3 8.2 33 2.4 1.9 6.2 11 30
GW 4.2 9.5 36 3.3 2.6 7.4 12 33
SoG 4.3 8.8 36 3.1 2.6 7.1 12 37
Edge1 3.8 9.1 38 2.8 2.5 7.3 13 40
Edge2 4.4 9.7 47 3.3 3.0 7.9 14 50
TPS (threefold) 2.4 4.7 33 1.7 1.4 3.3 5.6 20
TPS (leave-one-out) 1.8 4.0 25 1.4 1.1 2.9 4.8 15

aResults involve real-data training and testing using the combination of the 321 SFU Sony images [16] combined with the 568 Canon images of the ColorChecker data
set [17]. For TPS the images are converted to 8 × 8 thumbnails; the other algorithms use the original images. The TPS errors are based on leave-one-out cross-validation
and threefold cross-validation.
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was chosen instead of the mean because the median automa-
tically excludes any of the black pixels surrounding each
square that might have been incorrectly included in the
square due to the inexactness in the hand labeling of a Color-
Checker’s position.

For testing, the ColorCheckers were overwritten by zeros
in all images. TPS’s performance was evaluated using both the
leave-one-out [16] and threefold cross-validation. Tables 3 and
4 provide a comparison to the performance of MaxRGB [18],
MaxRGB with preprocessing [19], GrayWorld [20], Shades of
Gray [21] (Minkowski norm ¼ 6), first- and second-order
edge-based approaches [22] (Minkowski norm ¼ 6, sigma ¼
2), Gamut Mapping [25], N -jet [26] and Bayes-GT [17]. To give
the Gamut Mapping and the two N -jet methods the best
possible training data, the full set of 568 images with the
ColorCheckers included was used. Testing was then done
on images with the ColorCheckers removed. Since this data
set consists of images from two different camera models,
training and testing were done separately for each of the
two corresponding image subsets. The results were then com-
bined. For Bayes-GT [17], it would also have been interesting

to be able to include leave-one-out results in Tables 3 and 4 as
well, but unfortunately that method is so computationally
intensive that this is not practical. Bayes-GT requires 4 min
per image so even the threefold validation required two days
of computation. It seems doubtful that it could ever be sped up
enough to be of any more than theoretical interest.

As a third test, we combine the 321 images of the Simon
Fraser University (SFU) Sony data set [16] with the 568 Canon
images of ColorChecker data set [17] into a single data set. The
results are shown in Tables 5 and 6. These two data sets are
similar in size so neither set will dominate. They are also from
completely different cameras. As the SFU data set includes
camera calibrationdata, it is possible to balance the sensor sen-
sitivities so thatR ¼ G ¼ B for an idealwhite reflectance under
the canonical light source. On the other hand, the sensor
sensitivities of the two Canon cameras of the ColorChecker
data set were unknown, so the sensors were left unbalanced.
Tables 5 and 6 compare the performance on the combined data
set of 889 imagesofMaxRGB[18],MaxRGBwithpreprocessing
(MaxRGBþ) [19], GrayWorld [20], Shades of Gray [21]
(Minkowski norm ¼ 6), first- and second-order edge-based
approaches [22] (Minkowski norm ¼ 6, sigma ¼ 2), and TPS
by leave-one-out and threefold cross-validation.

As a final test with real images, we use a subset of 7661 out
of the 11,346 real images of the Ciurea and Funt [13] Grayball
data set. A matte gray ball appears at a fixed location near the
right-bottom corner of each image of the data set and provides
a measure of the illumination chromaticity. To ensure that
the gray ball has no effect on our results, all images were
cropped on the right to remove the gray ball. The resulting
images are 240 by 240 pixels. Each image was converted to
a 128-dimensional vector by shrinking the images into 8 × 8
thumbnails in chromaticity space. In this data set, the images
are nonlinear; however, the actual gamma or tone curve used
is unknown.

The 7661 images making up the subset were selected to give
a somewhat uniform distribution of the rg-chromaticity values
of the scene illuminants than occurs in the full data set. Many
of the images in the full data set already have very good color
balance (i.e., the gray ball has R ¼ G ¼ B), which potentially
could bias the results. Therefore, we eliminated from the data

Fig. 2. (a) Histogram of the measured illumination chromaticities from the full set of 11,346 images showing a distinct peak around gray (0.33,
0.33); (b) corresponding histogram for the reduced data set of 7661 images showing a more uniform distribution of illumination chromaticities. The
x axis is the chromaticity r, the y axis is the chromaticity g, and the z axis is the count of the number of the same illuminations.

Fig. 3. Plot of the median angular error (y) from Table 9 (excluding
the last row) as a function of the size of the set of representative train-
ing images (x axis).
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set the majority of the correctly balanced images in order to
make the overall distribution of the illumination chromaticity
more uniform. The distributions of the illuminant chromaticity
of the full and reduced sets are shown in Fig. 2. The resulting
data set contains 7661 images.

Since neighboring images in the database tend to be re-
lated, we partitioned the 7661 images into two independent
sets based on geographical location. Subset A includes
3581 images, and subset B includes 4080. Subset A contains
images from the Apache Trail, Burnaby Mountain, Camelback
Mountain, CIC 2002, and Deer Lake. Subset B contains images

from completely different locations including False Creek,
Granville Island Market, Marine Drive, Metrotown shopping
center, Scottsdale, Simon Fraser University, and Whiteclyff
Park. We use Subset A for training and B for testing and then
vice versa. Since the training and test sets are geographically
distinct, any similarity between the images in the two sets is
guaranteed to be coincidental and not a by-product of the fact
that they are extracted from a video sequence. The combined
errors and corresponding Wilcoxon signed-rank test results
from both tests are shown in Tables 7 and 8.

Table 6. Comparison of Several Different Algorithms in Table 5 via the Wilcoxon Signed-Rank Test with

Rejection of the Null Hypothesis at the 5% Significance Level
a

MaxRGB MaxRGBþ GW SoG Edge1 Edge2 TPS

MaxRGB ¼
MaxRGBþ þ ¼
GW þ − ¼
SoG þ − − ¼
Edge1 þ − þ ¼ ¼
Edge2 þ − − − − ¼
TPS þ þ þ þ þ þ ¼

aA “þ”means the algorithm listed in the corresponding row is better than the one in corresponding column. A “−” indicates the opposite, and an “¼” indicates that the
performance of the respective algorithms is statistically equivalent. (Since TPS by leave-one-out and threefold validation ranked the same, they are not listed separately
in the table.)

Table 7. Performance Comparison of MaxRGB [18] and MaxRGB with Preprocessing of the Images by Bicubic

Resizing to 64 × 64 [19], GrayWorld [20], 3D Support Vector Regression [4], Shades of Gray [21], Edge-Based [22],

Gray Surface Identification [23], Color by Correlation [24], N-Jet [26], and TPS
a

Angular Error L2 Distance (×102)

Median RMS Max Median B75 RMS W25 Max

Do-nothing 10 13 27 7.2 7.7 9.4 22 22
MaxRGB 9.4 12 27 6.6 5.1 8.7 14 22
MaxRGBþ 8.1 11 30 5.9 4.7 8.2 13 22
GW 6.6 9.4 44 5.1 3.9 7.6 12 40
SoG (p ¼ 6) 6.6 8.8 36 4.7 3.8 6.5 10 28
Edge-based (first order) 7.2 10 33 5.2 4.2 7.5 12 23
Edge-based (second order) 7.8 11 34 5.6 4.5 7.9 13 25
CbyC (Table IV, Gijsenij [26]) 8.5 11 39 - - - - -
Leave-N-Out n-jet (Table IV, Gijsenij [26]) 6.5 8.8 43 - - - - -
GSI 5.5 8.0 39 4.2 3.3 6.2 10 32
3D SVR 4.9 7.0 25 3.6 - 5.2 - 19
TPS 4.6 6.9 34 3.4 2.7 5.1 8.3 26

aResults involve real-data training and testing on disjoint sets of 7661 images from the Ciurea data set.

Table 8. Comparison of the Performance Based on the Wilcoxon Signed-Rank Test with Rejection of the Null

Hypothesis at the 5% Significance Level
a

MaxRGB MaxRGBþ GW SoG Edge1 Edge2 GSI CbyC SVR N -Jet TPS

MaxRGB ¼
MaxRGBþ þ ¼
GW þ þ ¼
SoG þ þ þ ¼
Edge1 þ þ − − ¼
Edge2 þ ¼ − − − ¼
GSI þ þ þ þ þ þ ¼
CbyC þ − − − − − − ¼
SVR þ þ þ þ þ þ þ þ ¼
N -jet þ þ þ ¼ þ þ − þ − ¼
TPS þ þ þ þ þ þ þ þ þ þ ¼
aLabeling “þ,” “−,” “¼” as in Table 7.
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C. Tests on Reduced Training Data Set
TPS training requires a matrix inverse operation of complexity
OððN þ DÞ3Þ, and TPS testing has complexity OðlogNDÞ.
Since both grow with the training size N while the dimension-
ality D of the input image is fixed (128 in our tests), the way to
reduce the computation time is to reduce the training size. To
reduce the training-set size without losing important training
information, we select a subset of the training set using
k-median clustering. Starting with the 7761 images [13] de-
scribed above and with increasing values of k, we select
the k centroids from subset A and then test using all images
in subset B. The median angular errors are listed in Table 9.
The time recorded is CPU time on a Windows computer
equipped with a 3GHz CPU and 1GB RAM. The plot in Fig. 3
shows that there is significant performance penalty incurred
for training sizes under 150. Table 9 shows that, although there
is a slight performance penalty in reducing the training set
from k ¼ 3581 (error is 4.8) to k ¼ 364 (error is 5.7) images,
the training time drops from 283.18 to 2:73 s and the testing
time for each image from 67.24 to 7:69ms—factors of approxi-
mately 100 and 10, respectively. Additionally, the computer
memory required for training is reduced from ∼ðDþ NÞ2 to
∼ðDþ kÞ2. In this case, for D ¼ 128, N ¼ 3581, and k ¼ 364,
only 2% of memory is required for the reduced set in compar-
ison to the full set.

The results of the above tests demonstrate that training-set
reduction via k-median clustering significantly decreases the
time required both for training and for testing (i.e., illumina-
tion estimation), with only a modest sacrifice in accuracy,
even when the subset contains only 364 centroids from the
full training set. As both the more time-consuming phases
—incremental k medians and TPS training—are only done
once and can be completed offline, TPS-based illumination es-
timation is potentially suitable for practical applications since
the time to evaluate an individual image is only a few milli-
seconds.

5. DISCUSSION AND CONCLUSIONS
The problem of estimating the chromaticity of the overall
scene illumination is formulated in terms of interpolation over
a nonuniformly sampled data set. The illumination chromati-
city is viewed as a function of the image, and the set of training
images is nonuniformly spaced. TPS interpolation is an excel-
lent interpolation technique for these conditions and is shown
here to work well for illumination estimation. TPS calculates
its result based on a weighted combination of the entire set of
training data. For a modest sacrifice in accuracy the training
and test time can be significantly reduced by using incremen-
tal kmedians to select a smaller, representative set of training
images from a given training set.

Although it might be argued that the superior performance
of TPS is due to the fact that some of the scenes in the data
sets are highly correlated, as they are in the 321 data set, this
cannot be the explanation for the other data sets. For the 568
data set, the images are still photographs from varied loca-
tions and appear quite independent. Since it originated from
digital video, the 7661 data set may contain highly correlated
images [28], but any correlation cannot be between the images
in the training and test sets because they were from different
geographical locations. Based on the results of the tests
(shown in Tables 1–9) on three different real-image data sets
and one combined data set, TPS consistently demonstrates
statistically significant superior performance compared to
all the other methods tested, including those that are known
as some of the best available.
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