
US 20180350032A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0350032 A1

Bastani et al . (43) Pub . Date : Dec . 6 , 2018

(54) SMOOTHLY VARYING FOVEATED
RENDERING

(71) Applicant : GOOGLE LLC , Mountain View , CA
(US)

(72) Inventors : Behnam Bastani , San Jose , CA (US) ;
Brian Funt , Vancouver (CA) ; Sylvain
Vignaud , Zurich (CH) ; Haomiao
Jiang , Sunnyvale , CA (US)

Publication Classification
(51) Int . Cl .

G06T 3 / 00 (2006 . 01)
GOOT 19 / 00 (2006 . 01)
G06T 15 / 20 (2006 . 01)

(52) U . S . CI .
CPC G06T 3 / 0093 (2013 . 01) ; G06T 19 / 00

(2013 . 01) ; G06F 3 / 013 (2013 . 01) ; G06T
2200 / 04 (2013 . 01) ; G06T 2210 / 44 (2013 . 01) ;

G06T 15 / 20 (2013 . 01)
(57) ABSTRACT
Systems and methods for performing foveated rendering are
provided . An example system and method may warp a 3D
scene based on a fixation point . The system and method may
also render the warped 3D scene to generate a first image .
The system and method may also unwarp the first image to
generate a second image . For example , the first image may
have fewer pixels than the second image .

(21) Appl . No . : 16 / 000 , 305

(22) Filed : Jun . 5 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 515 , 124 , filed on Jun .

5 , 2017 .

1067
5104 AR / VR Content

Source
5 108

Network
5 102 100

Memory 110 Processor
Assembly

ARIR Application
120

Foveated
Rendering
Engine 122

112

Eye Tracker
Display Device

114 AR / VR Content
126 124

Communication
Module

116 Sensor system 118

Inertial Motion Unit (IMU)
128

Computing Device 102

1067 ARNVR Content Source

5108

Patent Application Publication

Network

- - - 102

100

Memory 110
Foveated

ARNVR Application 120

Rendering Engine 122

Processor Assembly 112

Dec . 6 , 2018 Sheet 1 of 13

Display Device 114

Eye Tracker 124

ARIVR Content 126

Communication Module 116

Sensor system 118 Inertial Motion Unit (IMU)
128

Computing Device 102

US 2018 / 0350032 A1

FIG . 1

Patent Application Publication Dec . 6 , 2018 Sheet 2 of 13 US 2018 / 0350032 A1

.

.
' . ' .

: : : :
.

:
,
.

.

I
C

.

. .
. .

.

206

204

FIG . 2

104

T

Foveated Rendering Engine 122
200

VVVVV

Patent Application Publication Dec . 6 , 2018 Sheet 3 of 13 US 2018 / 0350032 A1

310 300

360 .
362

330

380
370 / 390

FIG . 3A
310 310b

360
362

365A
365 we 350 www 340

310a 302 303 308 330

370 / 390
350

306
FIG . 3B 304 . A

FIG . 30

Patent Application Publication Dec . 6 , 2018 Sheet 4 of 13 US 2018 / 0350032 A1

400 m

Retrieve 3D Scene .
402

????

Determine a Fixation Point .
404

Warp vertices in the 3D scene from screen
space to intermediary compressed space .

406

Render an intermediary image of the 3D scene
in the intermediary compressed space .

408

Unwarp the intermediary image to generate
the foveated image .

410

FIG . 4

Patent Application Publication Dec . 6 , 2018 Sheet 5 of 13 US 2018 / 0350032 A1

* *

+

.

2

* * * * * * * FIG . 5B .

* * * * * *
* *

: :
2

* * : 4 14 * * *

* * *
* *

: : :

.

5027

*
*

FIG . 5A
Se

5007

Com 009 6003

Patent Application Publication

More details in the central area 606a

604a

602a

6026 em

98

* * * * * * * * *

X

House

Distance in compressed space

Dec . 6 , 2018

* * * *

More details in

the periphery own 2 . 2 r . 4 . 78 * * 350
2 p . . 45 2355

@ 10a

* * * * * * * * * * * * * * * *

6046

608a

606b

60863 . 21 . 22 15

Sheet 6 of 13

2

Distance in uncompressed biob
screen space

1

US 2018 / 0350032 A1

FIG . 6

Patent Application Publication Dec . 6 , 2018 Sheet 7 of 13 US 2018 / 0350032 A1

SASSIN

ves

WINDS
XXXXXX YUR

1 : 11 : 11

www
1
. YOX .

VXX

XXXXXX

HEEFT * WW .

DAME

700 760 FIG . 7A 702

X EROXARXES WY

ASSESSOA
SERVICES

tot Hot

W

FIG . 7B 704

3D Scene :

5 800

Vertex shader applies non linear warping function to vertices of the input 3D scene .

3D scene warped about a fixation point at the center

Patent Application Publication

802

804

2D Image :

Pixel shader renders the warped 3D scene .

808

806

Un - foveating shader reads and unwarps the
warped image to generate the final image at full resolution .

Dec . 6 , 2018 Sheet 8 of 13

Rendered intermediary (warped) image at reduced resolution ,

The closer to the fixation point (shown as darker) , the less the

degree of temporal blending (e . g . ,

alpha blending with a previous frame) . Bilinear filtering may be applied to only the darker region .

US 2018 / 0350032 A1

FIG . 8

0065

902

904

Patent Application Publication

906

908

Transforma

in hominem

volgoijode ue xq ndo

Dec . 6 , 2018 Sheet 9 of 13

Warped mesh

. :

: : : :

: : : :

: : : : : : : : :

: :

Rendered Mesh

US 2018 / 0350032 A1

FIG . 9

1000

1020

1016

1006 -

Patent Application Publication

1004
wwwwwwwwwwww

2222222222 *

1002 y

1012

wwwwwwwwwwwwwwwwwwwy

*

*

* *

TUTDUUTTUUDPL 1010 -
1008 1014

??
wiwwwwwwwwwwwwwwwwwwwwwwww

for 1024

1080

.

1074

1072
1066

1070 1068

Dec . 6 , 2018 Sheet 10 of 13

1082

S

1054

1064
-

1060

1052

WA

co

41058
1056

??????

1062

2 1050

21090

FIG . 10

US 2018 / 0350032 A1

Patent Application Publication Dec . 6 , 2018 Sheet 11 of 13 US 2018 / 0350032 A1

1102 1100

FIG . 11A
1106 7104

20 : 47

www

FIG . 11B
1108

FIG . 110

Patent Application Publication Dec . 6 , 2018 Sheet 12 of 13 US 2018 / 0350032 A1

20
1202

MXXXV XUM

PIETE
* *
*

FFFFFFF * * * *

FIG . 12A

1206 1204

FIG . 12B

Patent Application Publication Dec . 6 , 2018 Sheet 13 of 13 US 2018 / 0350032 A1

1208

1210 FIG . 120

1212

FIG . 12D 1214

US 2018 / 0350032 A1 Dec . 6 , 2018

SMOOTHLY VARYING FOVEATED
RENDERING

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U . S . application
Ser . No . 62 / 515 , 124 , filed on Jun . 5 , 2017 , the disclosure of
which is incorporated herein by reference in its entirety .

BACKGROUND
[0002] A virtual reality (VR) system generates an immer
sive virtual environment for a user . For example , the immer
sive environment can be three - dimensional (3D) and can
include multiple virtual objects with which the user may
interact . An augmented reality (AR) system generates an
augmented environment for a user . For example , the aug
mented environment can be generated by superimposing
computer - generated images on a user ' s field of view of the
real world .
10003] The user can experience the immersive virtual
environment or augmented environment via various display
devices such as , for example , a helmet or other head
mounted device including a display , glasses , or goggles that
a user looks through when viewing a display device .

mounted display with smoothly varying foveated rendering ,
in accordance with implementations as described herein .
[0011] FIGS . 3A , 3B , and 3C are diagrams depicting an
example head - mounted display device and controller , in
accordance with implementations as described herein .
[0012] FIG . 4 is a flowchart of an example method 400 of
rendering a smoothly varying foveated image , in accordance
with implementations as described herein .
[0013] FIGS . 5A and 5B are schematic diagrams that
illustrate how example warping functions sample an image ,
in accordance with implementations as described herein .
[0014] FIG . 6 is a graph with plots for several example
warping functions , in accordance with implementations as
described herein .
[0015] FIG . 7A is an example intermediary image of a
warped scene , in accordance with implementations as
described herein .
[0016] FIG . 7B is an image of an unwarped scene that
corresponds to the image of FIG . 7B .
[0017] FIG . 8 is a schematic diagram of a foveated ren
dering process according to some implementations .
[0018] FIG . 9 is a schematic diagram of a foveated ren
dering process according to some implementations .
[00191 . FIG . 10 is an example of a computer device and a
mobile computer device that can be used to implement the
techniques described herein .
10020] FIGS . 11A - 11C are example foveated images of a
scene , according to some implementations .
[0021] FIGS . 12A - 12D are example foveated images of a
scene , according to some implementations .

SUMMARY
[0004] This document relates , generally , to foveated ren
dering . In some implementations , the foveated rendering is
smoothly varying .
[0005] One aspect is a method comprising warping a 3D
scene based on a fixation point . The method also includes
rendering the warped 3D scene to generate a first image , and
unwarping the first image to generate a second image .
10006] Another aspect is a system comprising at least one
processor ; and memory storing instructions . When the
instructions are executed by the at least one processor , the
instructions cause the system to warp a 3D scene based on
a fixation point , render the warped 3D scene to generate a
first image , and unwarp the first image to generate a second
image .
[0007] Another aspect is a non - transitory computer - read
able storage medium comprising instructions stored thereon .
When the instructions are executed by at least one processor ,
the instructions cause a computing system to at least deter
mine a pupil location of a wearer of a head - mounted display
device and determine a fixation point based on the pupil
location . The instructions also cause the computing system
to warp a 3D scene based on the fixation point and render the
warped 3D scene to generate a first image . The instructions
also cause the computing system to unwarp the first image
to generate a second image and cause the head - mounted
display device to display the second image .
[0008] The details of one or more implementations are set
forth in the accompanying drawings and the description
below . Other features will be apparent from the description
and drawings , and from the claims .

DETAILED DESCRIPTION
10022] Reference will now be made in detail to non
limiting examples of this disclosure , examples of which are
illustrated in the accompanying drawings . The examples are
described below by referring to the drawings , wherein like
reference numerals refer to like elements . When like refer
ence numerals are shown , corresponding description (s) are
not repeated and the interested reader is referred to the
previously discussed figure (s) for a description of the like
element (s) .
[0023] At least some implementations of VR systems and
AR systems include a head - mounted display device (HMD)
that can be worn by a user . In at least some implementations ,
the HMD includes a stereoscopic display in which different
images and / or videos are shown to each of the user ' s eyes to
convey depth . The HMD may display images that cover
some (e . g . , AR) or all (e . g . , VR) of a user ' s field of view . The
HMD may also track the movement of the user ' s head and / or
pupil location . As the user ' s head moves , the HMD may
display updated images that correspond to the user ' s chang
ing orientation and / or position within the AR or VR envi
ronment .
[0024] The HMD may display images and / or videos gen
erated by a rendering engine . The rendering engine may be
a component of the HMD or may be a component of another
computing device that transmits the rendered images to the
HMD . Rendering images for display in a VR or AR system
can be very resource intensive .
[0025] To improve the visual experience on VR and AR
systems , displays with higher resolution , higher acuity , and
lower motion - to - photon latency are needed . Motion - to - pho
ton latency refers to the time delay between detecting a
motion and updating the immersive virtual environment or

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG . 1 is a block diagram illustrating a system
according to an example implementation .
[0010] FIG . 2 is an example implementation of an aug
mented and / or virtual reality system including a head

US 2018 / 0350032 A1 Dec . 6 , 2018

the augmented reality environment . All these elements
require systems with higher processing power to render
larger number of pixels at lower latency . Additionally ,
mobile VR and AR systems need to meet these requirements
while minimizing energy use .
[0026] In order to generate a satisfactory VR or AR
experience , the rendering engine may need to minimize
motion - to - photon latency so that updates to the VR or AR
environment happen in a manner that matches the user ' s
movement . In fact , if the motion - to - photon latency is too
high , a VR system may cause the user to feel motion
sickness .
[0027 Some implementations include a foveated render
ing engine that renders images with varying quality to
roughly correspond to the user ' s visual acuity based on
where the user is looking and / or the performance of a lens
of the HMD . For example , images may be rendered at a
higher quality at a fixation point and at gradually decreasing
quality levels as distance from the fixation point increases .
In some implementations , the HMD includes a pupil tracker
that identifies the fixation point based on where the user is
looking . This identified fixation point can be used to identify
a central portion of the user ' s field of view in which the user
will have greater visual acuity than in other portions of the
user ' s field of view (e . g . , within the user ' s peripheral field of
vision) .
[0028] The foveated rendering engine may generate an
image that has a higher quality in parts of the image that are
intended to be displayed within the central portion of the
user ' s field of view and a lower quality in parts of the image
that are intended to be displayed within a peripheral portion
of the user ' s field of view . As an example , the lower quality
rendering may be at a lower resolution than the higher
quality rendering . Implementations of the foveated render
ing engine exploit the fact that the acuity of the human visual
system drops off dramatically as a function of eccentricity
from the center of gaze . By rendering parts of the image at
a lower quality , the foveated rendering engine can render the
image more quickly , while using fewer processor cycles and
energy . Because these lower quality portions are located
away from the fixation point , the lower quality is unlikely to
be noticeable to the user due to the user ' s lower visual acuity
as distance from the fixation point increases .
[0029] In some implementations , the quality of the image
varies smoothly from a higher quality at the identified
fixation point to a lower quality in the peripheral regions of
the image . Because the quality of the images generated by
the foveated rendering engine varies smoothly , the images
are free of visual artifacts such as a tunnel vision effect or
perceivable borders or transitions between regions of dif
ferent quality levels .
[0030] In some implementations , the foveated rendering
engine generates foveated images and / or video from a
three - dimensional (3D) scene by warping the scene using a
nonlinear function of distance from the fixation point to
generate a warped scene . In some implementations , warping
the scene includes altering the scene in a non - uniform
manner (i . e . , such that not all portions of the scene are
altered in the same way) . In some implementations , warping
the scene includes altering the distance between vertices in
the 3D scene and a fixation point . In some implementations ,
warping the scene includes mapping the 3D scene to a
compressed intermediary space . The compressed interme -
diary space may allocate more screen space to portions of

the scene that are close to the fixation point and less screen
space to portions of the scene that are further from the
fixation point .
10031] The nonlinear function may be a logarithmic func
tion , an approximately logarithmic function , or the like . The
3D scene may include one or more objects represented as
polygonal meshes that are defined by vertices and faces . For
example , the rendering engine may calculate a distance from
each vertex of the 3D scene to a line that is normal to the
view plane and passes through the fixation point .
[0032] . Although the examples herein use a function of
distance to perform warping , other implementations use
other types of functions . For example , some implementa
tions use a warping function of vertical distance and / or
horizontal distance from the fixation point . In this manner ,
the warping function can warp the scene to a different degree
in the horizontal dimension versus the vertical dimensions .
Additionally , some implementations include an asymmetri
cal warping function that warps by a different amount on one
side of the fixation point than on the other side . For example ,
portions of the scene that are to the left of the fixation point
of the right eye may be warped more significantly than
portions to the right of the fixation point as much of the
portions of the scene to the left of the fixation point may be
occluded by the user ' s nose and vice versa .
[0033] After the 3D scene is warped , the rendering engine
can render and discretize the warped scene using various
rendering techniques to generate a warped image . For
example , standard graphics processor unit (GPU) operation
can be used to render the image from the warped scene . The
warped image can be rendered at a reduced resolution (e . g . ,
having fewer pixels) as compared to the desired final image .
Rendering each of the pixels may involve the GPU perform
ing various operations that are computationally expensive ,
such as calculating lighting and texture values using GPU
shaders . Since the time to render an image is a function of
the number of pixels being rendered , the warped image will
require less time to render than the desired final image
would . For example , the warped image may have approxi
mately half the number of pixels in the vertical and hori
zontal directions as the desired final image , resulting in the
warped image having a fourth of the pixels as the desired
final image . This four - fold reduction in the number of pixels
can lead to a reduction in the rendering time for the warped
image by a factor of four . Even greater improvements are
possible in images with extra wide fields of view .
[0034] In some implementations , the warped image is then
unwarped to generate the desired final image . For example ,
unwarping the image may counteract the previously per
formed warping . In some implementations , unwarping the
image includes applying an inverse of the function used to
warp the 3D scene to the pixels of the image . For example ,
the inverse of the function may move the pixels representing
portions of the 3D scene back to where those portions were
before the warping .
[0035] The unwarping can be accomplished in a compu
tationally inexpensive manner using GPU operations to
determine values for the pixels in the final image based on
the values of pixels at locations determined by the unwarp
ing function in the warped image . The calculations required
to unwarp the warped image are computationally inexpen
sive as compared to the pixel rendering computations that
are avoided using this technique (e . g . , unwarping the image
to generate the desired final image uses fewer processor

US 2018 / 0350032 A1 Dec . 6 , 2018

cycles than rendering each of the pixels of the desired final
image) . Since the warping function allocates more of the
image space to vertices from the 3D scene that are close to
the fixation point than to those that are more distance , more
of the pixels in the warped image represent the portion of the
3D scene near the fixation point . In other words , the warped
image samples the region surrounding the fixation point at a
higher rate than regions further away from the fixation point .
This variable sampling allows the desired final image to be
reconstructed with higher resolution around the fixation
point and lower resolution elsewhere .
[0036] In addition to unwarping the image as described
above , other nonlinear operations can be applied to the
images too . For example , a nonlinear lens distortion correc
tion can be applied to generate the final image . In some
implementations , the unwarping and at least one other
nonlinear operation are combined into a single operation so
that the multiple operations can be applied without requiring
any additional per - pixel computations . In other words , by
combining multiple nonlinear operations into a single opera
tion , the number of operations applied to each pixel of the
final image is reduced so the time to render the image and / or
the number of processor cycles used to render the image are
reduced .
[0037] Unless otherwise noted , the techniques described
herein can be applied to generate foveated images and / or
videos . The generated images and / or video can include
computer - generated content , standard photographs and vid
eos of real scenes , and combinations thereof . Furthermore ,
the techniques described herein can be applied to generate a
series of images (or a video) for use in an AR or VR
environment .
[0038] FIG . 1 is a block diagram illustrating a system 100
according to an example implementation . The system 100
generates an augmented reality (AR) environment or virtual
reality (VR) environment for a user of the system 100 . In
some implementations , the system 100 includes a computing
device 102 , a head - mounted display device (HMD) 104 , and
an AR / VR content source 106 . Also shown is a network 108
over which the computing device 102 may communicate
with the AR / VR content source 106 .
[0039] In some implementations , the computing device
102 is a mobile device (e . g . , a smartphone) which may be
configured to provide or output VR content to a user . The
computing device 102 may include a memory 110 , a pro
cessor assembly 112 , a display device 114 , a communication
module 116 , and a sensor system 118 . The memory 110 may
include an AR / VR application 120 , a foveated rendering
engine 122 , an eye tracker 124 , and AR / VR content 126 . The
computing device 102 may also include various user input
components (not shown) such as a controller that commu
nicates with the computing device 102 using a wireless
communications protocol .
[0040] The memory 110 can include one or more non
transitory computer - readable storage media . The memory
110 may store instructions and data that are usable to
generate an AR VR environment for a user .
10041] The processor assembly 112 includes one or more
devices that are capable of executing instructions , such as
instructions stored by the memory 110 , to perform various
tasks , such as image and video rendering . For example , the
processor assembly 112 may include a central processing
unit (CPU) and / or a graphics processor unit (GPU) . For

example , if a GPU is present , some video rendering tasks
may be offloaded from the CPU to the GPU .
[0042] The display device 114 may , for example , include
an LCD (liquid crystal display) screen , an OLED (organic
light emitting diode) screen , a touchscreen , or any other
screen or display for displaying images or information to a
user . In some implementations , the display device 114
includes a light projector arranged to project light onto a
portion of a user ' s eye .
(0043] The communication module 116 includes one or
more devices for communicating with other computing
devices , such as the ARVR content source 106 . The com
munication module 116 may communicate via wireless or
wired networks .
[0044] The sensor system 118 may include various sen
sors , including an inertial motion unit (IMU) 128 . Imple
mentations of the sensor system 118 may also include
different types of sensors , including , for example , a light
sensor , an audio sensor , an image sensor , a distance and / or
proximity sensor , a contact sensor such as a capacitive
sensor , a timer , and / or other sensors and / or different com
bination (s) of sensors .
10045] The IMU 128 detects motion , movement , and / or
acceleration of the computing device 102 and / or the HMD
104 . The IMU 128 may include various different types of
sensors such as , for example , an accelerometer , a gyroscope ,
a magnetometer , and other such sensors . A position and
orientation of the HMD 104 may be detected and tracked
based on data provided by the sensors included in the IMU
128 . The detected position and orientation of the HMD 104
may allow the system to in turn , detect and track the user ' s
gaze direction and head movement .
[0046] The AR / VR application 120 may present or pro
vide the AR / VR content to a user via one or more output
devices of the computing device 102 such as the display
device 114 , a speaker (s) (not shown) , and / or other output
devices . In some implementations , the AR / VR application
120 includes instructions stored in the memory 110 that ,
when executed by the processor assembly 112 , cause the
processor assembly 112 to perform the operations described
herein . For example , the AR / VR application 120 may gen
erate and present an AR / VR environment to the user based
on , for example , AR / VR content , such as the AR / VR content
126 and / or AR / VR content received from the AR / VR con
tent source 106 . The AR / VR content 126 may include 3D
scenes that can be rendered as images or videos for display
on the display device 114 . For example , the 3D scene can
include one or more objects represented as polygonal
meshes . The polygonal meshes may be associated with
various surface textures , such as colors and images . The 3D
scene may also include other information such as , for
example , light sources that are used in rendering the 3D
scene .
[0047] The AR / VR application 120 may use the foveated
rendering engine 122 to generate images for display on the
display device 114 based on the ARVR content 126 . In
some implementations , the foveated rendering engine 122
includes instructions stored in the memory 110 that , when
executed by the processor assembly 112 , cause the processor
assembly 112 to perform the operations described herein .
For example , the foveated rendering engine 122 may gen
erate foveated images based on a 3D scene of the AR / VR
content 126 . The foveated images have a varying quality
level to approximate the varying acuity of the visual system

US 2018 / 0350032 A1 Dec . 6 , 2018

(i . e . , the portion of the image that is expected to be perceived
by the fovea of the user ' s eye has a higher quality level than
portions of the image that are expected to be perceived by
other regions of the user ' s eye) . In at least some implemen
tations , the foveated rendering engine 122 generates images
that degrade in quality smoothly as a distance from a fixation
point increases .
[0048] For example , the foveated images may be images
generated by rendering the 3D scene with varying quality
levels . The images may be two - dimensional (2D) (e . g . , 2D
arrays of pixels) . In some implementations , the images are
stereoscopic images the can be displayed by the HMD 104
to convey depth so that a wearer of the HMD perceives a 3D
environment . For example , the stereoscopic image may
include separate portions of the image for each eye . The
portions may represent the same scene from slightly differ
ent perspectives (e . g . , from the perspective of a left eye and
a right eye) .
(0049) Rendering the images may include determining a
camera position and a viewport (or image plane) through
which the 2D image of the 3D scene will be rendered . The
viewport is like a window through which the 3D scene is
viewed . The dimensions of the viewport correspond to the
dimensions of the desired 2D image and each pixel of the 2D
image can be mapped to a position on the viewport . The
color value of each pixel may then be determined based on
what would be seen by the camera at the corresponding
position of the viewport .
[0050] Based on the position of the camera and the view
port , the 3D scene can be projected into screen space
coordinates (e . g . , 2D coordinates that correspond to vertical
and horizontal positions within the image) . For example ,
each entity (or portion of an entity such as a vertex) in the
3D scene may be mapped to a specific position on the
viewport based on the intersection between a line segment
that extends from the entity to the camera and the viewport .
For some 3D scenes , portions of the scene may not intersect
with the viewport . These portions would not be part of the
rendered 2D image . In a stereoscopic image , the viewport
and camera positions may be slightly different for a left - eye
image portion than for a right - eye image portion .
[0051] The foveated images may include at least one
fixation point . The fixation point may be a point in the image
that has a higher quality level than other portions of the
image . For example , the higher quality level portions may be
rendered at a higher resolution than the lower quality level
portions . In some implementations , the fixation point is a
screen space coordinate within the image . In some imple
mentations , the fixation point is a screen space coordinate
within the image that is determined based on the direction a
user is looking . In some implementations , the fixation point
is a screen space coordinate within the image that is deter
mined based on properties of a lens through which a user
looks . In some implementations , the fixation point is a 3D
coordinate within a 3D scene . In these implementations , the
fixation point may be projected into screen space coordi
nates .
[0052] In at least some implementations , the foveated
rendering engine 122 determines a fixation point at which
the user is looking based , at least in part , on the eye tracker
124 . In some implementations , the eye tracker 124 includes
instructions stored in the memory 110 that , when executed
by the processor assembly 112 , cause the processor assem
bly 112 to perform the operations described herein . For

example , the eye tracker 124 may determine a location on
the display device 114 at which the user ' s gaze is directed .
The eye tracker 124 may make this determination based on
identifying and tracking the location of the user ' s pupils in
images captured by an imaging device of the sensor system
118 .
[0053] The AR / VR application 120 may update the
ARVR environment based on input received from the IMU
128 and / or other components of the sensor system 118 . For
example , the IMU 128 may detect motion , movement ,
and / or acceleration of the computing device 102 and / or the
display device 114 . The IMU 128 may include various
different types of sensors such as , for example , an acceler
ometer , a gyroscope , a magnetometer , and other such sen
sors . A position and orientation of the HMD 104 may be
detected and tracked based on data provided by the sensors
included in the IMU 128 . The detected position and orien
tation of the HMD 104 may allow the system to in turn ,
detect and track the user ' s gaze direction and head move
ment . Based on the detected gaze direction and head move
ment , the ARVR application 120 may update the AR / VR
environment to reflect a changed orientation and / or position
of the user within the environment .
[0054] Although the computing device 102 and the HMD
104 are shown as separate devices in FIG . 1 , in some
implementations , the computing device 102 may include the
HMD 104 . In some implementations , the computing device
102 communicates with the HMD 104 via a cable , as shown
in FIG . 1 . For example , the computing device 102 may
transmit audio and video signals to the HMD 104 for display
for the user , and the HMD 104 may transmit motion ,
position , and / or orientation information to the computing
device 102 . In some implementations , the HMD 104
includes a chamber in which the computing device 102 may
be placed . In some implementations , the user is able to view
the display device 114 of the computing device 102 while
wearing the HMD 104 (e . g . , through lenses or apertures
within the HMD 104) . For example , the computing device
102 and the HMD 104 can together function as a stereo
scopic viewer by partitioning a screen of the display device
114 into a first image that is viewable by only the left eye of
the user when viewed through the HMD and a second image
that is viewable by only the right eye of the user when
viewed through the HMD .
[0055] The AR / VR content source 106 may generate and
output AR / VR content , which may be distributed or sent to
one or more computing devices , such as the computing
device 102 , via the network 108 . In an example implemen
tation , the AR / VR content includes three - dimensional
scenes and / or images . Additionally , the AR / VR content may
include audio / video signals that are streamed or distributed
to one or more computing devices . The AR / VR content may
also include an AR / VR application that runs on the com
puting device 102 to generate 3D scenes , audio signals ,
and / or video signals . According to an illustrative example
implementation , virtual reality (VR) , which may also be
referred to as immersive multimedia or computer - simulated
life , may , at least in some cases , replicate or simulate , to
varying degrees , an environment or physical presence in
places in the real world or imagined worlds or environments .
Augmented reality (AR) may , at least in some cases , overlay
computer generated images on a user ' s field of view of the
real world .

US 2018 / 0350032 A1 Dec . 6 , 2018

[0056] The network 108 may be the Internet , a local area
network (LAN) , a wireless local area network (WLAN) ,
and / or any other network . A computing device 102 , for
example , may receive the audio / video signals , which may be
provided as part of VR content in an illustrative example
implementation .
[0057] FIG . 2 is a third - person view of a physical space
200 , in which a person P is experiencing a VR environment
202 through the HMD 104 . In this example , the computing
device 102 is disposed within the HMD 104 so that the user
can see the display device 114 while wearing the HMD 104 .
The VR environment 202 is generated by the computing
device 102 and displayed on the display device 114 of the
computing device 102 .
10058] The VR environment includes foveated frames ,
such as the frame 204 , that are generated by the foveated
rendering engine 122 . The foveated frames have a quality
level that gradually decreases as a distance from a fixation
point 206 increases . As can be seen in the frame 204 , the
image quality is higher near the fixation point 206 than the
image quality further away from the fixation point (e . g . , near
the edges of the frame 204) . Because parts of the foveated
frames are rendered at lower quality levels , rendering the
foveated frames requires less processor cycles than would be
required to render the frames entirely at a higher quality
level . Additionally , because the regions of the foveated
frames that are rendered at lower quality levels are intended
to be displayed in the person ' s peripheral vision , the person
is unlikely to notice the reduced quality . Furthermore ,
because the quality degrades smoothly , the foveated frames ,
such as the foveated frame 204 , are free of border artifacts
or other artifacts as the quality levels varies .
[0059] FIGS . 3A and 3B are perspective views of an
example HMD 300 , such as , for example , the HMD 104
worn by the user in FIG . 2 , and FIG . 3C illustrates an
example handheld electronic device 302 that is usable with
the HMD 300 .
[0060] The handheld electronic device 302 may include a
housing 303 in which internal components of the handheld
electronic device 302 are received , and a user interface 304
on an outside of the housing 303 that is accessible to the
user . The user interface 304 may include a touch sensitive
surface 306 configured to receive user touch inputs . The user
interface 304 may also include other components for
manipulation by the user such as , for example , actuation
buttons , knobs , joysticks and the like . In some implemen
tations , at least a portion of the user interface 304 may be
configured as a touchscreen , with that portion of the user
interface 304 being configured to display user interface
items to the user , and also to receive touch inputs from the
user on the touch sensitive surface 306 . The handheld
electronic device 302 may also include a light source 308
configured to selectively emit light , for example , a beam or
ray , through a port in the housing 303 , for example , in
response to a user input received at the user interface 304 .
[0061] The HMD 300 may include a housing 310 coupled
to a frame 320 , with an audio output device 330 including ,
for example , speakers mounted in headphones , also being
coupled to the frame 320 . In FIG . 3B , a front portion 310a
of the housing 310 is rotated away from a base portion 310b
of the housing 310 so that some of the components received
in the housing 310 are visible . A display 340 may be
mounted on an interior facing side of the front portion 310a
of the housing 310 . In some implementations , the display

340 is a display device from a computing device , such as the
computing device 102 of FIG . 1 , that is inserted and secured
between the front portion 310a and the base portion 310b .
[0062] Lenses 350 may be mounted in the housing 310 ,
between the user ' s eyes and the display 340 when the front
portion 310a is in the closed position against the base
portion 310b of the housing 310 . In some implementations ,
the HMD 300 may include a sensing system 360 including
various sensors and a control system 370 including a pro
cessor 390 and various control system devices to facilitate
operation of the HMD 300 .
10063] . In some implementations , the HMD 300 may
include a camera 380 to capture still and moving images .
The images captured by the camera 380 may be used to help
track a physical position of the user and / or the handheld
electronic device 302 in the real world , or physical envi
ronment relative to the immersive environment , and / or may
be displayed to the user on the display 340 in a pass - through
mode , allowing the generation of an augmented reality
environment that includes a combination of images from the
real world and computer generated imagery . In some imple
mentations , the pass - through mode is used to allow the user
to temporarily leave the immersive environment and return
to the physical environment without removing the HMD 300
or otherwise change the configuration of the HMD 300 to
move the housing 310 out of the line of sight of the user .
[0064] In some implementations , the sensing system 360
may include an inertial measurement unit (IMU) 362 includ
ing various different types of sensors such as , for example ,
an accelerometer , a gyroscope , a magnetometer , and other
such sensors . A position and orientation of the HMD 300
may be detected and tracked based on data provided by the
sensors included in the IMU 362 . The detected position and
orientation of the HMD 300 may allow the system to in turn ,
detect and track the user ' s head gaze direction and move
ment .
[0065] In some implementations , the HMD 300 may
include a gaze tracking device 365 to detect and track an eye
gaze of the user . The gaze tracking device 365 may include ,
for example , an image sensor 365A , or multiple image
sensors 365A , to capture images of the user ' s eyes or a
specific portion of the user ' s eyes , such as the pupil , to detect
and track direction and movement of the user ' s gaze . In
some implementations , the HMD 300 may be configured so
that the detected gaze is processed as a user input to be
translated into a corresponding interaction in the AR expe
rience or the immersive VR experience . In some implemen
tations , the HMD 300 is configured to use the detected gaze
of the user to determine a fixation point for use in foveated
rendering of the AR or VR environment .
100661 Various implementations of the systems and tech
niques described here can be realized in digital electronic
circuitry , integrated circuitry , specially designed ASICs (ap
plication specific integrated circuits) , computer hardware ,
firmware , software , and / or combinations thereof . These
various implementations can include implementation in one
or more computer programs that are executable and / or
interpretable on a programmable system including at least
one programmable processor , which may be special or
general purpose , coupled to receive data and instructions
from , and to transmit data and instructions to , a storage
system , at least one input device , and at least one output
device .

US 2018 / 0350032 A1 Dec . 6 , 2018

[0067] These computer programs (also known as pro
grams , software , software applications or code) include
machine instructions for a programmable processor , and can
be implemented in a high - level procedural and / or object
oriented programming language , and / or in assembly / ma
chine language . As used herein , the terms “ machine - read
able medium ” and “ computer - readable medium ” refer to any
computer program product , apparatus and / or device (e . g . ,
magnetic discs , optical disks , memory , Programmable Logic
Devices (PLDs)) used to provide machine instructions and /
or data to a programmable processor , including a machine
readable medium that receives machine instructions as a
machine - readable signal . The term “ machine - readable sig
nal ” refers to any signal used to provide machine instruc
tions and / or data to a programmable processor .
[0068] To provide for interaction with a user , the systems
and techniques described here can be implemented on a
computer having a display device (e . g . , LCD (liquid crystal
display) , an OLED (organic light emitting diode) display , or
another type of display) for displaying information to the
user and a keyboard and a pointing device (e . g . , a mouse or
a trackball) by which the user can provide input to the
computer . Other kinds of devices can be used to provide for
interaction with a user as well ; for example , feedback
provided to the user can be any form of sensory feedback
(e . g . , visual feedback , auditory feedback , or tactile feed
back) ; and input from the user can be received in any form ,
including acoustic , speech , or tactile input .
[0069] The systems and techniques described here can be
implemented in a computing system that includes a back
end component (e . g . , as a data server) , or that includes a
middleware component (e . g . , an application server) , or that
includes a front - end component (e . g . , a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here) , or any combination
of such back end , middleware , or front end components . The
components of the system can be interconnected by any
form or medium of digital data communication (e . g . , a
communication network) . Examples of communication net
works include a local area network (“ LAN ”) , a wide area
network (“ WAN ”) , and the Internet .
[0070] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client - server relationship to each other .
[0071] A method 400 of rendering a smoothly varying
foveated image , in accordance with implementations as
described herein , is shown in FIG . 4 . The method 400 may
be performed by implementations of the foveated rendering
engine 122 .
10072] At operation 402 , a 3D scene is retrieved . As
described above , the 3D scene may include multiple objects ,
including meshes and light sources . The meshes may be
formed from polygonal faces , such as triangles , that are
defined by vertices . Each of the vertices may , for example ,
have an X , Y , and Z coordinate in a three - dimensional space .
A face can be defined by three , or in some implementations
more co - planar vertices . A mesh can be defined by multiple
faces , at least some of which may share vertices .
[0073] The 3D scene may be retrieved from local memory
or may be retrieved from another computing device , such as

the AR / VR content source 106 . Upon retrieving the 3D
scene , the surfaces of at least some of the surfaces of the
meshes may be tessellated . For example , larger mesh sur
faces (e . g . , surfaces in a mesh that have a surface area
greater than a predetermined threshold value) may be tes
sellated to divide the surface into multiple smaller . The
tessellation will introduce additional vertices and shorter
edges on the faces . Because the warping operation may bend
straight lines into curved lines , visual artifacts may be
introduced if the edges are too long . By tessellating any
larger surfaces , the bending of the edges becomes insignifi
cant . Additionally , in some implementation , tessellation is
performed by a GPU using a tessellation shader or geometry
shader .

[0074] In some implementations , per pixel error correction
can be applied to address distortion introduced by triangle
edges being warped . For example , an error value can be
computed during the foveated rendering and stored in the
alpha channel of the output pixel value . The error value can
be calculated by comparing an interpolated position of a
vector to a value generated by a per - pixel computation .
Then , during the generation of a final image , the error
correction can be applied .
[0075] At operation 404 , a fixation point is determined . In
some implementations , the fixation point is determined
using gaze tracking technology , such as the eye tracker 124 .
As the user ' s eyes move around a field view , the fixation
point will move correspondingly . In some implementations ,
the fixation point is determined based on the lens of the
HMD 104 . For example , the fixation point may be the point
where the lens provides the highest acuity . In some imple
mentations , the fixation point corresponds to a portion of the
lens having higher acuity than other portions of the lens . For
example , the fixation point may be selected as a midpoint of
portion of the lens that has higher acuity than 90 % of the
lens , 95 % of the lens , or 99 % of the lens . In some imple
mentations , separate fixation points are identified for each of
the user ' s eyes .
[0076] At operation 406 , the vertices in the 3D scene are
warped from the screen space to the intermediary com
pressed space . In some implementations , warping the ver
tices includes transforming the coordinates of the vertices
from the screen space to a compressed space using a
nonlinear function . In some implementations , this warping
has an effect similar to applying a fish - eye lens . In at least
some implementations , the warping function is applied by a
GPU vertex shader .
[0077] In at least some implementations , the warping is
performed by projecting each vertex to a screen coordinate ,
which may be defined by X and Y screen coordinate values
between - 1 and 1 . The projected coordinates are then
recalculated relative to a screen coordinate system that has
the fixation point as an origin . The projected coordinates are
scaled so that they continue to have coordinate values
between - 1 and 1 . Then , the projected coordinates are
transformed according to a nonlinear warping (transforma
tion) function . The transformed coordinate values are then
recalculated in terms of the center of the screen (i . e . , as
opposed to the fixation point) and rescaled to have values
between - 1 and 1 . Then , the vertex is re - projected into the
3D scene .

US 2018 / 0350032 A1 Dec . 6 , 2018

[0078] As a non - limiting example , consider the triangle
described (post viewing transformation) by homogeneous
coordinate vertices (0 , 0 . 6 , 1 , 2) , (- 0 . 6 , 0 , 1 , 2) , (0 . 6 , 0 , 1 ,
2)

pings performed by each of the example warping functions .
The X - axis of the graph 600 is distance from the fixation
point in uncompressed space and the Y - axis of the graph 600
is distance from the fixation point in compressed (warped)
space . The graph 600 includes plot 602a , plot 604a , plot
606a , plot 608a , and plot 610a . The plot 602a represents the
function 602b . The plot 604a represents the function 604b .
The plot 606a represents the function 606b . The plot 608a
represents the function 608b . The plot 610a represents the
function 610b .
[0083] Each of the plots represents a function on the
distance from the fixation point , which is represented as r .
For a specific vertex , r can be calculated using the following
equation :

VX2 + ye

[0079] The 2D screen coordinates are (0 , 0 . 3) , (- 0 . 3 , 0) ,
(0 . 3 , 0) . Let the fixation point be (0 . 1 , 0) . (For simplicity the
fixation point has been placed on the x - axis so no remapping
of the y coordinates is required in this example .) The
x - interval [- 1 , 0 . 1] is remapped to [- 1 , 0] and [0 . 1 , 1] is
remapped to [0 , 1] . Hence the remapped vertices are ((0
0 . 1) / 1 . 1 , (- 0 . 3 - 0 . 0) / 1) , ((- 0 . 3 - 0 . 1) / 0 . 9 , (0 - 0) / 1) , (0 . 3 - 0 .
1) / 0 . 9 , (0 - 0) / 1) . Simplified these are : (- 0 . 09 , 0 . 3) , (- 0 . 36 ,
0) , (0 . 22 , 0) . Using , for example , vd for t (d) (the transfor
mation function) these become (- 0 . 3 , 0 . 55) , (- 0 . 6 , 0) , (0 . 47 ,
0) . These vertices are again remapped into the coordinate
system with its origin at the image centre : ((- 0 . 30 + 0 . 1) * 1 . 1 ,
(0 . 55 + 0) * 1) , ((- 0 . 6 + 0 . 1) * 1 . 1 , (0 + 0) * 1) , ((0 . 47 + 0 . 1) * 0 . 9 ,
(0 + 0) * 1) or (- 0 . 22 , 0 . 55) , (- 0 . 55 , 0) , (0 . 51 , 0) . Finally , these
vertices are then projected back to 3D homogeneous coor
dinates as (- 0 . 44 , 1 . 1 , 1 , 2) , (- 1 . 11 , 0 , 1 , 2) , (1 . 03 , 0 , 1 , 2) .
[0080] FIGS . 5A and 5B are schematic diagrams that
illustrate how example warping functions sample an image .
In FIG . 5A , the overlay 500 includes multiple circles . Each
of the circles represents a region of an underlying image
space (not shown) that would be sampled to generate a
warped image . The overlay 500 would be centered over the
fixation point in a scene . As can be seen in FIG . 5A , the
circles are smaller close to the center of the overlay 500 , and
so the region of the underlying image space used to generate
a pixel is also smaller . The circles in the overlay 500 that are
further from the center (fixation point) become larger so
more pixels from the underlying image are sampled to
generate a single pixel in the warped image . The overlay 502
of FIG . 5B is similar to the overlay 500 , except that the
overlay 500 includes square - like regions rather than circles .
Again , the regions further away from the fixation point are
larger and thus more pixels are sampled to generate a single
pixel in these further regions .
[0081] In some implementations , a vertex is projected
onto the screen space and a difference from the X - coordinate
and the Y - coordinate of the projected vertex to an X - coor
dinate and a Y - coordinate of a fixation point is determined .
In the examples herein , the difference between the projected
X - coordinate of the vertex and the X - coordinate of the
fixation point is referred to as X ' . Similarly , the difference
between the projected Y - coordinate of the vertex and the
Y - coordinate of the fixation point is referred to as Y ' . One
example of a nonlinear warping function used in some
implementations is a log - polar mapping . For a given
X - delta , Y - delta , its coordinate is the warped representation
is (p , 0) where :

p = log (V x2 + yv2) ; and

In some implementations , the distance r is a projected
distance between the position of the vertex after projection
into screen space and the fixation point (in screen space) .
[0084] Where the slopes of the plots are greater than 45
degrees , the uncompressed screen space is expanded in the
compressed space . These regions will be rendered with
higher resolution in the final image . Where the slopes of the
plots are less than 45 degrees , the uncompressed screen
space is reduced in the compressed space . These regions will
be rendered with lower resolution in the final image . The
plots and warping functions shown in FIG . 6 are examples .
Other warping functions may be used in some implemen
tations . For example , some implementations use various
second - degree polynomials or third - degree polynomials of
distance from the fixation point (r) as warping functions .
Additionally , some implementations , use a logarithmic
warping function , such as log (r + 1) , or a radical warping
function , such as Vr .
[0085] Additionally , some implementations include warp
ing functions of distance from the fixation point in X (X ')
and distance from the fixation point in Y (Y ') , rather that
distance (r) . In these examples , the warping can be per
formed differently in the vertical dimension than in the
horizontal dimension . Additionally , some implementations
include asymmetric warping functions . For example , asym
metric warping functions can be used to warp vertices above
the fixation point differently than vertices that are below the
fixation point . Additionally , asymmetric warping functions
can be used to warp vertices to the left of the fixation point
differently than vertices that are to the right of the fixation
point (e . g . , to more heavily warp regions that are likely to be
occluded by the user ' s nose and thus preserve more resolu
tion for the other areas of the field of view) .
[0086] Returning now to FIG . 4 , an intermediary image is
rendered based on the warped vertices at operation 408 . In
some implementations , the intermediary image is rendered
at a resolution that is lower than the resolution of the desired
final image . In some implementations , a pixel shader of the
GPU renders the surfaces (e . g . , triangles) of the meshes in
the compressed (warped) space . Depending on the 3D scene ,
rendering the image may include applying an image as a
texture map to at least some of the surfaces . The image may
be rendered using multi - sample anti - aliasing (MSAA) . For
example , some implementations render images using 4x
MSAA or 8x MSAA . Because the MSAA is performed on
the compressed (warped) image , the processor cycles
required for performing MSAA are less than would be

O = a tan (Y ' / X ")

[0082] In this example , the log - polar mapping is continu
ous and does not include any data reduction . The data
reduction is a result of finitely sampling the intermediary
(warped) representation . Other warping functions may be
used as well . In some implementations , the warping function
is a nonlinear transformation that is a function of the radial
distance between the projected vertex and the fixation point .
FIG . 6 shows a graph 600 that shows plots for several
example warping functions . The plots illustrate the map

US 2018 / 0350032 A1 Dec . 6 , 2018

required to perform MSAA on each of the pixels from the
final image . The MSAA is performed by a GPU in some
implementations .
[0087] In some implementations , the intermediary
(warped) image has approximately one quarter of the num
ber of pixels as the desired final image . For example , the
intermediary image may have half as many pixels as the
desired final image in the vertical dimension and half as
many pixels as the desired final image in the horizontal
dimension , resulting in one fourth as many pixels as the
desired final image . Because the number of pixels being
rendered is reduced , rendering the intermediary image will
require less time and / or processor cycles . In this example ,
rendering the intermediary image would require approxi
mately one fourth of the time and / or processor cycles
required to render the full sized final image .
10088] In some implementations , other ratios of the num
ber of pixels in the intermediary image with respect to the
number of pixels in the full - sized final image are used . For
example , when the full - sized final image has a wider aspect
ratio , an even larger reduction in the number of pixels may
be possible since a larger portion of the full - sized final image
will be in the user ' s peripheral vision and can be rendered at
a lower quality level . In some implementations , various
factors are used to select a resolution for the intermediary
image , including the desired resolution of the final image ,
the aspect ratio of the final image , whether an eye tracker is
available to determine the fixation point , the acuity profile of
the lens in the HMD , and the warping function that is used
in operation 406 .
[0089] FIG . 7A shows an example of an intermediary
(warped) image 700 . FIG . 7B shows the corresponding
scene without warping in image 702 . FIG . 7B also includes
a fixation point 704 that is to warp the intermediary image
700 . As can be seen in FIG . 7A , the portions of the scene
near the fixation point (e . g . , the lion head) are warped to
occupy a larger portion of the intermediary image 700 (i . e . ,
are rendered with more pixels / higher resolution) and the
portions of the scene that are farther away from the fixation
point (e . g . , the curtains) are warped to occupy less of the
image (i . e . , are rendered with fewer pixels / lower resolution) .
[0090] Returning now to FIG . 4 , at operation 410 , the
intermediary image is unwarped to generate the final , fove
ated image . In some implementations , a pixel value for each
of the pixels in the final , foveated image can be identified at
a corresponding location in the intermediary image . For
example , the same warping function used in operation 406
can be applied to a pixel location in the final , foveated image
to identify the corresponding location for the pixel value in
the intermediate image . In some implementations , a pixel
shader of the GPU performs this warping function to retrieve
the pixel value from the intermediary image as the final ,
foveated image is rendered . In some implementations , bilin
ear filtering is used within the foveal region during the
unwarping .
10091] Implementations of the method 400 can be used to
perform foveated video rendering in real - time using a stan
dard GPU on a laptop computer . This real - time performance
allows for generation of responsive AR and / or VR environ
ments .
[0092] In some implementations , when rendering video ,
temporal anti - aliasing is used in at least the periphery
regions of the final images (e . g . , regions that are more
distant from the fixation point) . For example , a method of

temporal anti - aliasing is to use alpha blending with the
previous frame . In some implementations , the level of
transparency between the current frame and the previous
frame is varied according to the amount of movement of the
camera , to have a smoother anti - aliasing when there is no
movement , and a shorter temporal fading when the camera
is moving
[0093] FIG . 8 is a schematic diagram of an example
foveated rendering process 800 according to some imple
mentations . The process 800 may be performed by , for
example , the foveated rendering engine 122 to generate
images or video for an AR or VR environment . One of the
inputs to the process is an input 3D scene 802 . In some
implementations , a shader of a GPU , such as a vertex shader ,
a geometry shader , or a fragment shader , applies a nonlinear
warping function to the vertices of the input 3D scene 802
to generate a warped 3D scene 804 that is warped about a
fixation point (shown at the center of the image in this
example) . In some implementations , a pixel shader renders
the warped 3D scene 804 at a reduced resolution to generate
the intermediary (warped) image 806 . In some implemen
tations , an un - foveating shader (e . g . , a pixel shader of a GPU
configured to perform the mapping described herein) reads
and unwarps the intermediary image 806 to generate the
final image 808 at full resolution . In some implementations ,
when generating video , temporal blending is used to blend
the regions that are more distant from the fixation point with
previous frames . Additionally , in some implementations ,
bilinear filtering is used to generate portions of the final
image 808 that are nearer to the fixation point .
[0094] FIG . 9 is a schematic diagram of an example
foveated rendering process 900 according to some imple
mentations . The process 900 may be performed by , for
example , the foveated rendering engine 122 to generate
images or video for an AR or VR environment . One of the
inputs to the process is an input 3D mesh 902 . The mesh 902
may be a component of a 3D scene generated by an
application , such as the AR / VR application 120 . The verti
ces of the mesh 902 are transformed to warp the mesh and
generate the warped mesh 904 . For example , the vertices of
the mesh 902 may be warped by applying a nonlinear
warping function that is based on distances of the vertices
from a fixation point determined based on the user ' s gaze .
The warped mesh 904 is then rendered to generate a lower
resolution intermediary image 906 . The intermediary image
is then warped back (un - warped) to generate the final image
908 of the rendered mesh .
[0095] Although many of the examples above relate to
rendering computer - generated images / videos from three
dimensional scenes , in some implementations the techniques
and systems described herein are used to render foveated
versions of standard photographs and videos of real scenes .
The image can either be rendered using a pixel shader that
will compute for each pixel of the foveated image the
original position in the source image , if the image / video will
cover the entire screen ; or if the images / video will be
integrated in a 3D scene , the mesh warping processes can be
used with the image / video used as a texture for the mesh . To
render a dynamic image or video , some implementations use
a buffer to cache the image / video data (e . g . , from a remote
source or hard drive) . The buffer allows smooth rendering as
the image / video data can be quickly retrieved from the
buffer without the delays associated with accessing a hard
drive or receiving data from a remote source .

US 2018 / 0350032 A1 Dec . 6 , 2018

[0096] FIG . 10 shows an example of a computer device
1000 and a mobile computer device 1050 , which may be
used with the techniques described here . Computing device
1000 includes a processor 1002 , memory 1004 , a storage
device 1006 , a high - speed interface 1008 connecting to
memory 1004 and high - speed expansion ports 1010 , and a
low speed interface 1012 connecting to low speed bus 1014
and storage device 1006 . Each of the components 1002 ,
1004 , 1006 , 1008 , 1010 , and 1012 , are interconnected using
various busses , and may be mounted on a common moth
erboard or in other manners as appropriate . The processor
1002 can process instructions for execution within the
computing device 1000 , including instructions stored in the
memory 1004 or on the storage device 1006 to display
graphical information for a GUI on an external input / output
device , such as display 1016 coupled to high speed interface
1008 . In other implementations , multiple processors and / or
multiple buses may be used , as appropriate , along with
multiple memories and types of memory . Also , multiple
computing devices 1000 may be connected , with each
device providing portions of the necessary operations (e . g . ,
as a server bank , a group of blade servers , or a multi
processor system) .
[0097] The memory 1004 stores information within the
computing device 1000 . In one implementation , the memory
1004 is a volatile memory unit or units . In another imple
mentation , the memory 1004 is a non - volatile memory unit
or units . The memory 1004 may also be another form of
computer - readable medium , such as a magnetic or optical
disk .
[0098] The storage device 1006 is capable of providing
mass storage for the computing device 1000 . In one imple
mentation , the storage device 1006 may be or contain a
computer - readable medium , such as a floppy disk device , a
hard disk device , an optical disk device , or a tape device , a
flash memory or other similar solid state memory device , or
an array of devices , including devices in a storage area
network or other configurations . A computer program prod
uct can be tangibly embodied in an information carrier . The
computer program product may also contain instructions
that , when executed , perform one or more methods , such as
those described above . The information carrier is a com
puter - or machine - readable medium , such as the memory
1004 , the storage device 1006 , or memory on processor
1002 .
[0099] The high speed controller 1008 manages band
width - intensive operations for the computing device 1000 ,
while the low speed controller 1012 manages lower band
width - intensive operations . Such allocation of functions is
exemplary only . In one implementation , the high - speed
controller 1008 is coupled to memory 1004 , display 1016
(e . g . , through a graphics processor or accelerator) , and to
high - speed expansion ports 1010 , which may accept various
expansion cards (not shown) . In the implementation , low
speed controller 1012 is coupled to storage device 1006 and
low - speed expansion port 1014 . The low - speed expansion
port , which may include various communication ports (e . g . ,
USB , Bluetooth , Ethernet , wireless Ethernet) may be
coupled to one or more input / output devices , such as a
keyboard , a pointing device , a scanner , or a networking
device such as a switch or router , e . g . , through a network
adapter .
0100] The computing device 1000 may be implemented

in a number of different forms , as shown in the figure . For

example , it may be implemented as a standard server 1020 ,
or multiple times in a group of such servers . It may also be
implemented as part of a rack server system 1024 . In
addition , it may be implemented in a personal computer such
as a laptop computer 1022 . Alternatively , components from
computing device 1000 may be combined with other com
ponents in a mobile device (not shown) , such as device
1050 . Each of such devices may contain one or more of
computing device 1000 , 1050 , and an entire system may be
made up of multiple computing devices 1000 , 1050 com
municating with each other .
[0101] Computing device 1020 includes a processor 1052 ,
memory 1064 , an input / output device such as a display
1054 , a communication interface 1066 , and a transceiver
1068 , among other components . The device 1050 may also
be provided with a storage device , such as a microdrive or
other device , to provide additional storage . Each of the
components 1050 , 1052 , 1064 , 1054 , 1066 , and 1068 , are
interconnected using various buses , and several of the com
ponents may be mounted on a common motherboard or in
other manners as appropriate .
10102] The processor 1052 can execute instructions within
the computing device 1020 , including instructions stored in
the memory 1064 . The processor may be implemented as a
chipset of chips that include separate and multiple analog
and digital processors . The processor may provide , for
example , for coordination of the other components of the
device 1050 , such as control of user interfaces , applications
run by device 1050 , and wireless communication by device
1050 .
[0103] Processor 1052 may communicate with a user
through control interface 1058 and display interface 1056
coupled to a display 1054 . The display 1054 may be , for
example , a TFT LCD (Thin - Film - Transistor Liquid Crystal
Display) or an OLED (Organic Light Emitting Diode)
display , or other appropriate display technology . The display
interface 1056 may include appropriate circuitry for driving
the display 1054 to present graphical and other information
to a user . The control interface 1058 may receive commands
from a user and convert them for submission to the processor
1052 . In addition , an external interface 1062 may be provide
in communication with processor 1052 , so as to enable near
area communication of device 1050 with other devices .
External interface 1062 may provide , for example , for wired
communication in some implementations , or for wireless
communication in other implementations , and multiple
interfaces may also be used .
[0104] . The memory 1064 stores information within the
computing device 1020 . The memory 1064 can be imple
mented as one or more of a computer - readable medium or
media , a volatile memory unit or units , or a non - volatile
memory unit or units . Expansion memory 1074 may also be
provided and connected to device 1050 through expansion
interface 1072 , which may include , for example , a SIMM
(Single In Line Memory Module) card interface . Such
expansion memory 1074 may provide extra storage space
for device 1050 , or may also store applications or other
information for device 1050 . Specifically , expansion
memory 1074 may include instructions to carry out or
supplement the processes described above , and may include
secure information also . Thus , for example , expansion
memory 1074 may be provided as a security module for
device 1050 , and may be programmed with instructions that
permit secure use of device 1050 . In addition , secure appli

US 2018 / 0350032 A1 Dec . 6 , 2018

cations may be provided via the SIMM cards , along with
additional information , such as placing identifying informa
tion on the SIMM card in a non - hackable manner .
[0105] The memory may include , for example , flash
memory and / or NVRAM memory , as discussed below . In
one implementation , a computer program product is tangibly
embodied in an information carrier . The computer program
product contains instructions that , when executed , perform
one or more methods , such as those described above . The
information carrier is a computer - or machine - readable
medium , such as the memory 1064 , expansion memory
1074 , or memory on processor 1052 , that may be received ,
for example , over transceiver 1068 or external interface
1062 .
[0106] Device 1050 may communicate wirelessly through
communication interface 1066 , which may include digital
signal processing circuitry where necessary . Communica
tion interface 1066 may provide for communications under
various modes or protocols , such as GSM voice calls , SMS ,
EMS , or MMS messaging , CDMA , TDMA , PDC ,
WCDMA , CDMA2000 , or GPRS , among others . Such
communication may occur , for example , through radio
frequency transceiver 1068 . In addition , short - range com
munication may occur , such as using a Bluetooth , Wi - Fi , or
other such transceiver (not shown) . In addition , GPS (Global
Positioning System) receiver module 1070 may provide
additional navigation - and location - related wireless data to
device 1050 , which may be used as appropriate by applica
tions running on device 1050 .
[0107) Device 1050 may also communicate audibly using
audio codec 1060 , which may receive spoken information
from a user and convert it to usable digital information .
Audio codec 1060 may likewise generate audible sound for
a user , such as through a speaker , e . g . , in a handset of device
1050 . Such sound may include sound from voice telephone
calls , may include recorded sound (e . g . , voice messages ,
music files , etc .) and may also include sound generated by
applications operating on device 1050 .
[0108] The computing device 1020 may be implemented
in a number of different forms , as shown in the figure . For
example , it may be implemented as a cellular telephone
1080 . It may also be implemented as part of a smartphone
1082 , personal digital assistant , or other similar mobile
device .
[0109] Various implementations of the systems and tech
niques described here can be realized in digital electronic
circuitry , integrated circuitry , specially designed ASICs (ap
plication specific integrated circuits) , computer hardware ,
firmware , software , and / or combinations thereof . These
various implementations can include implementation in one
or more computer programs that are executable and / or
interpretable on a programmable system including at least
one programmable processor , which may be special or
general purpose , coupled to receive data and instructions
from , and to transmit data and instructions to , a storage
system , at least one input device , and at least one output
device .
[0110] These computer programs (also known as pro
grams , software , software applications or code) include
machine instructions for a programmable processor , and can
be implemented in a high - level procedural and / or object
oriented programming language , and / or in assembly / ma
chine language . As used herein , the terms “ machine - read -
able medium ” " computer - readable medium ” refers to any

computer program product , apparatus and / or device (e . g . ,
magnetic discs , optical disks , memory , Programmable Logic
Devices (PLDs)) used to provide machine instructions and /
or data to a programmable processor , including a machine
readable medium that receives machine instructions as a
machine - readable signal . The term “ machine - readable sig
nal ” refers to any signal used to provide machine instruc
tions and / or data to a programmable processor .
[0111] To provide for interaction with a user , the systems
and techniques described here can be implemented on a
computer having a display device (e . g . , an LCD (liquid
crystal display) screen , an OLED (organic light emitting
diode)) for displaying information to the user and a key
board and a pointing device (e . g . , a mouse or a trackball) by
which the user can provide input to the computer . Other
kinds of devices can be used to provide for interaction with
a user as well ; for example , feedback provided to the user
can be any form of sensory feedback (e . g . , visual feedback ,
auditory feedback , or tactile feedback) ; and input from the
user can be received in any form , including acoustic , speech ,
or tactile input .
[0112] The systems and techniques described here can be
implemented in a computing system that includes a back end
component (e . g . , as a data server) , or that includes a middle
ware component (e . g . , an application server) , or that
includes a front end component (e . g . , a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here) , or any combination
of such back end , middleware , or front end components . The
components of the system can be interconnected by any
form or medium of digital data communication (e . g . , a
communication network) . Examples of communication net
works include a local area network (“ LAN ”) , a wide area
network (“ WAN ”) , and the Internet .
[0113] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client - server relationship to each other .
[0114] In some implementations , the computing devices
depicted in FIG . 1 can include sensors that interface with a
virtual reality (VR headset / HMD device 1090) to generate
an AR or VR environment with foveated frames to increase
framerate and / or reduce the processor cycles required for
rendering . For example , one or more sensors included on a
computing device 1020 or other computing device depicted
in FIG . 1 , can provide input to VR headset 1090 or in
general , provide input to a VR space . The sensors can
include , but are not limited to , a touchscreen , accelerom
eters , gyroscopes , pressure sensors , biometric sensors , tem
perature sensors , humidity sensors , and ambient light sen
sors . The computing device 1020 can use the sensors to
determine an absolute position and / or a detected rotation of
the computing device in the VR space that can then be used
as input to the VR space . For example , the computing device
1020 may be incorporated into the VR space as a virtual
object , such as a controller , a laser pointer , a keyboard , a
weapon , etc . Positioning of the computing device / virtual
object by the user when incorporated into the VR space can
allow the user to position the computing device so as to view
the virtual object in certain manners in the VR space . For
example , if the virtual object represents a laser pointer , the

US 2018 / 0350032 A1 Dec . 6 , 2018

user can manipulate the computing device as if it were an
actual laser pointer . The user can move the computing
device left and right , up and down , in a circle , etc . , and use
the device in a similar fashion to using a laser pointer .
[0115] In some implementations , one or more input
devices included on , or connected to , the computing device
1020 can be used as input to the VR space . The input devices
can include , but are not limited to , a touchscreen , a key
board , one or more buttons , a trackpad , a touchpad , a
pointing device , a mouse , a trackball , a joystick , a camera ,
a microphone , earphones or buds with input functionality , a
gaming controller , or other connectable input device . A user
interacting with an input device included on the computing
device 1020 when the computing device is incorporated into
the VR space can cause a specific action to occur in the VR
space .
[0116] In some implementations , a touchscreen of the
computing device 1020 can be rendered as a touchpad in VR
space . A user can interact with the touchscreen of the
computing device 1020 . The interactions are rendered , in
VR headset 1090 for example , as movements on the ren
dered touchpad in the VR space . The rendered movements
can control virtual objects in the VR space .
[0117] In some implementations , one or more output
devices included on the computing device 1020 can provide
output and / or feedback to a user of the VR headset 1090 in
the VR space . The output and feedback can be visual ,
tactical , or audio . The output and / or feedback can include ,
but is not limited to , vibrations , turning on and off or
blinking and / or flashing of one or more lights or strobes ,
sounding an alarm , playing a chime , playing a song , and
playing of an audio file . The output devices can include , but
are not limited to , vibration motors , vibration coils , piezo
electric devices , electrostatic devices , light emitting diodes
(LEDs) , strobes , and speakers .
[0118] In some implementations , the computing device
1020 may appear as another object in a computer - generated ,
3D environment . Interactions by the user with the comput
ing device 1020 (e . g . , rotating , shaking , touching a touch
screen , swiping a finger across a touchscreen) can be inter -
preted as interactions with the object in the VR space . In the
example of the laser pointer in a VR space , the computing
device 1020 appears as a virtual laser pointer in the com
puter - generated , 3D environment . As the user manipulates
the computing device 1020 , the user in the VR space sees
movement of the laser pointer . The user receives feedback
from interactions with the computing device 1020 in the VR
environment on the computing device 1020 or on the VR
headset 1090 .
[0119] In some implementations , a computing device 1020
may include a touchscreen . For example , a user can interact
with the touchscreen in a specific manner that can mimic
what happens on the touchscreen with what happens in the
VR space . For example , a user may use a pinching - type
motion to zoom content displayed on the touchscreen . This
pinching - type motion on the touchscreen can cause infor
mation provided in the VR space to be zoomed . In another
example , the computing device may be rendered as a virtual
book in a computer - generated , 3D environment . In the VR
space , the pages of the book can be displayed in the VR
space and the swiping of a finger of the user across the
touchscreen can be interpreted as turning / flipping a page of
the virtual book . As each page is turned / flipped , in addition

to seeing the page contents change , the user may be provided
with audio feedback , such as the sound of the turning of a
page in a book .
[0120] In some implementations , one or more input
devices in addition to the computing device (e . g . , a mouse ,
a keyboard) can be rendered in a computer - generated , 3D
environment . The rendered input devices (e . g . , the rendered
mouse , the rendered keyboard) can be used as rendered in
the VR space to control objects in the VR space .
[0121] Computing device 1000 is intended to represent
various forms of digital computers and devices , including ,
but not limited to laptops , desktops , workstations , personal
digital assistants , servers , blade servers , mainframes , and
other appropriate computers . Computing device 1020 is
intended to represent various forms of mobile devices , such
as personal digital assistants , cellular telephones , smart
phones , and other similar computing devices . The compo
nents shown here , their connections and relationships , and
their functions , are meant to be exemplary only , and are not
meant to limit implementations of the inventions described
and / or claimed in this document .
[0122] FIGS . 11A - 11C include example foveated images
of a scene , according to some implementations . For
example , the images may be rendered by implementations of
the foveated rendering engine 122 . FIG . 11A includes a
foveated image 1100 , with a fixation point 1102 near the
center of the image . FIG . 11B includes a foveated image
1104 , with a fixation point 1106 near the left side of the
image . FIG . 11C includes a foveated image 1108 , with a
fixation point 1110 near the right side of the image .
[0123] FIGS . 12A - 12D include example foveated images
of a scene , according to some implementations . For
example , the images may be rendered by implementations of
the foveated rendering engine 122 . FIG . 12A includes a
foveated image 1200 , with a fixation point 1202 near the
center of the image . FIG . 12B includes a foveated image
1204 , with a fixation point 1206 near the left side of the
image . FIG . 12C includes a foveated image 1208 , with a
fixation point 1210 near the lower , left side of the image .
FIG . 12D includes a foveated image 1212 , with a fixation
point 1214 near the lower , left side of the image .
10124] The images shown in FIGS . 11A - 11C and 12A
12D can be generated from static images , dynamically
generated images , frames from videos , or as part of a
sequence of images generated within a VR environment .
[0125] A number of embodiments have been described .
Nevertheless , it will be understood that various modifica
tions may be made without departing from the spirit and
scope of the specification .
[0126] In addition , the logic flows depicted in the figures
do not require the specific shown , or sequential order , to
achieve desirable results . In addition , other steps may be
provided , or steps may be eliminated , from the described
flows , and other components may be added to , or removed
from , the described systems . Accordingly , other embodi
ments are within the scope of the following claims .
101271 . While certain features of the described implemen
tations have been illustrated as described herein , many
modifications , substitutions , changes and equivalents will
now occur to those skilled in the art . It is , therefore , to be
understood that the appended claims are intended to cover
all such modifications and changes as fall within the scope
of the implementations . It should be understood that they
have been presented by way of example only , not limitation ,

US 2018 / 0350032 A1 Dec . 6 , 2018
12

and various changes in form and details may be made . Any
portion of the apparatus and / or methods described herein
may be combined in any combination , except mutually
exclusive combinations . The implementations described
herein can include various combinations and / or sub - combi
nations of the functions , components and / or features of the
different implementations described .
[0128] In the following some examples are given .

EXAMPLE 11
[0139] The method of example 10 , wherein applying a
nonlinear function to the positions of the vertices includes
modifying a position of each vertex of the vertices based on
a square root of a distance from each vertex to a fixation
point .

EXAMPLE 12
EXAMPLE 1 [0140] The method of example 10 , wherein applying a

nonlinear function to the positions of the vertices includes
applying logarithmic or log - polar mapping to the vertices . [0129] A method comprising : warping a 3D scene based

on a fixation point ; rendering the warped 3D scene to
generate a first image ; and unwarping the first image to
generate a second image . EXAMPLE 13

EXAMPLE 2

[0130] The method of example 1 , wherein the first image
has fewer pixels than the second image .

[0141] The method of example 10 , wherein transforming
the vertices includes : projecting each of the vertices to a
viewport ; projecting the fixation point to the viewport ;
transforming the coordinates of the projected vertices based
on distances between the projected vertices and the pro
jected fixation point ; and reprojecting the transformed ver
tices into the 3D scene . EXAMPLE 3

[0131] The method of example 2 , wherein the first image
has no more than a quarter of the pixels as the second image . EXAMPLE 14

EXAMPLE 4
[0132] The method according to any preceding example ,
wherein warping the 3D scene includes warping the scene
using a nonlinear function of distance from the fixation
point .

[0142] The method according to any preceding example ,
wherein warping the 3D scene based on the fixation point
includes using a warping function based on vertical distance
from the fixation point and horizontal distance from the
fixation point so that the 3D scene is warped to a different
degree in the horizontal dimension than the vertical dimen
sion .

EXAMPLE 5
EXAMPLE 15 [0133] The method according to any preceding example ,

wherein the second image is a frame from a video .

EXAMPLE 6

[0143] The method according to any preceding example ,
wherein warping the 3D scene based on the fixation point
includes using an asymmetrical warping function that warps
the 3D scene by a different amount on one side of the
fixation point than on the other side of the fixation point . [0134] The method according to any preceding example ,

wherein warping the 3D scene includes altering the 3D
scene in a non - uniform manner . EXAMPLE 16

EXAMPLE 7

[0135] The method of example 6 , wherein altering the 3D
scene in the non - uniform manner includes altering different
portions of the 3D scene by different amounts .

[0144] The method according to any preceding example ,
wherein rendering the warped 3D scene includes calculating
error correction values for pixels of the first image based on
estimating distortion of triangle edges during warping .

EXAMPLE 8 EXAMPLE 17

10136) . The method of example 6 , wherein altering the 3D
scene in the non - uniform manner includes altering different
portions of the 3D scene in different directions .

(0145] The method of example 16 , wherein unwarping the
first image includes applying the error correction values
while generating pixels of the second image .

EXAMPLE 9 EXAMPLE 18
[0137] The method according to any preceding example ,
wherein warping the 3D scene includes transforming verti
ces of the 3D scene to an intermediary compressed space .

[0146] The method according to any preceding example ,
wherein unwarping the first image to generate a second
image includes using bilinear filtering in a foveal region of
the second image .

EXAMPLE 10
EXAMPLE 19 [0138] The method of example 9 , wherein transforming

the vertices to an intermediary compressed space includes
applying a nonlinear function to positions of the vertices .

[0147] The method according to any preceding example ,
further comprising determining the fixation point .

US 2018 / 0350032 A1 Dec . 6 , 2018

EXAMPLE 20
[0148] The method of example 19 , wherein the determin
ing the fixation point includes determining the fixation point
based on tracking the position of a user ' s eye .

a head - mounted display device ; determine a fixation point
based on the pupil location ; warp a 3D scene based on the
fixation point ; render the warped 3D scene to generate a first
image ; unwarp the first image to generate a second image ;
and cause the head - mounted display device to display the
second image . EXAMPLE 21

[0149] The method of example 19 or 20 , wherein the
determining the fixation point includes determining the
fixation point based on properties of a lens of an HMD .

EXAMPLE 22
[0150] A system comprising : at least one processor ; and
memory storing instructions that , when executed by the at
least one processor , cause the system to : warp a 3D scene
based on a fixation point ; render the warped 3D scene to
generate a first image ; and unwarp the first image to generate
a second image .

EXAMPLE 29
[0157] The non - transitory computer - readable storage
medium of example 28 , wherein the instructions configured
to cause the computing system to warp the 3D scene based
on the fixation point include instructions that cause the
computing system to : project vertices of the 3D scene to a
screen coordinate ; project the fixation point to a screen
coordinate ; transform the coordinates of the projected ver
tices based on distances between the projected vertices and
the projected fixation point ; and reproject the transformed
vertices into the 3D scene .

EXAMPLE 23
[0151] The system of example 22 , further including a
graphics processing unit (GPU) , wherein the instructions
that cause the system to warp the 3D scene based on the
fixation point include instructions that cause the system to
transform the 3D scene into an intermediary compressed
space using the GPU .

EXAMPLE 30
10158] . The non - transitory computer - readable storage
medium of example 29 , wherein the instructions configured
to cause the computing system to apply a logarithmic or
log - polar mapping to the projected vertices .

EXAMPLE 24
[0152] The system of example 23 , wherein the instructions
that cause the system to warp the 3D scene based on the
fixation point include instructions that cause the GPU to
tessellate at least a portion of the 3D scene .

EXAMPLE 31
[0159] The non - transitory computer - readable storage
medium according to any of the examples 28 to 30 , wherein
the 3D scene is from a sequence of 3D scenes , and the
instructions further cause the computing system to : tempo
rally alias portions of the second image based on distance
from the fixation point .
What is claimed is :
1 . A method comprising :
warping a 3D scene based on a fixation point ;
rendering the warped 3D scene to generate a first image ;

EXAMPLE 25
[0153] The system of example 23 , wherein the instructions
that cause the system to render the warped 3D scene to
generate a first image include instructions that cause the
GPU to apply multi - sample anti - aliasing .

and

EXAMPLE 26
[0154] The system according to any of the examples 22 to
25 , further comprising a head - mounted display device that
includes at least one lens , wherein the fixation point corre
sponds to a portion of the lens having higher acuity than
other portions of the lens .

EXAMPLE 27
[0155] The system according to any of the examples 22 to
26 , further comprising a head - mounted display device and a
camera , wherein the memory is further storing instructions
that , when executed by the at least one processor , cause the
system to : determine a position of a pupil of a wearer of the
head - mounted display device based on an image captured by
the camera ; and determine the fixation point based on the
position of the pupil .

unwarping the first image to generate a second image .
2 . The method of claim 1 , wherein the first image has

fewer pixels than the second image .
3 . The method of claim 2 , wherein the first image has no

more than a quarter of the pixels as the second image .
4 . The method of claim 1 , wherein warping the 3D scene

includes transforming vertices of the 3D scene to an inter
mediary compressed space .

5 . The method of claim 4 , wherein transforming the
vertices to an intermediary compressed space includes
applying a nonlinear function to positions of the vertices .

6 . The method of claim 5 , wherein applying a nonlinear
function to the positions of the vertices includes modifying
a position of each vertex of the vertices based on a square
root of a distance from each vertex to a fixation point .

7 . The method of claim 5 , wherein applying a nonlinear
function to the positions of the vertices includes applying
log - polar mapping to the vertices .

8 . The method of claim 5 , wherein transforming the
vertices includes :

projecting each of the vertices to a viewport ;
projecting the fixation point to the viewport ;
transforming the coordinates of the projected vertices

based on distances between the projected vertices and
the projected fixation point ; and

reprojecting the transformed vertices into the 3D scene .

EXAMPLE 28
[0156] A non - transitory computer - readable storage
medium comprising instructions stored thereon that , when
executed by at least one processor , cause a computing
system to at least : determine a pupil location of a wearer of

US 2018 / 0350032 A1 Dec . 6 , 2018
14

9 . The method of claim 1 , wherein rendering the warped
3D scene includes calculating error correction values for
pixels of the first image based on estimating distortion of
triangle edges during warping .

10 . The method of claim 9 , wherein unwarping the first
image includes applying the error correction values while
generating pixels of the second image .

11 . The method of claim 1 , wherein unwarping the first
image to generate a second image includes using bilinear
filtering in a foveal region of the second image .

12 . The method of claim 1 , further comprising determin
ing the fixation point .

13 . The method of claim 12 , wherein the determining the
fixation point includes determining the fixation point based
on tracking the position of a user ' s eye .

14 . The method of claim 12 , wherein the determining the
fixation point includes determining the fixation point based
on properties of a lens of an HMD .

15 . A system comprising :
at least one processor ; and
memory storing instructions that , when executed by the at

least one processor , cause the system to :
warp a 3D scene based on a fixation point ;
render the warped 3D scene to generate a first image ; and
unwarp the first image to generate a second image .
16 . The system of claim 15 , further including a graphics

processing unit (GPU) , wherein the instructions that cause
the system to warp the 3D scene based on the fixation point
include instructions that cause the system to transform the
3D scene into an intermediary compressed space using the
GPU .

17 . The system of claim 16 , wherein the instructions that
cause the system to warp the 3D scene based on the fixation
point include instructions that cause the GPU to tessellate at
least a portion of the 3D scene .

18 . The system of claim 16 , wherein the instructions that
cause the system to render the warped 3D scene to generate
a first image include instructions that cause the GPU to apply
multi - sample anti - aliasing .

19 . The system of claim 15 , further comprising a head
mounted display device that includes at least one lens ,
wherein the fixation point corresponds to a portion of the
lens having higher acuity than other portions of the lens .

20 . The system of claim 15 , further comprising a head
mounted display device and a camera , wherein the memory
is further storing instructions that , when executed by the at
least one processor , cause the system to :

determine a position of a pupil of a wearer of the
head - mounted display device based on an image cap
tured by the camera , and

determine the fixation point based on the position of the
pupil .

21 . A non - transitory computer - readable storage medium
comprising instructions stored thereon that , when executed
by at least one processor , cause a computing system to at
least :

determine a pupil location of a wearer of a head - mounted
display device ;

determine a fixation point based on the pupil location ;
warp a 3D scene based on the fixation point ;
render the warped 3D scene to generate a first image ;
unwarp the first image to generate a second image ; and
cause the head - mounted display device to display the

second image .
22 . The non - transitory computer - readable storage

medium of claim 21 , wherein the instructions configured to
cause the computing system to warp the 3D scene based on
the fixation point include instructions that cause the com
puting system to :

project vertices of the 3D scene to a screen coordinate ;
project the fixation point to a screen coordinate ;
transform the coordinates of the projected vertices based

on distances between the projected vertices and the
projected fixation point ; and

reproject the transformed vertices into the 3D scene .
23 . The non - transitory computer - readable storage

medium of claim 22 , wherein the instructions configured to
cause the computing system to apply a log - polar mapping to
the projected vertices .

24 . The non - transitory computer - readable storage
medium of claim 21 , wherein the 3D scene is from a
sequence of 3D scenes , and the instructions further cause the
computing system to : temporally alias portions of the second
image based on distance from the fixation point .

