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SMOOTHLY VARYING FOVEATED 
RENDERING 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims priority to U . S . application 
Ser . No . 62 / 515 , 124 , filed on Jun . 5 , 2017 , the disclosure of 
which is incorporated herein by reference in its entirety . 

BACKGROUND 
[ 0002 ] A virtual reality ( VR ) system generates an immer 
sive virtual environment for a user . For example , the immer 
sive environment can be three - dimensional ( 3D ) and can 
include multiple virtual objects with which the user may 
interact . An augmented reality ( AR ) system generates an 
augmented environment for a user . For example , the aug 
mented environment can be generated by superimposing 
computer - generated images on a user ' s field of view of the 
real world . 
10003 ] The user can experience the immersive virtual 
environment or augmented environment via various display 
devices such as , for example , a helmet or other head 
mounted device including a display , glasses , or goggles that 
a user looks through when viewing a display device . 

mounted display with smoothly varying foveated rendering , 
in accordance with implementations as described herein . 
[ 0011 ] FIGS . 3A , 3B , and 3C are diagrams depicting an 
example head - mounted display device and controller , in 
accordance with implementations as described herein . 
[ 0012 ] FIG . 4 is a flowchart of an example method 400 of 
rendering a smoothly varying foveated image , in accordance 
with implementations as described herein . 
[ 0013 ] FIGS . 5A and 5B are schematic diagrams that 
illustrate how example warping functions sample an image , 
in accordance with implementations as described herein . 
[ 0014 ] FIG . 6 is a graph with plots for several example 
warping functions , in accordance with implementations as 
described herein . 
[ 0015 ] FIG . 7A is an example intermediary image of a 
warped scene , in accordance with implementations as 
described herein . 
[ 0016 ] FIG . 7B is an image of an unwarped scene that 
corresponds to the image of FIG . 7B . 
[ 0017 ] FIG . 8 is a schematic diagram of a foveated ren 
dering process according to some implementations . 
[ 0018 ] FIG . 9 is a schematic diagram of a foveated ren 
dering process according to some implementations . 
[ 00191 . FIG . 10 is an example of a computer device and a 
mobile computer device that can be used to implement the 
techniques described herein . 
10020 ] FIGS . 11A - 11C are example foveated images of a 
scene , according to some implementations . 
[ 0021 ] FIGS . 12A - 12D are example foveated images of a 
scene , according to some implementations . 

SUMMARY 
[ 0004 ] This document relates , generally , to foveated ren 
dering . In some implementations , the foveated rendering is 
smoothly varying . 
[ 0005 ] One aspect is a method comprising warping a 3D 
scene based on a fixation point . The method also includes 
rendering the warped 3D scene to generate a first image , and 
unwarping the first image to generate a second image . 
10006 ] Another aspect is a system comprising at least one 
processor ; and memory storing instructions . When the 
instructions are executed by the at least one processor , the 
instructions cause the system to warp a 3D scene based on 
a fixation point , render the warped 3D scene to generate a 
first image , and unwarp the first image to generate a second 
image . 
[ 0007 ] Another aspect is a non - transitory computer - read 
able storage medium comprising instructions stored thereon . 
When the instructions are executed by at least one processor , 
the instructions cause a computing system to at least deter 
mine a pupil location of a wearer of a head - mounted display 
device and determine a fixation point based on the pupil 
location . The instructions also cause the computing system 
to warp a 3D scene based on the fixation point and render the 
warped 3D scene to generate a first image . The instructions 
also cause the computing system to unwarp the first image 
to generate a second image and cause the head - mounted 
display device to display the second image . 
[ 0008 ] The details of one or more implementations are set 
forth in the accompanying drawings and the description 
below . Other features will be apparent from the description 
and drawings , and from the claims . 

DETAILED DESCRIPTION 
10022 ] Reference will now be made in detail to non 
limiting examples of this disclosure , examples of which are 
illustrated in the accompanying drawings . The examples are 
described below by referring to the drawings , wherein like 
reference numerals refer to like elements . When like refer 
ence numerals are shown , corresponding description ( s ) are 
not repeated and the interested reader is referred to the 
previously discussed figure ( s ) for a description of the like 
element ( s ) . 
[ 0023 ] At least some implementations of VR systems and 
AR systems include a head - mounted display device ( HMD ) 
that can be worn by a user . In at least some implementations , 
the HMD includes a stereoscopic display in which different 
images and / or videos are shown to each of the user ' s eyes to 
convey depth . The HMD may display images that cover 
some ( e . g . , AR ) or all ( e . g . , VR ) of a user ' s field of view . The 
HMD may also track the movement of the user ' s head and / or 
pupil location . As the user ' s head moves , the HMD may 
display updated images that correspond to the user ' s chang 
ing orientation and / or position within the AR or VR envi 
ronment . 
[ 0024 ] The HMD may display images and / or videos gen 
erated by a rendering engine . The rendering engine may be 
a component of the HMD or may be a component of another 
computing device that transmits the rendered images to the 
HMD . Rendering images for display in a VR or AR system 
can be very resource intensive . 
[ 0025 ] To improve the visual experience on VR and AR 
systems , displays with higher resolution , higher acuity , and 
lower motion - to - photon latency are needed . Motion - to - pho 
ton latency refers to the time delay between detecting a 
motion and updating the immersive virtual environment or 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0009 ] FIG . 1 is a block diagram illustrating a system 
according to an example implementation . 
[ 0010 ] FIG . 2 is an example implementation of an aug 
mented and / or virtual reality system including a head 
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the augmented reality environment . All these elements 
require systems with higher processing power to render 
larger number of pixels at lower latency . Additionally , 
mobile VR and AR systems need to meet these requirements 
while minimizing energy use . 
[ 0026 ] In order to generate a satisfactory VR or AR 
experience , the rendering engine may need to minimize 
motion - to - photon latency so that updates to the VR or AR 
environment happen in a manner that matches the user ' s 
movement . In fact , if the motion - to - photon latency is too 
high , a VR system may cause the user to feel motion 
sickness . 
[ 0027 Some implementations include a foveated render 
ing engine that renders images with varying quality to 
roughly correspond to the user ' s visual acuity based on 
where the user is looking and / or the performance of a lens 
of the HMD . For example , images may be rendered at a 
higher quality at a fixation point and at gradually decreasing 
quality levels as distance from the fixation point increases . 
In some implementations , the HMD includes a pupil tracker 
that identifies the fixation point based on where the user is 
looking . This identified fixation point can be used to identify 
a central portion of the user ' s field of view in which the user 
will have greater visual acuity than in other portions of the 
user ' s field of view ( e . g . , within the user ' s peripheral field of 
vision ) . 
[ 0028 ] The foveated rendering engine may generate an 
image that has a higher quality in parts of the image that are 
intended to be displayed within the central portion of the 
user ' s field of view and a lower quality in parts of the image 
that are intended to be displayed within a peripheral portion 
of the user ' s field of view . As an example , the lower quality 
rendering may be at a lower resolution than the higher 
quality rendering . Implementations of the foveated render 
ing engine exploit the fact that the acuity of the human visual 
system drops off dramatically as a function of eccentricity 
from the center of gaze . By rendering parts of the image at 
a lower quality , the foveated rendering engine can render the 
image more quickly , while using fewer processor cycles and 
energy . Because these lower quality portions are located 
away from the fixation point , the lower quality is unlikely to 
be noticeable to the user due to the user ' s lower visual acuity 
as distance from the fixation point increases . 
[ 0029 ] In some implementations , the quality of the image 
varies smoothly from a higher quality at the identified 
fixation point to a lower quality in the peripheral regions of 
the image . Because the quality of the images generated by 
the foveated rendering engine varies smoothly , the images 
are free of visual artifacts such as a tunnel vision effect or 
perceivable borders or transitions between regions of dif 
ferent quality levels . 
[ 0030 ] In some implementations , the foveated rendering 
engine generates foveated images and / or video from a 
three - dimensional ( 3D ) scene by warping the scene using a 
nonlinear function of distance from the fixation point to 
generate a warped scene . In some implementations , warping 
the scene includes altering the scene in a non - uniform 
manner ( i . e . , such that not all portions of the scene are 
altered in the same way ) . In some implementations , warping 
the scene includes altering the distance between vertices in 
the 3D scene and a fixation point . In some implementations , 
warping the scene includes mapping the 3D scene to a 
compressed intermediary space . The compressed interme - 
diary space may allocate more screen space to portions of 

the scene that are close to the fixation point and less screen 
space to portions of the scene that are further from the 
fixation point . 
10031 ] The nonlinear function may be a logarithmic func 
tion , an approximately logarithmic function , or the like . The 
3D scene may include one or more objects represented as 
polygonal meshes that are defined by vertices and faces . For 
example , the rendering engine may calculate a distance from 
each vertex of the 3D scene to a line that is normal to the 
view plane and passes through the fixation point . 
[ 0032 ] . Although the examples herein use a function of 
distance to perform warping , other implementations use 
other types of functions . For example , some implementa 
tions use a warping function of vertical distance and / or 
horizontal distance from the fixation point . In this manner , 
the warping function can warp the scene to a different degree 
in the horizontal dimension versus the vertical dimensions . 
Additionally , some implementations include an asymmetri 
cal warping function that warps by a different amount on one 
side of the fixation point than on the other side . For example , 
portions of the scene that are to the left of the fixation point 
of the right eye may be warped more significantly than 
portions to the right of the fixation point as much of the 
portions of the scene to the left of the fixation point may be 
occluded by the user ' s nose and vice versa . 
[ 0033 ] After the 3D scene is warped , the rendering engine 
can render and discretize the warped scene using various 
rendering techniques to generate a warped image . For 
example , standard graphics processor unit ( GPU ) operation 
can be used to render the image from the warped scene . The 
warped image can be rendered at a reduced resolution ( e . g . , 
having fewer pixels ) as compared to the desired final image . 
Rendering each of the pixels may involve the GPU perform 
ing various operations that are computationally expensive , 
such as calculating lighting and texture values using GPU 
shaders . Since the time to render an image is a function of 
the number of pixels being rendered , the warped image will 
require less time to render than the desired final image 
would . For example , the warped image may have approxi 
mately half the number of pixels in the vertical and hori 
zontal directions as the desired final image , resulting in the 
warped image having a fourth of the pixels as the desired 
final image . This four - fold reduction in the number of pixels 
can lead to a reduction in the rendering time for the warped 
image by a factor of four . Even greater improvements are 
possible in images with extra wide fields of view . 
[ 0034 ] In some implementations , the warped image is then 
unwarped to generate the desired final image . For example , 
unwarping the image may counteract the previously per 
formed warping . In some implementations , unwarping the 
image includes applying an inverse of the function used to 
warp the 3D scene to the pixels of the image . For example , 
the inverse of the function may move the pixels representing 
portions of the 3D scene back to where those portions were 
before the warping . 
[ 0035 ] The unwarping can be accomplished in a compu 
tationally inexpensive manner using GPU operations to 
determine values for the pixels in the final image based on 
the values of pixels at locations determined by the unwarp 
ing function in the warped image . The calculations required 
to unwarp the warped image are computationally inexpen 
sive as compared to the pixel rendering computations that 
are avoided using this technique ( e . g . , unwarping the image 
to generate the desired final image uses fewer processor 
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cycles than rendering each of the pixels of the desired final 
image ) . Since the warping function allocates more of the 
image space to vertices from the 3D scene that are close to 
the fixation point than to those that are more distance , more 
of the pixels in the warped image represent the portion of the 
3D scene near the fixation point . In other words , the warped 
image samples the region surrounding the fixation point at a 
higher rate than regions further away from the fixation point . 
This variable sampling allows the desired final image to be 
reconstructed with higher resolution around the fixation 
point and lower resolution elsewhere . 
[ 0036 ] In addition to unwarping the image as described 
above , other nonlinear operations can be applied to the 
images too . For example , a nonlinear lens distortion correc 
tion can be applied to generate the final image . In some 
implementations , the unwarping and at least one other 
nonlinear operation are combined into a single operation so 
that the multiple operations can be applied without requiring 
any additional per - pixel computations . In other words , by 
combining multiple nonlinear operations into a single opera 
tion , the number of operations applied to each pixel of the 
final image is reduced so the time to render the image and / or 
the number of processor cycles used to render the image are 
reduced . 
[ 0037 ] Unless otherwise noted , the techniques described 
herein can be applied to generate foveated images and / or 
videos . The generated images and / or video can include 
computer - generated content , standard photographs and vid 
eos of real scenes , and combinations thereof . Furthermore , 
the techniques described herein can be applied to generate a 
series of images ( or a video ) for use in an AR or VR 
environment . 
[ 0038 ] FIG . 1 is a block diagram illustrating a system 100 
according to an example implementation . The system 100 
generates an augmented reality ( AR ) environment or virtual 
reality ( VR ) environment for a user of the system 100 . In 
some implementations , the system 100 includes a computing 
device 102 , a head - mounted display device ( HMD ) 104 , and 
an AR / VR content source 106 . Also shown is a network 108 
over which the computing device 102 may communicate 
with the AR / VR content source 106 . 
[ 0039 ] In some implementations , the computing device 
102 is a mobile device ( e . g . , a smartphone ) which may be 
configured to provide or output VR content to a user . The 
computing device 102 may include a memory 110 , a pro 
cessor assembly 112 , a display device 114 , a communication 
module 116 , and a sensor system 118 . The memory 110 may 
include an AR / VR application 120 , a foveated rendering 
engine 122 , an eye tracker 124 , and AR / VR content 126 . The 
computing device 102 may also include various user input 
components ( not shown ) such as a controller that commu 
nicates with the computing device 102 using a wireless 
communications protocol . 
[ 0040 ] The memory 110 can include one or more non 
transitory computer - readable storage media . The memory 
110 may store instructions and data that are usable to 
generate an AR VR environment for a user . 
10041 ] The processor assembly 112 includes one or more 
devices that are capable of executing instructions , such as 
instructions stored by the memory 110 , to perform various 
tasks , such as image and video rendering . For example , the 
processor assembly 112 may include a central processing 
unit ( CPU ) and / or a graphics processor unit ( GPU ) . For 

example , if a GPU is present , some video rendering tasks 
may be offloaded from the CPU to the GPU . 
[ 0042 ] The display device 114 may , for example , include 
an LCD ( liquid crystal display ) screen , an OLED ( organic 
light emitting diode ) screen , a touchscreen , or any other 
screen or display for displaying images or information to a 
user . In some implementations , the display device 114 
includes a light projector arranged to project light onto a 
portion of a user ' s eye . 
( 0043 ] The communication module 116 includes one or 
more devices for communicating with other computing 
devices , such as the ARVR content source 106 . The com 
munication module 116 may communicate via wireless or 
wired networks . 
[ 0044 ] The sensor system 118 may include various sen 
sors , including an inertial motion unit ( IMU ) 128 . Imple 
mentations of the sensor system 118 may also include 
different types of sensors , including , for example , a light 
sensor , an audio sensor , an image sensor , a distance and / or 
proximity sensor , a contact sensor such as a capacitive 
sensor , a timer , and / or other sensors and / or different com 
bination ( s ) of sensors . 
10045 ] The IMU 128 detects motion , movement , and / or 
acceleration of the computing device 102 and / or the HMD 
104 . The IMU 128 may include various different types of 
sensors such as , for example , an accelerometer , a gyroscope , 
a magnetometer , and other such sensors . A position and 
orientation of the HMD 104 may be detected and tracked 
based on data provided by the sensors included in the IMU 
128 . The detected position and orientation of the HMD 104 
may allow the system to in turn , detect and track the user ' s 
gaze direction and head movement . 
[ 0046 ] The AR / VR application 120 may present or pro 
vide the AR / VR content to a user via one or more output 
devices of the computing device 102 such as the display 
device 114 , a speaker ( s ) ( not shown ) , and / or other output 
devices . In some implementations , the AR / VR application 
120 includes instructions stored in the memory 110 that , 
when executed by the processor assembly 112 , cause the 
processor assembly 112 to perform the operations described 
herein . For example , the AR / VR application 120 may gen 
erate and present an AR / VR environment to the user based 
on , for example , AR / VR content , such as the AR / VR content 
126 and / or AR / VR content received from the AR / VR con 
tent source 106 . The AR / VR content 126 may include 3D 
scenes that can be rendered as images or videos for display 
on the display device 114 . For example , the 3D scene can 
include one or more objects represented as polygonal 
meshes . The polygonal meshes may be associated with 
various surface textures , such as colors and images . The 3D 
scene may also include other information such as , for 
example , light sources that are used in rendering the 3D 
scene . 
[ 0047 ] The AR / VR application 120 may use the foveated 
rendering engine 122 to generate images for display on the 
display device 114 based on the ARVR content 126 . In 
some implementations , the foveated rendering engine 122 
includes instructions stored in the memory 110 that , when 
executed by the processor assembly 112 , cause the processor 
assembly 112 to perform the operations described herein . 
For example , the foveated rendering engine 122 may gen 
erate foveated images based on a 3D scene of the AR / VR 
content 126 . The foveated images have a varying quality 
level to approximate the varying acuity of the visual system 
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( i . e . , the portion of the image that is expected to be perceived 
by the fovea of the user ' s eye has a higher quality level than 
portions of the image that are expected to be perceived by 
other regions of the user ' s eye ) . In at least some implemen 
tations , the foveated rendering engine 122 generates images 
that degrade in quality smoothly as a distance from a fixation 
point increases . 
[ 0048 ] For example , the foveated images may be images 
generated by rendering the 3D scene with varying quality 
levels . The images may be two - dimensional ( 2D ) ( e . g . , 2D 
arrays of pixels ) . In some implementations , the images are 
stereoscopic images the can be displayed by the HMD 104 
to convey depth so that a wearer of the HMD perceives a 3D 
environment . For example , the stereoscopic image may 
include separate portions of the image for each eye . The 
portions may represent the same scene from slightly differ 
ent perspectives ( e . g . , from the perspective of a left eye and 
a right eye ) . 
( 0049 ) Rendering the images may include determining a 
camera position and a viewport ( or image plane ) through 
which the 2D image of the 3D scene will be rendered . The 
viewport is like a window through which the 3D scene is 
viewed . The dimensions of the viewport correspond to the 
dimensions of the desired 2D image and each pixel of the 2D 
image can be mapped to a position on the viewport . The 
color value of each pixel may then be determined based on 
what would be seen by the camera at the corresponding 
position of the viewport . 
[ 0050 ] Based on the position of the camera and the view 
port , the 3D scene can be projected into screen space 
coordinates ( e . g . , 2D coordinates that correspond to vertical 
and horizontal positions within the image ) . For example , 
each entity ( or portion of an entity such as a vertex ) in the 
3D scene may be mapped to a specific position on the 
viewport based on the intersection between a line segment 
that extends from the entity to the camera and the viewport . 
For some 3D scenes , portions of the scene may not intersect 
with the viewport . These portions would not be part of the 
rendered 2D image . In a stereoscopic image , the viewport 
and camera positions may be slightly different for a left - eye 
image portion than for a right - eye image portion . 
[ 0051 ] The foveated images may include at least one 
fixation point . The fixation point may be a point in the image 
that has a higher quality level than other portions of the 
image . For example , the higher quality level portions may be 
rendered at a higher resolution than the lower quality level 
portions . In some implementations , the fixation point is a 
screen space coordinate within the image . In some imple 
mentations , the fixation point is a screen space coordinate 
within the image that is determined based on the direction a 
user is looking . In some implementations , the fixation point 
is a screen space coordinate within the image that is deter 
mined based on properties of a lens through which a user 
looks . In some implementations , the fixation point is a 3D 
coordinate within a 3D scene . In these implementations , the 
fixation point may be projected into screen space coordi 
nates . 
[ 0052 ] In at least some implementations , the foveated 
rendering engine 122 determines a fixation point at which 
the user is looking based , at least in part , on the eye tracker 
124 . In some implementations , the eye tracker 124 includes 
instructions stored in the memory 110 that , when executed 
by the processor assembly 112 , cause the processor assem 
bly 112 to perform the operations described herein . For 

example , the eye tracker 124 may determine a location on 
the display device 114 at which the user ' s gaze is directed . 
The eye tracker 124 may make this determination based on 
identifying and tracking the location of the user ' s pupils in 
images captured by an imaging device of the sensor system 
118 . 
[ 0053 ] The AR / VR application 120 may update the 
ARVR environment based on input received from the IMU 
128 and / or other components of the sensor system 118 . For 
example , the IMU 128 may detect motion , movement , 
and / or acceleration of the computing device 102 and / or the 
display device 114 . The IMU 128 may include various 
different types of sensors such as , for example , an acceler 
ometer , a gyroscope , a magnetometer , and other such sen 
sors . A position and orientation of the HMD 104 may be 
detected and tracked based on data provided by the sensors 
included in the IMU 128 . The detected position and orien 
tation of the HMD 104 may allow the system to in turn , 
detect and track the user ' s gaze direction and head move 
ment . Based on the detected gaze direction and head move 
ment , the ARVR application 120 may update the AR / VR 
environment to reflect a changed orientation and / or position 
of the user within the environment . 
[ 0054 ] Although the computing device 102 and the HMD 
104 are shown as separate devices in FIG . 1 , in some 
implementations , the computing device 102 may include the 
HMD 104 . In some implementations , the computing device 
102 communicates with the HMD 104 via a cable , as shown 
in FIG . 1 . For example , the computing device 102 may 
transmit audio and video signals to the HMD 104 for display 
for the user , and the HMD 104 may transmit motion , 
position , and / or orientation information to the computing 
device 102 . In some implementations , the HMD 104 
includes a chamber in which the computing device 102 may 
be placed . In some implementations , the user is able to view 
the display device 114 of the computing device 102 while 
wearing the HMD 104 ( e . g . , through lenses or apertures 
within the HMD 104 ) . For example , the computing device 
102 and the HMD 104 can together function as a stereo 
scopic viewer by partitioning a screen of the display device 
114 into a first image that is viewable by only the left eye of 
the user when viewed through the HMD and a second image 
that is viewable by only the right eye of the user when 
viewed through the HMD . 
[ 0055 ] The AR / VR content source 106 may generate and 
output AR / VR content , which may be distributed or sent to 
one or more computing devices , such as the computing 
device 102 , via the network 108 . In an example implemen 
tation , the AR / VR content includes three - dimensional 
scenes and / or images . Additionally , the AR / VR content may 
include audio / video signals that are streamed or distributed 
to one or more computing devices . The AR / VR content may 
also include an AR / VR application that runs on the com 
puting device 102 to generate 3D scenes , audio signals , 
and / or video signals . According to an illustrative example 
implementation , virtual reality ( VR ) , which may also be 
referred to as immersive multimedia or computer - simulated 
life , may , at least in some cases , replicate or simulate , to 
varying degrees , an environment or physical presence in 
places in the real world or imagined worlds or environments . 
Augmented reality ( AR ) may , at least in some cases , overlay 
computer generated images on a user ' s field of view of the 
real world . 
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[ 0056 ] The network 108 may be the Internet , a local area 
network ( LAN ) , a wireless local area network ( WLAN ) , 
and / or any other network . A computing device 102 , for 
example , may receive the audio / video signals , which may be 
provided as part of VR content in an illustrative example 
implementation . 
[ 0057 ] FIG . 2 is a third - person view of a physical space 
200 , in which a person P is experiencing a VR environment 
202 through the HMD 104 . In this example , the computing 
device 102 is disposed within the HMD 104 so that the user 
can see the display device 114 while wearing the HMD 104 . 
The VR environment 202 is generated by the computing 
device 102 and displayed on the display device 114 of the 
computing device 102 . 
10058 ] The VR environment includes foveated frames , 
such as the frame 204 , that are generated by the foveated 
rendering engine 122 . The foveated frames have a quality 
level that gradually decreases as a distance from a fixation 
point 206 increases . As can be seen in the frame 204 , the 
image quality is higher near the fixation point 206 than the 
image quality further away from the fixation point ( e . g . , near 
the edges of the frame 204 ) . Because parts of the foveated 
frames are rendered at lower quality levels , rendering the 
foveated frames requires less processor cycles than would be 
required to render the frames entirely at a higher quality 
level . Additionally , because the regions of the foveated 
frames that are rendered at lower quality levels are intended 
to be displayed in the person ' s peripheral vision , the person 
is unlikely to notice the reduced quality . Furthermore , 
because the quality degrades smoothly , the foveated frames , 
such as the foveated frame 204 , are free of border artifacts 
or other artifacts as the quality levels varies . 
[ 0059 ] FIGS . 3A and 3B are perspective views of an 
example HMD 300 , such as , for example , the HMD 104 
worn by the user in FIG . 2 , and FIG . 3C illustrates an 
example handheld electronic device 302 that is usable with 
the HMD 300 . 
[ 0060 ] The handheld electronic device 302 may include a 
housing 303 in which internal components of the handheld 
electronic device 302 are received , and a user interface 304 
on an outside of the housing 303 that is accessible to the 
user . The user interface 304 may include a touch sensitive 
surface 306 configured to receive user touch inputs . The user 
interface 304 may also include other components for 
manipulation by the user such as , for example , actuation 
buttons , knobs , joysticks and the like . In some implemen 
tations , at least a portion of the user interface 304 may be 
configured as a touchscreen , with that portion of the user 
interface 304 being configured to display user interface 
items to the user , and also to receive touch inputs from the 
user on the touch sensitive surface 306 . The handheld 
electronic device 302 may also include a light source 308 
configured to selectively emit light , for example , a beam or 
ray , through a port in the housing 303 , for example , in 
response to a user input received at the user interface 304 . 
[ 0061 ] The HMD 300 may include a housing 310 coupled 
to a frame 320 , with an audio output device 330 including , 
for example , speakers mounted in headphones , also being 
coupled to the frame 320 . In FIG . 3B , a front portion 310a 
of the housing 310 is rotated away from a base portion 310b 
of the housing 310 so that some of the components received 
in the housing 310 are visible . A display 340 may be 
mounted on an interior facing side of the front portion 310a 
of the housing 310 . In some implementations , the display 

340 is a display device from a computing device , such as the 
computing device 102 of FIG . 1 , that is inserted and secured 
between the front portion 310a and the base portion 310b . 
[ 0062 ] Lenses 350 may be mounted in the housing 310 , 
between the user ' s eyes and the display 340 when the front 
portion 310a is in the closed position against the base 
portion 310b of the housing 310 . In some implementations , 
the HMD 300 may include a sensing system 360 including 
various sensors and a control system 370 including a pro 
cessor 390 and various control system devices to facilitate 
operation of the HMD 300 . 
10063 ] . In some implementations , the HMD 300 may 
include a camera 380 to capture still and moving images . 
The images captured by the camera 380 may be used to help 
track a physical position of the user and / or the handheld 
electronic device 302 in the real world , or physical envi 
ronment relative to the immersive environment , and / or may 
be displayed to the user on the display 340 in a pass - through 
mode , allowing the generation of an augmented reality 
environment that includes a combination of images from the 
real world and computer generated imagery . In some imple 
mentations , the pass - through mode is used to allow the user 
to temporarily leave the immersive environment and return 
to the physical environment without removing the HMD 300 
or otherwise change the configuration of the HMD 300 to 
move the housing 310 out of the line of sight of the user . 
[ 0064 ] In some implementations , the sensing system 360 
may include an inertial measurement unit ( IMU ) 362 includ 
ing various different types of sensors such as , for example , 
an accelerometer , a gyroscope , a magnetometer , and other 
such sensors . A position and orientation of the HMD 300 
may be detected and tracked based on data provided by the 
sensors included in the IMU 362 . The detected position and 
orientation of the HMD 300 may allow the system to in turn , 
detect and track the user ' s head gaze direction and move 
ment . 
[ 0065 ] In some implementations , the HMD 300 may 
include a gaze tracking device 365 to detect and track an eye 
gaze of the user . The gaze tracking device 365 may include , 
for example , an image sensor 365A , or multiple image 
sensors 365A , to capture images of the user ' s eyes or a 
specific portion of the user ' s eyes , such as the pupil , to detect 
and track direction and movement of the user ' s gaze . In 
some implementations , the HMD 300 may be configured so 
that the detected gaze is processed as a user input to be 
translated into a corresponding interaction in the AR expe 
rience or the immersive VR experience . In some implemen 
tations , the HMD 300 is configured to use the detected gaze 
of the user to determine a fixation point for use in foveated 
rendering of the AR or VR environment . 
100661 Various implementations of the systems and tech 
niques described here can be realized in digital electronic 
circuitry , integrated circuitry , specially designed ASICs ( ap 
plication specific integrated circuits ) , computer hardware , 
firmware , software , and / or combinations thereof . These 
various implementations can include implementation in one 
or more computer programs that are executable and / or 
interpretable on a programmable system including at least 
one programmable processor , which may be special or 
general purpose , coupled to receive data and instructions 
from , and to transmit data and instructions to , a storage 
system , at least one input device , and at least one output 
device . 
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[ 0067 ] These computer programs ( also known as pro 
grams , software , software applications or code ) include 
machine instructions for a programmable processor , and can 
be implemented in a high - level procedural and / or object 
oriented programming language , and / or in assembly / ma 
chine language . As used herein , the terms “ machine - read 
able medium ” and “ computer - readable medium ” refer to any 
computer program product , apparatus and / or device ( e . g . , 
magnetic discs , optical disks , memory , Programmable Logic 
Devices ( PLDs ) ) used to provide machine instructions and / 
or data to a programmable processor , including a machine 
readable medium that receives machine instructions as a 
machine - readable signal . The term “ machine - readable sig 
nal ” refers to any signal used to provide machine instruc 
tions and / or data to a programmable processor . 
[ 0068 ] To provide for interaction with a user , the systems 
and techniques described here can be implemented on a 
computer having a display device ( e . g . , LCD ( liquid crystal 
display ) , an OLED ( organic light emitting diode ) display , or 
another type of display ) for displaying information to the 
user and a keyboard and a pointing device ( e . g . , a mouse or 
a trackball ) by which the user can provide input to the 
computer . Other kinds of devices can be used to provide for 
interaction with a user as well ; for example , feedback 
provided to the user can be any form of sensory feedback 
( e . g . , visual feedback , auditory feedback , or tactile feed 
back ) ; and input from the user can be received in any form , 
including acoustic , speech , or tactile input . 
[ 0069 ] The systems and techniques described here can be 
implemented in a computing system that includes a back 
end component ( e . g . , as a data server ) , or that includes a 
middleware component ( e . g . , an application server ) , or that 
includes a front - end component ( e . g . , a client computer 
having a graphical user interface or a Web browser through 
which a user can interact with an implementation of the 
systems and techniques described here ) , or any combination 
of such back end , middleware , or front end components . The 
components of the system can be interconnected by any 
form or medium of digital data communication ( e . g . , a 
communication network ) . Examples of communication net 
works include a local area network ( “ LAN ” ) , a wide area 
network ( “ WAN ” ) , and the Internet . 
[ 0070 ] The computing system can include clients and 
servers . A client and server are generally remote from each 
other and typically interact through a communication net 
work . The relationship of client and server arises by virtue 
of computer programs running on the respective computers 
and having a client - server relationship to each other . 
[ 0071 ] A method 400 of rendering a smoothly varying 
foveated image , in accordance with implementations as 
described herein , is shown in FIG . 4 . The method 400 may 
be performed by implementations of the foveated rendering 
engine 122 . 
10072 ] At operation 402 , a 3D scene is retrieved . As 
described above , the 3D scene may include multiple objects , 
including meshes and light sources . The meshes may be 
formed from polygonal faces , such as triangles , that are 
defined by vertices . Each of the vertices may , for example , 
have an X , Y , and Z coordinate in a three - dimensional space . 
A face can be defined by three , or in some implementations 
more co - planar vertices . A mesh can be defined by multiple 
faces , at least some of which may share vertices . 
[ 0073 ] The 3D scene may be retrieved from local memory 
or may be retrieved from another computing device , such as 

the AR / VR content source 106 . Upon retrieving the 3D 
scene , the surfaces of at least some of the surfaces of the 
meshes may be tessellated . For example , larger mesh sur 
faces ( e . g . , surfaces in a mesh that have a surface area 
greater than a predetermined threshold value ) may be tes 
sellated to divide the surface into multiple smaller . The 
tessellation will introduce additional vertices and shorter 
edges on the faces . Because the warping operation may bend 
straight lines into curved lines , visual artifacts may be 
introduced if the edges are too long . By tessellating any 
larger surfaces , the bending of the edges becomes insignifi 
cant . Additionally , in some implementation , tessellation is 
performed by a GPU using a tessellation shader or geometry 
shader . 

[ 0074 ] In some implementations , per pixel error correction 
can be applied to address distortion introduced by triangle 
edges being warped . For example , an error value can be 
computed during the foveated rendering and stored in the 
alpha channel of the output pixel value . The error value can 
be calculated by comparing an interpolated position of a 
vector to a value generated by a per - pixel computation . 
Then , during the generation of a final image , the error 
correction can be applied . 
[ 0075 ] At operation 404 , a fixation point is determined . In 
some implementations , the fixation point is determined 
using gaze tracking technology , such as the eye tracker 124 . 
As the user ' s eyes move around a field view , the fixation 
point will move correspondingly . In some implementations , 
the fixation point is determined based on the lens of the 
HMD 104 . For example , the fixation point may be the point 
where the lens provides the highest acuity . In some imple 
mentations , the fixation point corresponds to a portion of the 
lens having higher acuity than other portions of the lens . For 
example , the fixation point may be selected as a midpoint of 
portion of the lens that has higher acuity than 90 % of the 
lens , 95 % of the lens , or 99 % of the lens . In some imple 
mentations , separate fixation points are identified for each of 
the user ' s eyes . 
[ 0076 ] At operation 406 , the vertices in the 3D scene are 
warped from the screen space to the intermediary com 
pressed space . In some implementations , warping the ver 
tices includes transforming the coordinates of the vertices 
from the screen space to a compressed space using a 
nonlinear function . In some implementations , this warping 
has an effect similar to applying a fish - eye lens . In at least 
some implementations , the warping function is applied by a 
GPU vertex shader . 
[ 0077 ] In at least some implementations , the warping is 
performed by projecting each vertex to a screen coordinate , 
which may be defined by X and Y screen coordinate values 
between - 1 and 1 . The projected coordinates are then 
recalculated relative to a screen coordinate system that has 
the fixation point as an origin . The projected coordinates are 
scaled so that they continue to have coordinate values 
between - 1 and 1 . Then , the projected coordinates are 
transformed according to a nonlinear warping ( transforma 
tion ) function . The transformed coordinate values are then 
recalculated in terms of the center of the screen ( i . e . , as 
opposed to the fixation point ) and rescaled to have values 
between - 1 and 1 . Then , the vertex is re - projected into the 
3D scene . 
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[ 0078 ] As a non - limiting example , consider the triangle 
described ( post viewing transformation ) by homogeneous 
coordinate vertices ( 0 , 0 . 6 , 1 , 2 ) , ( - 0 . 6 , 0 , 1 , 2 ) , ( 0 . 6 , 0 , 1 , 
2 ) 

pings performed by each of the example warping functions . 
The X - axis of the graph 600 is distance from the fixation 
point in uncompressed space and the Y - axis of the graph 600 
is distance from the fixation point in compressed ( warped ) 
space . The graph 600 includes plot 602a , plot 604a , plot 
606a , plot 608a , and plot 610a . The plot 602a represents the 
function 602b . The plot 604a represents the function 604b . 
The plot 606a represents the function 606b . The plot 608a 
represents the function 608b . The plot 610a represents the 
function 610b . 
[ 0083 ] Each of the plots represents a function on the 
distance from the fixation point , which is represented as r . 
For a specific vertex , r can be calculated using the following 
equation : 

VX2 + ye 

[ 0079 ] The 2D screen coordinates are ( 0 , 0 . 3 ) , ( - 0 . 3 , 0 ) , 
( 0 . 3 , 0 ) . Let the fixation point be ( 0 . 1 , 0 ) . ( For simplicity the 
fixation point has been placed on the x - axis so no remapping 
of the y coordinates is required in this example . ) The 
x - interval [ - 1 , 0 . 1 ] is remapped to [ - 1 , 0 ] and [ 0 . 1 , 1 ] is 
remapped to [ 0 , 1 ] . Hence the remapped vertices are ( ( 0 
0 . 1 ) / 1 . 1 , ( - 0 . 3 - 0 . 0 ) / 1 ) , ( ( - 0 . 3 - 0 . 1 ) / 0 . 9 , ( 0 - 0 ) / 1 ) , ( 0 . 3 - 0 . 
1 ) / 0 . 9 , ( 0 - 0 ) / 1 ) . Simplified these are : ( - 0 . 09 , 0 . 3 ) , ( - 0 . 36 , 
0 ) , ( 0 . 22 , 0 ) . Using , for example , vd for t ( d ) ( the transfor 
mation function ) these become ( - 0 . 3 , 0 . 55 ) , ( - 0 . 6 , 0 ) , ( 0 . 47 , 
0 ) . These vertices are again remapped into the coordinate 
system with its origin at the image centre : ( ( - 0 . 30 + 0 . 1 ) * 1 . 1 , 
( 0 . 55 + 0 ) * 1 ) , ( ( - 0 . 6 + 0 . 1 ) * 1 . 1 , ( 0 + 0 ) * 1 ) , ( ( 0 . 47 + 0 . 1 ) * 0 . 9 , 
( 0 + 0 ) * 1 ) or ( - 0 . 22 , 0 . 55 ) , ( - 0 . 55 , 0 ) , ( 0 . 51 , 0 ) . Finally , these 
vertices are then projected back to 3D homogeneous coor 
dinates as ( - 0 . 44 , 1 . 1 , 1 , 2 ) , ( - 1 . 11 , 0 , 1 , 2 ) , ( 1 . 03 , 0 , 1 , 2 ) . 
[ 0080 ] FIGS . 5A and 5B are schematic diagrams that 
illustrate how example warping functions sample an image . 
In FIG . 5A , the overlay 500 includes multiple circles . Each 
of the circles represents a region of an underlying image 
space ( not shown ) that would be sampled to generate a 
warped image . The overlay 500 would be centered over the 
fixation point in a scene . As can be seen in FIG . 5A , the 
circles are smaller close to the center of the overlay 500 , and 
so the region of the underlying image space used to generate 
a pixel is also smaller . The circles in the overlay 500 that are 
further from the center ( fixation point ) become larger so 
more pixels from the underlying image are sampled to 
generate a single pixel in the warped image . The overlay 502 
of FIG . 5B is similar to the overlay 500 , except that the 
overlay 500 includes square - like regions rather than circles . 
Again , the regions further away from the fixation point are 
larger and thus more pixels are sampled to generate a single 
pixel in these further regions . 
[ 0081 ] In some implementations , a vertex is projected 
onto the screen space and a difference from the X - coordinate 
and the Y - coordinate of the projected vertex to an X - coor 
dinate and a Y - coordinate of a fixation point is determined . 
In the examples herein , the difference between the projected 
X - coordinate of the vertex and the X - coordinate of the 
fixation point is referred to as X ' . Similarly , the difference 
between the projected Y - coordinate of the vertex and the 
Y - coordinate of the fixation point is referred to as Y ' . One 
example of a nonlinear warping function used in some 
implementations is a log - polar mapping . For a given 
X - delta , Y - delta , its coordinate is the warped representation 
is ( p , 0 ) where : 

p = log ( V x2 + yv2 ) ; and 

In some implementations , the distance r is a projected 
distance between the position of the vertex after projection 
into screen space and the fixation point ( in screen space ) . 
[ 0084 ] Where the slopes of the plots are greater than 45 
degrees , the uncompressed screen space is expanded in the 
compressed space . These regions will be rendered with 
higher resolution in the final image . Where the slopes of the 
plots are less than 45 degrees , the uncompressed screen 
space is reduced in the compressed space . These regions will 
be rendered with lower resolution in the final image . The 
plots and warping functions shown in FIG . 6 are examples . 
Other warping functions may be used in some implemen 
tations . For example , some implementations use various 
second - degree polynomials or third - degree polynomials of 
distance from the fixation point ( r ) as warping functions . 
Additionally , some implementations , use a logarithmic 
warping function , such as log ( r + 1 ) , or a radical warping 
function , such as Vr . 
[ 0085 ] Additionally , some implementations include warp 
ing functions of distance from the fixation point in X ( X ' ) 
and distance from the fixation point in Y ( Y ' ) , rather that 
distance ( r ) . In these examples , the warping can be per 
formed differently in the vertical dimension than in the 
horizontal dimension . Additionally , some implementations 
include asymmetric warping functions . For example , asym 
metric warping functions can be used to warp vertices above 
the fixation point differently than vertices that are below the 
fixation point . Additionally , asymmetric warping functions 
can be used to warp vertices to the left of the fixation point 
differently than vertices that are to the right of the fixation 
point ( e . g . , to more heavily warp regions that are likely to be 
occluded by the user ' s nose and thus preserve more resolu 
tion for the other areas of the field of view ) . 
[ 0086 ] Returning now to FIG . 4 , an intermediary image is 
rendered based on the warped vertices at operation 408 . In 
some implementations , the intermediary image is rendered 
at a resolution that is lower than the resolution of the desired 
final image . In some implementations , a pixel shader of the 
GPU renders the surfaces ( e . g . , triangles ) of the meshes in 
the compressed ( warped ) space . Depending on the 3D scene , 
rendering the image may include applying an image as a 
texture map to at least some of the surfaces . The image may 
be rendered using multi - sample anti - aliasing ( MSAA ) . For 
example , some implementations render images using 4x 
MSAA or 8x MSAA . Because the MSAA is performed on 
the compressed ( warped ) image , the processor cycles 
required for performing MSAA are less than would be 

O = a tan ( Y ' / X " ) 

[ 0082 ] In this example , the log - polar mapping is continu 
ous and does not include any data reduction . The data 
reduction is a result of finitely sampling the intermediary 
( warped ) representation . Other warping functions may be 
used as well . In some implementations , the warping function 
is a nonlinear transformation that is a function of the radial 
distance between the projected vertex and the fixation point . 
FIG . 6 shows a graph 600 that shows plots for several 
example warping functions . The plots illustrate the map 
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required to perform MSAA on each of the pixels from the 
final image . The MSAA is performed by a GPU in some 
implementations . 
[ 0087 ] In some implementations , the intermediary 
( warped ) image has approximately one quarter of the num 
ber of pixels as the desired final image . For example , the 
intermediary image may have half as many pixels as the 
desired final image in the vertical dimension and half as 
many pixels as the desired final image in the horizontal 
dimension , resulting in one fourth as many pixels as the 
desired final image . Because the number of pixels being 
rendered is reduced , rendering the intermediary image will 
require less time and / or processor cycles . In this example , 
rendering the intermediary image would require approxi 
mately one fourth of the time and / or processor cycles 
required to render the full sized final image . 
10088 ] In some implementations , other ratios of the num 
ber of pixels in the intermediary image with respect to the 
number of pixels in the full - sized final image are used . For 
example , when the full - sized final image has a wider aspect 
ratio , an even larger reduction in the number of pixels may 
be possible since a larger portion of the full - sized final image 
will be in the user ' s peripheral vision and can be rendered at 
a lower quality level . In some implementations , various 
factors are used to select a resolution for the intermediary 
image , including the desired resolution of the final image , 
the aspect ratio of the final image , whether an eye tracker is 
available to determine the fixation point , the acuity profile of 
the lens in the HMD , and the warping function that is used 
in operation 406 . 
[ 0089 ] FIG . 7A shows an example of an intermediary 
( warped ) image 700 . FIG . 7B shows the corresponding 
scene without warping in image 702 . FIG . 7B also includes 
a fixation point 704 that is to warp the intermediary image 
700 . As can be seen in FIG . 7A , the portions of the scene 
near the fixation point ( e . g . , the lion head ) are warped to 
occupy a larger portion of the intermediary image 700 ( i . e . , 
are rendered with more pixels / higher resolution ) and the 
portions of the scene that are farther away from the fixation 
point ( e . g . , the curtains ) are warped to occupy less of the 
image ( i . e . , are rendered with fewer pixels / lower resolution ) . 
[ 0090 ] Returning now to FIG . 4 , at operation 410 , the 
intermediary image is unwarped to generate the final , fove 
ated image . In some implementations , a pixel value for each 
of the pixels in the final , foveated image can be identified at 
a corresponding location in the intermediary image . For 
example , the same warping function used in operation 406 
can be applied to a pixel location in the final , foveated image 
to identify the corresponding location for the pixel value in 
the intermediate image . In some implementations , a pixel 
shader of the GPU performs this warping function to retrieve 
the pixel value from the intermediary image as the final , 
foveated image is rendered . In some implementations , bilin 
ear filtering is used within the foveal region during the 
unwarping . 
10091 ] Implementations of the method 400 can be used to 
perform foveated video rendering in real - time using a stan 
dard GPU on a laptop computer . This real - time performance 
allows for generation of responsive AR and / or VR environ 
ments . 
[ 0092 ] In some implementations , when rendering video , 
temporal anti - aliasing is used in at least the periphery 
regions of the final images ( e . g . , regions that are more 
distant from the fixation point ) . For example , a method of 

temporal anti - aliasing is to use alpha blending with the 
previous frame . In some implementations , the level of 
transparency between the current frame and the previous 
frame is varied according to the amount of movement of the 
camera , to have a smoother anti - aliasing when there is no 
movement , and a shorter temporal fading when the camera 
is moving 
[ 0093 ] FIG . 8 is a schematic diagram of an example 
foveated rendering process 800 according to some imple 
mentations . The process 800 may be performed by , for 
example , the foveated rendering engine 122 to generate 
images or video for an AR or VR environment . One of the 
inputs to the process is an input 3D scene 802 . In some 
implementations , a shader of a GPU , such as a vertex shader , 
a geometry shader , or a fragment shader , applies a nonlinear 
warping function to the vertices of the input 3D scene 802 
to generate a warped 3D scene 804 that is warped about a 
fixation point ( shown at the center of the image in this 
example ) . In some implementations , a pixel shader renders 
the warped 3D scene 804 at a reduced resolution to generate 
the intermediary ( warped ) image 806 . In some implemen 
tations , an un - foveating shader ( e . g . , a pixel shader of a GPU 
configured to perform the mapping described herein ) reads 
and unwarps the intermediary image 806 to generate the 
final image 808 at full resolution . In some implementations , 
when generating video , temporal blending is used to blend 
the regions that are more distant from the fixation point with 
previous frames . Additionally , in some implementations , 
bilinear filtering is used to generate portions of the final 
image 808 that are nearer to the fixation point . 
[ 0094 ] FIG . 9 is a schematic diagram of an example 
foveated rendering process 900 according to some imple 
mentations . The process 900 may be performed by , for 
example , the foveated rendering engine 122 to generate 
images or video for an AR or VR environment . One of the 
inputs to the process is an input 3D mesh 902 . The mesh 902 
may be a component of a 3D scene generated by an 
application , such as the AR / VR application 120 . The verti 
ces of the mesh 902 are transformed to warp the mesh and 
generate the warped mesh 904 . For example , the vertices of 
the mesh 902 may be warped by applying a nonlinear 
warping function that is based on distances of the vertices 
from a fixation point determined based on the user ' s gaze . 
The warped mesh 904 is then rendered to generate a lower 
resolution intermediary image 906 . The intermediary image 
is then warped back ( un - warped ) to generate the final image 
908 of the rendered mesh . 
[ 0095 ] Although many of the examples above relate to 
rendering computer - generated images / videos from three 
dimensional scenes , in some implementations the techniques 
and systems described herein are used to render foveated 
versions of standard photographs and videos of real scenes . 
The image can either be rendered using a pixel shader that 
will compute for each pixel of the foveated image the 
original position in the source image , if the image / video will 
cover the entire screen ; or if the images / video will be 
integrated in a 3D scene , the mesh warping processes can be 
used with the image / video used as a texture for the mesh . To 
render a dynamic image or video , some implementations use 
a buffer to cache the image / video data ( e . g . , from a remote 
source or hard drive ) . The buffer allows smooth rendering as 
the image / video data can be quickly retrieved from the 
buffer without the delays associated with accessing a hard 
drive or receiving data from a remote source . 
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[ 0096 ] FIG . 10 shows an example of a computer device 
1000 and a mobile computer device 1050 , which may be 
used with the techniques described here . Computing device 
1000 includes a processor 1002 , memory 1004 , a storage 
device 1006 , a high - speed interface 1008 connecting to 
memory 1004 and high - speed expansion ports 1010 , and a 
low speed interface 1012 connecting to low speed bus 1014 
and storage device 1006 . Each of the components 1002 , 
1004 , 1006 , 1008 , 1010 , and 1012 , are interconnected using 
various busses , and may be mounted on a common moth 
erboard or in other manners as appropriate . The processor 
1002 can process instructions for execution within the 
computing device 1000 , including instructions stored in the 
memory 1004 or on the storage device 1006 to display 
graphical information for a GUI on an external input / output 
device , such as display 1016 coupled to high speed interface 
1008 . In other implementations , multiple processors and / or 
multiple buses may be used , as appropriate , along with 
multiple memories and types of memory . Also , multiple 
computing devices 1000 may be connected , with each 
device providing portions of the necessary operations ( e . g . , 
as a server bank , a group of blade servers , or a multi 
processor system ) . 
[ 0097 ] The memory 1004 stores information within the 
computing device 1000 . In one implementation , the memory 
1004 is a volatile memory unit or units . In another imple 
mentation , the memory 1004 is a non - volatile memory unit 
or units . The memory 1004 may also be another form of 
computer - readable medium , such as a magnetic or optical 
disk . 
[ 0098 ] The storage device 1006 is capable of providing 
mass storage for the computing device 1000 . In one imple 
mentation , the storage device 1006 may be or contain a 
computer - readable medium , such as a floppy disk device , a 
hard disk device , an optical disk device , or a tape device , a 
flash memory or other similar solid state memory device , or 
an array of devices , including devices in a storage area 
network or other configurations . A computer program prod 
uct can be tangibly embodied in an information carrier . The 
computer program product may also contain instructions 
that , when executed , perform one or more methods , such as 
those described above . The information carrier is a com 
puter - or machine - readable medium , such as the memory 
1004 , the storage device 1006 , or memory on processor 
1002 . 
[ 0099 ] The high speed controller 1008 manages band 
width - intensive operations for the computing device 1000 , 
while the low speed controller 1012 manages lower band 
width - intensive operations . Such allocation of functions is 
exemplary only . In one implementation , the high - speed 
controller 1008 is coupled to memory 1004 , display 1016 
( e . g . , through a graphics processor or accelerator ) , and to 
high - speed expansion ports 1010 , which may accept various 
expansion cards ( not shown ) . In the implementation , low 
speed controller 1012 is coupled to storage device 1006 and 
low - speed expansion port 1014 . The low - speed expansion 
port , which may include various communication ports ( e . g . , 
USB , Bluetooth , Ethernet , wireless Ethernet ) may be 
coupled to one or more input / output devices , such as a 
keyboard , a pointing device , a scanner , or a networking 
device such as a switch or router , e . g . , through a network 
adapter . 
0100 ] The computing device 1000 may be implemented 

in a number of different forms , as shown in the figure . For 

example , it may be implemented as a standard server 1020 , 
or multiple times in a group of such servers . It may also be 
implemented as part of a rack server system 1024 . In 
addition , it may be implemented in a personal computer such 
as a laptop computer 1022 . Alternatively , components from 
computing device 1000 may be combined with other com 
ponents in a mobile device ( not shown ) , such as device 
1050 . Each of such devices may contain one or more of 
computing device 1000 , 1050 , and an entire system may be 
made up of multiple computing devices 1000 , 1050 com 
municating with each other . 
[ 0101 ] Computing device 1020 includes a processor 1052 , 
memory 1064 , an input / output device such as a display 
1054 , a communication interface 1066 , and a transceiver 
1068 , among other components . The device 1050 may also 
be provided with a storage device , such as a microdrive or 
other device , to provide additional storage . Each of the 
components 1050 , 1052 , 1064 , 1054 , 1066 , and 1068 , are 
interconnected using various buses , and several of the com 
ponents may be mounted on a common motherboard or in 
other manners as appropriate . 
10102 ] The processor 1052 can execute instructions within 
the computing device 1020 , including instructions stored in 
the memory 1064 . The processor may be implemented as a 
chipset of chips that include separate and multiple analog 
and digital processors . The processor may provide , for 
example , for coordination of the other components of the 
device 1050 , such as control of user interfaces , applications 
run by device 1050 , and wireless communication by device 
1050 . 
[ 0103 ] Processor 1052 may communicate with a user 
through control interface 1058 and display interface 1056 
coupled to a display 1054 . The display 1054 may be , for 
example , a TFT LCD ( Thin - Film - Transistor Liquid Crystal 
Display ) or an OLED ( Organic Light Emitting Diode ) 
display , or other appropriate display technology . The display 
interface 1056 may include appropriate circuitry for driving 
the display 1054 to present graphical and other information 
to a user . The control interface 1058 may receive commands 
from a user and convert them for submission to the processor 
1052 . In addition , an external interface 1062 may be provide 
in communication with processor 1052 , so as to enable near 
area communication of device 1050 with other devices . 
External interface 1062 may provide , for example , for wired 
communication in some implementations , or for wireless 
communication in other implementations , and multiple 
interfaces may also be used . 
[ 0104 ] . The memory 1064 stores information within the 
computing device 1020 . The memory 1064 can be imple 
mented as one or more of a computer - readable medium or 
media , a volatile memory unit or units , or a non - volatile 
memory unit or units . Expansion memory 1074 may also be 
provided and connected to device 1050 through expansion 
interface 1072 , which may include , for example , a SIMM 
( Single In Line Memory Module ) card interface . Such 
expansion memory 1074 may provide extra storage space 
for device 1050 , or may also store applications or other 
information for device 1050 . Specifically , expansion 
memory 1074 may include instructions to carry out or 
supplement the processes described above , and may include 
secure information also . Thus , for example , expansion 
memory 1074 may be provided as a security module for 
device 1050 , and may be programmed with instructions that 
permit secure use of device 1050 . In addition , secure appli 
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cations may be provided via the SIMM cards , along with 
additional information , such as placing identifying informa 
tion on the SIMM card in a non - hackable manner . 
[ 0105 ] The memory may include , for example , flash 
memory and / or NVRAM memory , as discussed below . In 
one implementation , a computer program product is tangibly 
embodied in an information carrier . The computer program 
product contains instructions that , when executed , perform 
one or more methods , such as those described above . The 
information carrier is a computer - or machine - readable 
medium , such as the memory 1064 , expansion memory 
1074 , or memory on processor 1052 , that may be received , 
for example , over transceiver 1068 or external interface 
1062 . 
[ 0106 ] Device 1050 may communicate wirelessly through 
communication interface 1066 , which may include digital 
signal processing circuitry where necessary . Communica 
tion interface 1066 may provide for communications under 
various modes or protocols , such as GSM voice calls , SMS , 
EMS , or MMS messaging , CDMA , TDMA , PDC , 
WCDMA , CDMA2000 , or GPRS , among others . Such 
communication may occur , for example , through radio 
frequency transceiver 1068 . In addition , short - range com 
munication may occur , such as using a Bluetooth , Wi - Fi , or 
other such transceiver ( not shown ) . In addition , GPS ( Global 
Positioning System ) receiver module 1070 may provide 
additional navigation - and location - related wireless data to 
device 1050 , which may be used as appropriate by applica 
tions running on device 1050 . 
[ 0107 ) Device 1050 may also communicate audibly using 
audio codec 1060 , which may receive spoken information 
from a user and convert it to usable digital information . 
Audio codec 1060 may likewise generate audible sound for 
a user , such as through a speaker , e . g . , in a handset of device 
1050 . Such sound may include sound from voice telephone 
calls , may include recorded sound ( e . g . , voice messages , 
music files , etc . ) and may also include sound generated by 
applications operating on device 1050 . 
[ 0108 ] The computing device 1020 may be implemented 
in a number of different forms , as shown in the figure . For 
example , it may be implemented as a cellular telephone 
1080 . It may also be implemented as part of a smartphone 
1082 , personal digital assistant , or other similar mobile 
device . 
[ 0109 ] Various implementations of the systems and tech 
niques described here can be realized in digital electronic 
circuitry , integrated circuitry , specially designed ASICs ( ap 
plication specific integrated circuits ) , computer hardware , 
firmware , software , and / or combinations thereof . These 
various implementations can include implementation in one 
or more computer programs that are executable and / or 
interpretable on a programmable system including at least 
one programmable processor , which may be special or 
general purpose , coupled to receive data and instructions 
from , and to transmit data and instructions to , a storage 
system , at least one input device , and at least one output 
device . 
[ 0110 ] These computer programs ( also known as pro 
grams , software , software applications or code ) include 
machine instructions for a programmable processor , and can 
be implemented in a high - level procedural and / or object 
oriented programming language , and / or in assembly / ma 
chine language . As used herein , the terms “ machine - read - 
able medium ” " computer - readable medium ” refers to any 

computer program product , apparatus and / or device ( e . g . , 
magnetic discs , optical disks , memory , Programmable Logic 
Devices ( PLDs ) ) used to provide machine instructions and / 
or data to a programmable processor , including a machine 
readable medium that receives machine instructions as a 
machine - readable signal . The term “ machine - readable sig 
nal ” refers to any signal used to provide machine instruc 
tions and / or data to a programmable processor . 
[ 0111 ] To provide for interaction with a user , the systems 
and techniques described here can be implemented on a 
computer having a display device ( e . g . , an LCD ( liquid 
crystal display ) screen , an OLED ( organic light emitting 
diode ) ) for displaying information to the user and a key 
board and a pointing device ( e . g . , a mouse or a trackball ) by 
which the user can provide input to the computer . Other 
kinds of devices can be used to provide for interaction with 
a user as well ; for example , feedback provided to the user 
can be any form of sensory feedback ( e . g . , visual feedback , 
auditory feedback , or tactile feedback ) ; and input from the 
user can be received in any form , including acoustic , speech , 
or tactile input . 
[ 0112 ] The systems and techniques described here can be 
implemented in a computing system that includes a back end 
component ( e . g . , as a data server ) , or that includes a middle 
ware component ( e . g . , an application server ) , or that 
includes a front end component ( e . g . , a client computer 
having a graphical user interface or a Web browser through 
which a user can interact with an implementation of the 
systems and techniques described here ) , or any combination 
of such back end , middleware , or front end components . The 
components of the system can be interconnected by any 
form or medium of digital data communication ( e . g . , a 
communication network ) . Examples of communication net 
works include a local area network ( “ LAN ” ) , a wide area 
network ( “ WAN ” ) , and the Internet . 
[ 0113 ] The computing system can include clients and 
servers . A client and server are generally remote from each 
other and typically interact through a communication net 
work . The relationship of client and server arises by virtue 
of computer programs running on the respective computers 
and having a client - server relationship to each other . 
[ 0114 ] In some implementations , the computing devices 
depicted in FIG . 1 can include sensors that interface with a 
virtual reality ( VR headset / HMD device 1090 ) to generate 
an AR or VR environment with foveated frames to increase 
framerate and / or reduce the processor cycles required for 
rendering . For example , one or more sensors included on a 
computing device 1020 or other computing device depicted 
in FIG . 1 , can provide input to VR headset 1090 or in 
general , provide input to a VR space . The sensors can 
include , but are not limited to , a touchscreen , accelerom 
eters , gyroscopes , pressure sensors , biometric sensors , tem 
perature sensors , humidity sensors , and ambient light sen 
sors . The computing device 1020 can use the sensors to 
determine an absolute position and / or a detected rotation of 
the computing device in the VR space that can then be used 
as input to the VR space . For example , the computing device 
1020 may be incorporated into the VR space as a virtual 
object , such as a controller , a laser pointer , a keyboard , a 
weapon , etc . Positioning of the computing device / virtual 
object by the user when incorporated into the VR space can 
allow the user to position the computing device so as to view 
the virtual object in certain manners in the VR space . For 
example , if the virtual object represents a laser pointer , the 
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user can manipulate the computing device as if it were an 
actual laser pointer . The user can move the computing 
device left and right , up and down , in a circle , etc . , and use 
the device in a similar fashion to using a laser pointer . 
[ 0115 ] In some implementations , one or more input 
devices included on , or connected to , the computing device 
1020 can be used as input to the VR space . The input devices 
can include , but are not limited to , a touchscreen , a key 
board , one or more buttons , a trackpad , a touchpad , a 
pointing device , a mouse , a trackball , a joystick , a camera , 
a microphone , earphones or buds with input functionality , a 
gaming controller , or other connectable input device . A user 
interacting with an input device included on the computing 
device 1020 when the computing device is incorporated into 
the VR space can cause a specific action to occur in the VR 
space . 
[ 0116 ] In some implementations , a touchscreen of the 
computing device 1020 can be rendered as a touchpad in VR 
space . A user can interact with the touchscreen of the 
computing device 1020 . The interactions are rendered , in 
VR headset 1090 for example , as movements on the ren 
dered touchpad in the VR space . The rendered movements 
can control virtual objects in the VR space . 
[ 0117 ] In some implementations , one or more output 
devices included on the computing device 1020 can provide 
output and / or feedback to a user of the VR headset 1090 in 
the VR space . The output and feedback can be visual , 
tactical , or audio . The output and / or feedback can include , 
but is not limited to , vibrations , turning on and off or 
blinking and / or flashing of one or more lights or strobes , 
sounding an alarm , playing a chime , playing a song , and 
playing of an audio file . The output devices can include , but 
are not limited to , vibration motors , vibration coils , piezo 
electric devices , electrostatic devices , light emitting diodes 
( LEDs ) , strobes , and speakers . 
[ 0118 ] In some implementations , the computing device 
1020 may appear as another object in a computer - generated , 
3D environment . Interactions by the user with the comput 
ing device 1020 ( e . g . , rotating , shaking , touching a touch 
screen , swiping a finger across a touchscreen ) can be inter - 
preted as interactions with the object in the VR space . In the 
example of the laser pointer in a VR space , the computing 
device 1020 appears as a virtual laser pointer in the com 
puter - generated , 3D environment . As the user manipulates 
the computing device 1020 , the user in the VR space sees 
movement of the laser pointer . The user receives feedback 
from interactions with the computing device 1020 in the VR 
environment on the computing device 1020 or on the VR 
headset 1090 . 
[ 0119 ] In some implementations , a computing device 1020 
may include a touchscreen . For example , a user can interact 
with the touchscreen in a specific manner that can mimic 
what happens on the touchscreen with what happens in the 
VR space . For example , a user may use a pinching - type 
motion to zoom content displayed on the touchscreen . This 
pinching - type motion on the touchscreen can cause infor 
mation provided in the VR space to be zoomed . In another 
example , the computing device may be rendered as a virtual 
book in a computer - generated , 3D environment . In the VR 
space , the pages of the book can be displayed in the VR 
space and the swiping of a finger of the user across the 
touchscreen can be interpreted as turning / flipping a page of 
the virtual book . As each page is turned / flipped , in addition 

to seeing the page contents change , the user may be provided 
with audio feedback , such as the sound of the turning of a 
page in a book . 
[ 0120 ] In some implementations , one or more input 
devices in addition to the computing device ( e . g . , a mouse , 
a keyboard ) can be rendered in a computer - generated , 3D 
environment . The rendered input devices ( e . g . , the rendered 
mouse , the rendered keyboard ) can be used as rendered in 
the VR space to control objects in the VR space . 
[ 0121 ] Computing device 1000 is intended to represent 
various forms of digital computers and devices , including , 
but not limited to laptops , desktops , workstations , personal 
digital assistants , servers , blade servers , mainframes , and 
other appropriate computers . Computing device 1020 is 
intended to represent various forms of mobile devices , such 
as personal digital assistants , cellular telephones , smart 
phones , and other similar computing devices . The compo 
nents shown here , their connections and relationships , and 
their functions , are meant to be exemplary only , and are not 
meant to limit implementations of the inventions described 
and / or claimed in this document . 
[ 0122 ] FIGS . 11A - 11C include example foveated images 
of a scene , according to some implementations . For 
example , the images may be rendered by implementations of 
the foveated rendering engine 122 . FIG . 11A includes a 
foveated image 1100 , with a fixation point 1102 near the 
center of the image . FIG . 11B includes a foveated image 
1104 , with a fixation point 1106 near the left side of the 
image . FIG . 11C includes a foveated image 1108 , with a 
fixation point 1110 near the right side of the image . 
[ 0123 ] FIGS . 12A - 12D include example foveated images 
of a scene , according to some implementations . For 
example , the images may be rendered by implementations of 
the foveated rendering engine 122 . FIG . 12A includes a 
foveated image 1200 , with a fixation point 1202 near the 
center of the image . FIG . 12B includes a foveated image 
1204 , with a fixation point 1206 near the left side of the 
image . FIG . 12C includes a foveated image 1208 , with a 
fixation point 1210 near the lower , left side of the image . 
FIG . 12D includes a foveated image 1212 , with a fixation 
point 1214 near the lower , left side of the image . 
10124 ] The images shown in FIGS . 11A - 11C and 12A 
12D can be generated from static images , dynamically 
generated images , frames from videos , or as part of a 
sequence of images generated within a VR environment . 
[ 0125 ] A number of embodiments have been described . 
Nevertheless , it will be understood that various modifica 
tions may be made without departing from the spirit and 
scope of the specification . 
[ 0126 ] In addition , the logic flows depicted in the figures 
do not require the specific shown , or sequential order , to 
achieve desirable results . In addition , other steps may be 
provided , or steps may be eliminated , from the described 
flows , and other components may be added to , or removed 
from , the described systems . Accordingly , other embodi 
ments are within the scope of the following claims . 
101271 . While certain features of the described implemen 
tations have been illustrated as described herein , many 
modifications , substitutions , changes and equivalents will 
now occur to those skilled in the art . It is , therefore , to be 
understood that the appended claims are intended to cover 
all such modifications and changes as fall within the scope 
of the implementations . It should be understood that they 
have been presented by way of example only , not limitation , 
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and various changes in form and details may be made . Any 
portion of the apparatus and / or methods described herein 
may be combined in any combination , except mutually 
exclusive combinations . The implementations described 
herein can include various combinations and / or sub - combi 
nations of the functions , components and / or features of the 
different implementations described . 
[ 0128 ] In the following some examples are given . 

EXAMPLE 11 
[ 0139 ] The method of example 10 , wherein applying a 
nonlinear function to the positions of the vertices includes 
modifying a position of each vertex of the vertices based on 
a square root of a distance from each vertex to a fixation 
point . 

EXAMPLE 12 
EXAMPLE 1 [ 0140 ] The method of example 10 , wherein applying a 

nonlinear function to the positions of the vertices includes 
applying logarithmic or log - polar mapping to the vertices . [ 0129 ] A method comprising : warping a 3D scene based 

on a fixation point ; rendering the warped 3D scene to 
generate a first image ; and unwarping the first image to 
generate a second image . EXAMPLE 13 

EXAMPLE 2 

[ 0130 ] The method of example 1 , wherein the first image 
has fewer pixels than the second image . 

[ 0141 ] The method of example 10 , wherein transforming 
the vertices includes : projecting each of the vertices to a 
viewport ; projecting the fixation point to the viewport ; 
transforming the coordinates of the projected vertices based 
on distances between the projected vertices and the pro 
jected fixation point ; and reprojecting the transformed ver 
tices into the 3D scene . EXAMPLE 3 

[ 0131 ] The method of example 2 , wherein the first image 
has no more than a quarter of the pixels as the second image . EXAMPLE 14 

EXAMPLE 4 
[ 0132 ] The method according to any preceding example , 
wherein warping the 3D scene includes warping the scene 
using a nonlinear function of distance from the fixation 
point . 

[ 0142 ] The method according to any preceding example , 
wherein warping the 3D scene based on the fixation point 
includes using a warping function based on vertical distance 
from the fixation point and horizontal distance from the 
fixation point so that the 3D scene is warped to a different 
degree in the horizontal dimension than the vertical dimen 
sion . 

EXAMPLE 5 
EXAMPLE 15 [ 0133 ] The method according to any preceding example , 

wherein the second image is a frame from a video . 

EXAMPLE 6 

[ 0143 ] The method according to any preceding example , 
wherein warping the 3D scene based on the fixation point 
includes using an asymmetrical warping function that warps 
the 3D scene by a different amount on one side of the 
fixation point than on the other side of the fixation point . [ 0134 ] The method according to any preceding example , 

wherein warping the 3D scene includes altering the 3D 
scene in a non - uniform manner . EXAMPLE 16 

EXAMPLE 7 

[ 0135 ] The method of example 6 , wherein altering the 3D 
scene in the non - uniform manner includes altering different 
portions of the 3D scene by different amounts . 

[ 0144 ] The method according to any preceding example , 
wherein rendering the warped 3D scene includes calculating 
error correction values for pixels of the first image based on 
estimating distortion of triangle edges during warping . 

EXAMPLE 8 EXAMPLE 17 

10136 ) . The method of example 6 , wherein altering the 3D 
scene in the non - uniform manner includes altering different 
portions of the 3D scene in different directions . 

( 0145 ] The method of example 16 , wherein unwarping the 
first image includes applying the error correction values 
while generating pixels of the second image . 

EXAMPLE 9 EXAMPLE 18 
[ 0137 ] The method according to any preceding example , 
wherein warping the 3D scene includes transforming verti 
ces of the 3D scene to an intermediary compressed space . 

[ 0146 ] The method according to any preceding example , 
wherein unwarping the first image to generate a second 
image includes using bilinear filtering in a foveal region of 
the second image . 

EXAMPLE 10 
EXAMPLE 19 [ 0138 ] The method of example 9 , wherein transforming 

the vertices to an intermediary compressed space includes 
applying a nonlinear function to positions of the vertices . 

[ 0147 ] The method according to any preceding example , 
further comprising determining the fixation point . 
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EXAMPLE 20 
[ 0148 ] The method of example 19 , wherein the determin 
ing the fixation point includes determining the fixation point 
based on tracking the position of a user ' s eye . 

a head - mounted display device ; determine a fixation point 
based on the pupil location ; warp a 3D scene based on the 
fixation point ; render the warped 3D scene to generate a first 
image ; unwarp the first image to generate a second image ; 
and cause the head - mounted display device to display the 
second image . EXAMPLE 21 

[ 0149 ] The method of example 19 or 20 , wherein the 
determining the fixation point includes determining the 
fixation point based on properties of a lens of an HMD . 

EXAMPLE 22 
[ 0150 ] A system comprising : at least one processor ; and 
memory storing instructions that , when executed by the at 
least one processor , cause the system to : warp a 3D scene 
based on a fixation point ; render the warped 3D scene to 
generate a first image ; and unwarp the first image to generate 
a second image . 

EXAMPLE 29 
[ 0157 ] The non - transitory computer - readable storage 
medium of example 28 , wherein the instructions configured 
to cause the computing system to warp the 3D scene based 
on the fixation point include instructions that cause the 
computing system to : project vertices of the 3D scene to a 
screen coordinate ; project the fixation point to a screen 
coordinate ; transform the coordinates of the projected ver 
tices based on distances between the projected vertices and 
the projected fixation point ; and reproject the transformed 
vertices into the 3D scene . 

EXAMPLE 23 
[ 0151 ] The system of example 22 , further including a 
graphics processing unit ( GPU ) , wherein the instructions 
that cause the system to warp the 3D scene based on the 
fixation point include instructions that cause the system to 
transform the 3D scene into an intermediary compressed 
space using the GPU . 

EXAMPLE 30 
10158 ] . The non - transitory computer - readable storage 
medium of example 29 , wherein the instructions configured 
to cause the computing system to apply a logarithmic or 
log - polar mapping to the projected vertices . 

EXAMPLE 24 
[ 0152 ] The system of example 23 , wherein the instructions 
that cause the system to warp the 3D scene based on the 
fixation point include instructions that cause the GPU to 
tessellate at least a portion of the 3D scene . 

EXAMPLE 31 
[ 0159 ] The non - transitory computer - readable storage 
medium according to any of the examples 28 to 30 , wherein 
the 3D scene is from a sequence of 3D scenes , and the 
instructions further cause the computing system to : tempo 
rally alias portions of the second image based on distance 
from the fixation point . 
What is claimed is : 
1 . A method comprising : 
warping a 3D scene based on a fixation point ; 
rendering the warped 3D scene to generate a first image ; 

EXAMPLE 25 
[ 0153 ] The system of example 23 , wherein the instructions 
that cause the system to render the warped 3D scene to 
generate a first image include instructions that cause the 
GPU to apply multi - sample anti - aliasing . 

and 

EXAMPLE 26 
[ 0154 ] The system according to any of the examples 22 to 
25 , further comprising a head - mounted display device that 
includes at least one lens , wherein the fixation point corre 
sponds to a portion of the lens having higher acuity than 
other portions of the lens . 

EXAMPLE 27 
[ 0155 ] The system according to any of the examples 22 to 
26 , further comprising a head - mounted display device and a 
camera , wherein the memory is further storing instructions 
that , when executed by the at least one processor , cause the 
system to : determine a position of a pupil of a wearer of the 
head - mounted display device based on an image captured by 
the camera ; and determine the fixation point based on the 
position of the pupil . 

unwarping the first image to generate a second image . 
2 . The method of claim 1 , wherein the first image has 

fewer pixels than the second image . 
3 . The method of claim 2 , wherein the first image has no 

more than a quarter of the pixels as the second image . 
4 . The method of claim 1 , wherein warping the 3D scene 

includes transforming vertices of the 3D scene to an inter 
mediary compressed space . 

5 . The method of claim 4 , wherein transforming the 
vertices to an intermediary compressed space includes 
applying a nonlinear function to positions of the vertices . 

6 . The method of claim 5 , wherein applying a nonlinear 
function to the positions of the vertices includes modifying 
a position of each vertex of the vertices based on a square 
root of a distance from each vertex to a fixation point . 

7 . The method of claim 5 , wherein applying a nonlinear 
function to the positions of the vertices includes applying 
log - polar mapping to the vertices . 

8 . The method of claim 5 , wherein transforming the 
vertices includes : 

projecting each of the vertices to a viewport ; 
projecting the fixation point to the viewport ; 
transforming the coordinates of the projected vertices 

based on distances between the projected vertices and 
the projected fixation point ; and 

reprojecting the transformed vertices into the 3D scene . 

EXAMPLE 28 
[ 0156 ] A non - transitory computer - readable storage 
medium comprising instructions stored thereon that , when 
executed by at least one processor , cause a computing 
system to at least : determine a pupil location of a wearer of 
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9 . The method of claim 1 , wherein rendering the warped 
3D scene includes calculating error correction values for 
pixels of the first image based on estimating distortion of 
triangle edges during warping . 

10 . The method of claim 9 , wherein unwarping the first 
image includes applying the error correction values while 
generating pixels of the second image . 

11 . The method of claim 1 , wherein unwarping the first 
image to generate a second image includes using bilinear 
filtering in a foveal region of the second image . 

12 . The method of claim 1 , further comprising determin 
ing the fixation point . 

13 . The method of claim 12 , wherein the determining the 
fixation point includes determining the fixation point based 
on tracking the position of a user ' s eye . 

14 . The method of claim 12 , wherein the determining the 
fixation point includes determining the fixation point based 
on properties of a lens of an HMD . 

15 . A system comprising : 
at least one processor ; and 
memory storing instructions that , when executed by the at 

least one processor , cause the system to : 
warp a 3D scene based on a fixation point ; 
render the warped 3D scene to generate a first image ; and 
unwarp the first image to generate a second image . 
16 . The system of claim 15 , further including a graphics 

processing unit ( GPU ) , wherein the instructions that cause 
the system to warp the 3D scene based on the fixation point 
include instructions that cause the system to transform the 
3D scene into an intermediary compressed space using the 
GPU . 

17 . The system of claim 16 , wherein the instructions that 
cause the system to warp the 3D scene based on the fixation 
point include instructions that cause the GPU to tessellate at 
least a portion of the 3D scene . 

18 . The system of claim 16 , wherein the instructions that 
cause the system to render the warped 3D scene to generate 
a first image include instructions that cause the GPU to apply 
multi - sample anti - aliasing . 

19 . The system of claim 15 , further comprising a head 
mounted display device that includes at least one lens , 
wherein the fixation point corresponds to a portion of the 
lens having higher acuity than other portions of the lens . 

20 . The system of claim 15 , further comprising a head 
mounted display device and a camera , wherein the memory 
is further storing instructions that , when executed by the at 
least one processor , cause the system to : 

determine a position of a pupil of a wearer of the 
head - mounted display device based on an image cap 
tured by the camera , and 

determine the fixation point based on the position of the 
pupil . 

21 . A non - transitory computer - readable storage medium 
comprising instructions stored thereon that , when executed 
by at least one processor , cause a computing system to at 
least : 

determine a pupil location of a wearer of a head - mounted 
display device ; 

determine a fixation point based on the pupil location ; 
warp a 3D scene based on the fixation point ; 
render the warped 3D scene to generate a first image ; 
unwarp the first image to generate a second image ; and 
cause the head - mounted display device to display the 

second image . 
22 . The non - transitory computer - readable storage 

medium of claim 21 , wherein the instructions configured to 
cause the computing system to warp the 3D scene based on 
the fixation point include instructions that cause the com 
puting system to : 

project vertices of the 3D scene to a screen coordinate ; 
project the fixation point to a screen coordinate ; 
transform the coordinates of the projected vertices based 

on distances between the projected vertices and the 
projected fixation point ; and 

reproject the transformed vertices into the 3D scene . 
23 . The non - transitory computer - readable storage 

medium of claim 22 , wherein the instructions configured to 
cause the computing system to apply a log - polar mapping to 
the projected vertices . 

24 . The non - transitory computer - readable storage 
medium of claim 21 , wherein the 3D scene is from a 
sequence of 3D scenes , and the instructions further cause the 
computing system to : temporally alias portions of the second 
image based on distance from the fixation point . 


