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The object-color solid

Alexander D. Logvinenko

Brian Funt

Pouya Bastani

An algorithm is described that for the first time
accurately computes the true object-color solid.
Previous methods have computed only approximations
to the true object-color solid since they have been based
on Schrodinger’s (partially incorrect) assumption that
optimal reflectances contain only two transitions. There
are, however, three- and four-transition optimal
reflectances and these additional reflectances lead to a
larger object-color solid than one based on
two-transition reflectances alone. The differences
between the approximate and true object-color solids
have now been quantified. It is further shown
that—despite there being optimal reflectances with up
to four transitions—the object-color solid can,
nonetheless, be parametrized in terms of only two
variables. Finally, a method for solving a previously
unsolved problem that Schrodinger posed a century ago
is presented. Namely, for any given direction in color
space, the algorithm determines the corresponding
optimal reflectance.

Light entering the eye invokes a triplet of the cone
excitations, and the set of cone excitation triplets
arising in response to all possible lights forms a cone
(referred to as the color cone) in the cone excitation
space (Wyszecki & Stiles, 1982; Logvinenko, 2015).
A reflecting object is only visible due to the light
reflected from it. Under a single illuminant, the set
of cone response triplets occurring in response to
the lights reflected by all possible objects forms a
volume inscribed within the color cone. This volume
is commonly referred to as the object-color solid
(Wyszecki & Stiles, 1982).

Although pictures of the object-color solid can be
found in many textbooks (Wyszecki & Stiles, 1982;
Maximov, 1984; Koenderink, 2010) they do not
represent the object-color solid entirely correctly. As

Glasgow Caledonian University, Glasgow, UK

School of Computing Science, Simon Fraser University,

X KX

Vancouver, British Columbia, Canada

School of Computing Science, Simon Fraser University, DY

Vancouver, British Columbia, Canada

a surface in the three-dimensional space, plotting the
object-color-solid boundary requires finding, for each
direction (a ray from the origin) in the color cone, where
it intersects the object-color-solid boundary. To do this,
one needs to determine the spectral reflectance function
that maps to this boundary point. Such a reflectance is
usually referred to as an optimal reflectance. Solving
for the optimal reflectance corresponding to a given
direction is a long-standing and unsolved problem for
which a solution is described in this article.

It should be emphasized that we propose an
algorithm for finding an exact solution (i.e., a solution
with an arbitrary predetermined accuracy) not simply
an approximation. More specifically, we show how to
calculate the spectral reflectance function mapping
to an arbitrary boundary point. Such a solution is
fundamentally unattainable if instead of true functions
(e.g., spectral reflectance functions, cone sensitivity
functions) sampling vectors are used because in that
case, the solution will also be a sampling vector, not a
function.

Of course, sampling vectors are typically used in
colorimetry. However, it is not obvious in what sense
a finite-dimensional vector can be interpreted as a
reflectance, which is actually an infinite-dimensional
vector (i.e., a function). Interpreted as a sampled
reflectance, the natural question arises as to what values
the reflectance function takes between the samples.

By computing the scalar product of each sampled
cone sensitivity function with a large number of sampled
spectral reflection functions, one can get a volume in the
color cone, but it will differ to some extent from the true
object-color solid. An important question is whether it
can be considered to be an approximation of the true
object-color solid. It will be a true approximation if, with
an unlimited increase in the number of samples, this ap-
proximating volume tends to the true object-color solid
in the limit. However, the shape of the true object-color
solid has remained unknown. Hence, there is a need to
establish its true shape as is done elsewhere in this article.
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It is regrettable that the importance of the problem of
determining optimal spectral reflectance functions has
been underestimated for so long; without solving it, it is
impossible to establish the true object-color solid. This
is a result of the unfortunate tradition of taking on faith
Schrédinger’s mistaken claim that the optimal spectral
reflectance functions comprise only the two-transition
step functions. However, not every two-transition step
function serves as an optimal reflectance function, and
there are step functions with more than two transitions
that are optimal reflectance functions (Logvinenko &
Levin, 2023). As a consequence, plotting a map of all
the two-transition step functions in the cone excitation
space, as many authors have done (e.g., Wyszecki &
Stiles, 1982; Maximov, 1984; Koenderink, 2010) does
not result in the true object-color solid but, instead, a
somewhat smaller volume inside the true object-color
solid. This smaller volume will be referred to as a
two-transition approximation of the true object-color
solid.

In this article, using some theoretical results
formulated earlier (Logvinenko & Levin, 2023), we first
describe a method for computing the true object-color
solid and then evaluate the difference between it
and its two-transition approximation. Although it is
reassuring this difference in the cone-excitation space
turns out to be rather small, it does not justify ignoring
the issue because it is impossible to know how small
the difference is going to be until we know what the
theoretical object-color solid truly is. Hence, the answer
is of interest both from a theoretical perspective and a
practical perspective.

In what follows, we assume that there are three
classes of sensors (e.g., the cone photoreceptors or
camera sensors) and that the response of the i’ sensor
class to a surface of spectral reflectance x(2) illuminated
by a light of spectral power distribution /(1) can be
expressed as

Amax
0 (x) = f XWIG)s (ydr, (1)

Amin

where s5;()) is the spectral sensitivity (responsivity)
function of the i sensor, and [Amin , Amax ] iS the visible
spectrum interval. In all our calculations we use Ay,
= 380 nm and Anux = 780 nm. The triplet (¢1(x),
©2(x), p3(x)) will be referred to as the color signal.
The three-dimensional space endowed with Cartesian
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coordinates (¢1, @2, ¢3) will be referred to as the color
signal space. As far as human vision is concerned, it
is synonymous with the cone excitation space (Smith
& Pokorny, 1996). The object-color solid is the set

of color signals obtained from all possible spectral
reflectance functions x(1) under a given illuminant
I()) (Schrodinger, 1920; Luther, 1927; Nyberg, 1928;
Wyszecki & Stiles, 1982; Maximov, 1984; Koenderink
& van Doorn, 2003; Logvinenko & Levin, 2023).

From the mathematical point of view, the object-
color solid is the image, ® (X), of the map ® : X —R?,
where ® = (¢1, @2, ¢3), X is the set of all the spectral
reflectance functions (i.e., 0 < x(1) < 1), and R is the
arithmetic three-dimensional vector space.

The set @ (X)) is a convex body (i.e., a closed convex
set with nonempty interior and without “holes” inside)
(see (Logvinenko & Levin, 2023) for proof). Therefore,
the object-color solid @ (X) is fully specified by its
boundary surface, denoted 9@ (X).

The spectral reflectance functions that map to
the object-color-solid boundary are called optimal
(sometimes referred to as optimal stimuli) (Wyszecki &
Stiles, 1982). The set of all optimal reflectances, that
is, the set of spectral reflectance functions x,,;, such
that ® (x,,) € 0P (X), (written as X,,), completely
specifies d® (X') and hence ® (X). Therefore, the
problem of specifying the object-color solid reduces to
the problem of specifying &,;.

Logvinenko and Levin (2023) put forth a general
approach, which we adopt here, for determining the
optimal reflectances for human vision. Briefly, this
approach boils down to the following. Let S denote
the object-color solid and 9.5 its boundary in the color
signal space (i.e., S = ® (X), 95 = 09 (X)). Denote the
coordinates of the color signal space by z;, z;, and z3.
As established in convex analysis, a closed convex set S
in R? can be represented as an intersection of closed
half-spaces containing this set (Rockafellar, 1970).
Moreover, in such a representation one can consider
only so-called supporting half-spaces.

Specifically, recall that a plane divides R? into
half-spaces, and a half-space is closed if the dividing
plane belongs to it. Define a supporting plane H of S
as one such that: 1) S fully belongs to one of the two
closed half-spaces determined by H (which is called the
supporting half-space); and ii) S has at least one point,
z, on plane H. If there is just one plane H supporting
S at point z then H is said to be tangent to S at point
z. The corresponding half-spaces are called tangent
half-spaces. It has been proven that a closed convex
set S'in R? can be represented by the intersection of
the supporting (or even only tangent) half-spaces of S
(Rockafellar, 1970).

Analytically, a supporting plane can be expressed as
a level set of a particular linear functional on R3. The
linear functional ¢: R? — R is a supporting functional
of S at the point z° if ¢(z) < ¢(2°) for every zin S. The
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supporting plane H to S at z° is, then, expressed as
H = ¢~ '(¢(z°)). That is, H is the level set of ¢ for the
number ¢(z°).

Any continuous linear functional ¢ on the color
signal space achieves its maximum on S at some point
2" (for S is a closed and bounded subset in R?):

max (¢ (1)} =¢ (). (2

Clearly, this point cannot lie inside S and must belong
to the boundary 0S. In other words, the supporting
plane determined by ¢ touches the boundary of S at
7°. This suggests how boundary points of S can be
revealed. We need to look for the maxima of all possible
linear functionals on the object-color solid S. As is
well-known, a linear functional on R? is determined by
three real numbers. We will assume that at least one of
these numbers is not zero. Formally, any k1, k, and k3
specify a linear functional ¢, the value of which for a
vector z = (z1, 2, z3) €R¥ is given as

¢ (z) =kizy + kozo + k3zz. (3)

Consider a linear functional ¢, (z) determined by
some given vector k = (k1, k», k3) and let us find a point
2’ = (2}, 25, 23) on the object-color-solid boundary 9.
at which ¢, (z) is maximal. As each z; (i = 1, 2, 3) is the
value of ¢; for some x (1) € X, linear functional ¢, (z)
induces a corresponding linear functional on X:

P (x (1)) = ki1 (x (1)) + kaga (x (1)) + kzes (x ()»))(,4)

which in turn can be rewritten as

Amax
b (x (1)) = / XWGWdh (5)

Amin
with
G(A) =kl (M) s1 (M) + kol (X)) s2 (L) + ksl (A)s3(X).
(6)

It is clear that every spectral reflectance function
x(1) that maps to z° (i.e., ®(x(1)) = z°) must maximize
the value of integral (Equation 5). Therefore, the
problem of finding the boundary point z° amounts
to finding spectral reflectance functions in X" that
maximize the integral in (Equation 5).

Let B, = {}: G(A) > 0}, By = {A: G()) =0}, and
B_ = {}: G(A) < 0}. It is clear that to maximize
(Equation 5), x(A) must be the maximal value (i.e., 1)
for all A € B, , and the minimal value (i.e., 0) for all A €
B_. Because the values of x(A) for A € By do not affect
the integral, x(A) can take any arbitrary value there. In
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particular, for any subset B = B, UB’, such that B'CB,,
the function

1, if XeB;
XB()‘):{O, it A¢B,

willobe an optimal reflectance mapping to z° (i.e., ®(x p)
=1z7’).

In general, there can be many spectral reflectance
functions mapping to a given boundary point z°. For
example, included in By is any subset of wavelengths
A C[Amin » Amax ] for which the illuminant /(A) = 0. As
a consequence, any spectral reflectance function that
takes 1 on B, arbitrary values on A’, and 0 at the
remaining wavelengths will be an optimal reflectance.
In fact, there will be an infinite number of optimal
reflectances corresponding to the same color signal z°.
Moreover, because they produce the same color signal
7", they all will be metameric, which means there will be
metamerism on the object-color-solid boundary. If we
consider, however, only everywhere positive illuminants
(i.e., I(A) > 0 for all A in [Amin, Amax]) the situation
becomes more interesting. In this case, function G())
and the following function:

g(A) =kisi (A) + kasy (A) + kzs3 (1) (7)

lead to the same B, , By, and B_. Indeed, multiplying
g(}) by any everywhere positive function of wavelength
cannot change the roots, which means that B (thus
B, and B_) will remain the same. Therefore, for any
everywhere positive illuminant, the set of optimal
spectral reflectance functions will be the same for

the given spectral sensitivity functions as it will also
be for any pre-receptor filter (e.g., atmosphere) with
everywhere positive spectral transmittance. In other
words, changing the illuminant does not affect the
optimal reflectance set unless this change fully filters
out some interval of the spectrum. Hence, for all
such illuminants and viewing conditions, the optimal
reflectance set X, is solely determined by the spectral
sensitivity functions.

Thus, we now have a general method for generating
optimal reflectances. Because each vector k generates
one (or more) optimal reflectances for some boundary
point determined by k, it is intuitively clear that running
through all possible vectors k will, in principle, lead to
the whole set of optimal reflectances X, (The formal
proof can be found in Logvinenko & Levin, 2023).

In terms of a geometrical interpretation of the
sets B, By and B_, consider the spectral curve in
color signal space defined by the given set of spectral
sensitivity functions:

CTO)=(@ (6 (m—2)), 0 (e—n)), 038 —1r))
= (S] ()\') , $2 ()") , 83 (}\'))
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where 8§(u — A) stands for the Dirac delta function
centered at wavelength . For the purpose of computing
the spectral curve, we resort to the common practice
of representing monochromatic lights by Dirac delta
functions; however, in the rest of the article, such
illuminants are excluded from the theory.

Given three real numbers k1, k», and k3, the following
equation

kizi + kozo + kszz =0 (8)

determines a plane in color signal space through the
origin. As (s1(1), s2(2), s3(1)) is a point on the spectral
curve corresponding to wavelength X, the equation

g) =kisi (M) +kasa (M) +k3s3 () =0 (9)

can be considered as the condition that it belong to the
plane determined by Equation 8. Hence, all the roots
of Equation 9 are exactly the points on the spectral
curve that belong to that plane, in other words, the
points where the plane intersects the spectral curve.
By, therefore, consists of exactly the set of roots of
Equation 9 as well. The crucial result of the above
derivation is: If the spectral sensitivity functions are
continuous, as is the case for human vision, then the
zero-crossings (by a zero-crossing we mean a root in
the vicinity of which the function changes sign) of
the function g(1) in Equation 7 determine the optimal
reflectance generated by the given k. See The geometry
of the object-color solid for more details.

Obviously, not every plane through the origin

intersects the spectral curve el (1). For example, for
everywhere positive spectral sensitivity functions, as is
again the case for human vision, and k > 0 (i.e., a vector
k with positive components k1, k», and k3) the function
g(*) in Equation 7 lies above the horizontal axis and
yields no roots. All the planes determined by k > 0 bring
about the same optimal stimulus; namely, the spectral
reflectance function that is identically unity (denoted
as x(A) = 1) taking the value 1 for every wavelength in
[Amin » Amax J- It will be referred to as the perfect reflector
xw. The corresponding point on the object-color-solid
boundary, ®(xy/) will be called the white pole of the
object-color solid. Likewise, the planes determined by
k < 0 (i.e., k with negative components k1, k>, and k3)
all generate the optimal reflectance taking 0 for every A
€ [Amin» Amax ] (x(A) = 0). It will be referred to as the
perfect absorber xp. ®(xp) will be called the black pole.
In fact, for any k, if x,,,(1) is an optimal reflectance
corresponding to ¢, then the spectral reflectance
function 1 — x,,,(1) will be an optimal stimulus
corresponding to ¢_,. The optimal stimuli x,,,(1)
and 1 — x,,,(A) will be referred to as complementary.
Complementary stimuli are mapped to two points on
the object-color-solid boundary that are symmetrical
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with respect to the center of symmetry of the
object-color solid. The spectral reflectance function
identically equal to 0.5 (i.e., x(1) = 0.5) will be called
flat gray and denoted xq 5. The color signal produced by
flat gray, ®(xos), is located at the center of symmetry
of the object-color solid.

It is useful to describe the entire set of parameters k
that generate one and the same optimal reflectance xp
(respectively, x;7) mapping to the black (respectively,
white) pole. Recall that the color signals induced by all
possible (including monochromatic) lights form what
is usually called the color cone. The color cone is the
convex hull of the conical surface through the spectral
curve (Logvinenko & Levin, 2023; Corollary 4.1). It is
a closed cone in R?. Consider some k and the plane
determined by it. If the color cone remains entirely on
one side of this plane then the spectral curve does not
cross this plane, although it may touch it at some points.
In other words, Equation 9 can have roots but not
zero-crossings. Therefore, such a k generates either the
perfect absorber, K3, or the perfect reflector, Ky.. The
condition that the color cone is completely contained in
the closed half-space determined by k can be expressed
as either ¢, (z) < 0 or ¢ (z) > 0 for any z belonging to
the color cone. For any k such that ¢, (z) < 0 function
g(}) in Equation 7 will be everywhere nonpositive;
hence, B_UB, will be equal to [Ayin, Amax ], and thus the
perfect absorber will be the optimal stimulus induced
by k.
Formally, the set of all ks generating the perfect
absorber, K, can be represented as

Ky=1lkeR :¢(z) <0,Vze Kc}, (10)

where K¢ is the color cone. In convex analysis, Kp is
called the polar cone to the cone K¢ (Rockafellar, 1970).

By symmetry, we obtain a similar expression for the
set of all ks generating the perfect reflector, Ky

Ky =lkeR :¢x(z) >0,Vze Kc}. (11)

As one can see, Ky = —Kp, that is, K is equal to
the negative of the polar cone for the color cone. The
polar cone for the color cone is closed and convex. Its
boundary is composed of the functionals supporting
the color cone. Geometrically, it is fully characterized
by the supporting planes of the color cone.

A supporting plane of the color cone at its vertex is,
in fact, a supporting plane of the object-color solid at its
black pole as well, and as a result we have a singularity
there (Logvinenko & Levin, 2023; Proposition 14.2).
Indeed, the vertex of the object-color solid at the origin
is rather sharp. By symmetry, the white point is also a
singular point of the object-color solid, the singularity
being of the same type as for the black pole.
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In this section, we apply the theory outlined to
derive the optimal spectral reflectance functions
from the spectral sensitivity functions for the human
photoreceptors. Following established practice (Judd &
Wyszecki, 1975; Smith & Pokorny, 2003; Logvinenko
& Levin, 2023), the cone photoreceptor sensitivity
functions s;(1) will be factored as

siM=1tR)pi(r), (12)

where #(1) is the transmittance spectrum of the ocular
media (e.g., the lens, macular pigment, etc.), and p;(A)
is the spectral absorptance of the i photopigment (i =
1, 2, 3). As the transmittance spectrum of the ocular
media is positive over [Amin, Amax] (1-€., (X)) > 0 in
Equation 12), Equation 9 is equivalent to

fup (3 25) + kap (12 1) + esp (12 27) =0, (13

where p(A; A™#*) is the cone-photopigment absorptance
spectrum as defined below in Equation 14, and AT,
AT, and AT are the peak absorbance wavelengths
for the short (S), middle (M), and long (L) wavelength
sensitive cones, respectively.

The absorptance spectra of the cone photopigments
are known and well documented (Dartnall, Bowmaker,
& Mollon, 1983; Lamb, 1999; Govardovskii, Fyhrquist,
Reuter, Kuzmin, & Donner, 2000). They are commonly
described as:

P0G A = 1 — 107 P CRT/H 1 (14)

where G(A™#*/1) is the normalized photopigment
absorptivity spectrum, Dy,x is the peak photopigment
absorbance, and A™** is the photopigment peak
absorbance wavelength. In the present report, we adopt
the model of photopigment optical density spectrum
put forward by Govardovskii et al. (2000) using Dpax
= 0.3, and AT*™ =430, A} = 530, and A7** 560 nm
for the S-, M-, and L-cones respectively. These values
are in line with the electrophysiological studies of the
cones in the macaque and human retina (Schnapf &
Schneewels, 1999). The spectral sensitivities of the three
cone photopigments calculated using the Govardovskii
model with these values are shown in Figure 1. It is
worth noting that the resulting spectral sensitivities are
not very sensitive to the precise parameters used. The
color signal space based on these cone photopigment
absorptance spectra will be further referred to as SML
space, and the coordinates in it as SML coordinates.

The function p(A; A™**) in Equation 14 is smooth,
and its shape is such that Equation 13 has a finite
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Normalized Absorbance

400 500 600 700
Wavelength (nm)

Figure 1. Cone photopigment spectral absorptance curves,
scaled to have unit maxima, for the photopigments with peak
sensitivity A™® at the wavelengths of 430, 530, and 560 nm.

number of roots. As a consequence, the optimal spectral
reflectance functions are elementary step functions.
Following the terminology adopted by previous authors
(Maximov, 1984; Logvinenko & Levin, 2023), an
elementary step function of degree 1 and type T1 (written
as x1(A; A1)) is defined as a function of the form

0, if x<2Aq,
woon={0 I8 as)

An elementary step function of degree 1 and type T2 is
defined as

L =x1 (A 41). (16)

Generally, functions of the form

X (A bt h) = ) (D) (i ag), (A7)

i=1
and

I —xm (A AL A, (18)

where Apin < A1 < A2 < ... < Ay < Amax, Will be called
elementary step functions of degree m and type T1
and T2 respectively, with Aq,..., A,, being referred to
as transition wavelengths. For the sake of generality,
the perfect reflector and the perfect absorber will be
referred to as elementary step functions of degree 0 of
type T1 and type T2, respectively.
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Elementary step functions with the same transition
wavelengths, but of different types, are complementary
and map to the opposite ends of the interval through
the center of the object color solid. It follows from
the theory presented in Introduction that if A; <,...,
<M, are the only zero-crossings of the function in
Equation 13 (for ki, k>, and k3 at least one of which is
not zero) then both the elementary step functions with
transition wavelengths A,..., A, (namely, x,,,(A; A1,...,
Am)and 1 — x,,(A; Aq,..., A,,)) will be the corresponding
optimal spectral reflectance functions.

Nearly a century ago, Schrodinger claimed that for
human vision the optimal spectral reflectance functions
1) do not depend on illuminant, ii) take only values one
or zero, and iii) are elementary step functions of degree
m < 3. However, as we can see now, all three claims are
not correct in general. In particular, all the claims fail
if By = {A: G(A) = 0} (where G as in Equation 6) is
an interval of wavelengths. Still, for a strictly positive
illuminant and linearly independent spectral sensitivity
functions, the first two claims do hold; although strictly
speaking, the second claim is also incorrect because at
the wavelengths where a zero-crossing occurs, one can
assign any value to the optimal reflectance. However, it
seems sensible not to distinguish reflectance functions
that differ at only a finite number of wavelengths.

Although the third claim that optimal reflectances
do not have more than two wavelength transitions has
become a dogma of color science (e.g., MacAdam,
1935; Wyszecki & Stiles, 1982; Koenderink, 2010),
it is, nonetheless, not true for the human spectral
sensitivity functions, as has been pointed out by some
previous authors (West & Brill, 1983; Maximov, 1984;
Logvinenko, 2009). Indeed, Equation 13 will have at
most two solutions in the visible spectrum interval
[Amin » Amax ] Only if for every set of distinct A, A», A3 in
[Amin » Amax ] the following condition holds (Logvinenko
and Levin (2023) p. 362):

p (i A5™) (223 25™) (233 25™)
PO M) p (A AR p(Ras )| # 0, (19)
p (i 27™)  p (R a0™) (a3 A7)

where |A4| stands for the determinant of a matrix
A. In fact, Schrodinger implicitly assumed that this
condition (Equation 19) to be satisfied for human
vision. If it were to be satisfied then the two-transition
assumption would be correct. However, as pointed out
by Maximov as early as 1984, and as shown elsewhere
in this article, condition (Equation 19) is not always
satisfied. In particular, the determinant in Equation 19
for the Govardovskii et al. (2000) absorptance spectra
(Equation 14) is 0 for many wavelength triplets.

The situation becomes clear when viewed in a
chromaticity diagram as shown in Figure 2. Any plane
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through the origin in color signal space is represented
by a straight line in the chromaticity diagram (unless it
is parallel to the chromaticity plane). From the diagram
it would appear that some such lines in the chromaticity
plane could intersect the spectral locus (i.e., the
projection of the spectral curve on the chromaticity
plane) at more than two points. Introducing the
chromaticity coordinates c;(A) = s;(A)/(s1(A) + s2(1)

+ s3(1)) as usual, the spectral locus is then defined as
the curve @ (A) = (c1 (L), c2 (1))). As a result, it is
immediately clear that the two-transition assumption
does not hold.

More specifically, some lines intersecting the hook
in the short-wavelength (left-hand side in the plot) end
of the spectral locus can intersect it more than twice.
Furthermore, although not visible in the diagram,
there are, in fact, places where a line might intersect
the spectral locus at four points. This happens because
the spectral locus bends and eventually self-intersects
in the long-wavelength region. (See Appendix A for
more details.) Let us denote the point of return as
Anax- Admittedly, the value of A] , varies with the
peak absorbance wavelengths A%, AT, and AT
(see Equation 14) (Logvinenko, 2015). The value of
700 nm has been obtained for the peak absorbance
wavelengths 430, 530, and 560 nm used throughout the
article. In other words, the part of the spectral curve
corresponding to wavelengths beyond 700 nm almost,
but not quite, projects onto the branch of the spectral
locus in the chromaticity plane that corresponds to
wavelengths under 700 nm. The red dot in Figure 2
marks the end of the visible spectrum Apn,x = 780 nm,
where it, in fact, almost coincides with the point on the
spectral locus corresponding to A = 664 nm. Therefore,
the segment of the spectral locus corresponding to
the wavelength interval [700, 780] bends back so as
to almost overlap with the segment from [664, 700]
in Figure 2. This means that there are two hooks in
the spectral locus, one at each end of the wavelength
spectrum. As a result, a straight line intersecting one
of the hooks can also make one more intersection
with the spectral locus, thereby indicating that the
optimal elementary reflectance step function will
have 3 wavelength transitions. A line simultaneously
intersecting both hooks will make four intersections
with the spectral locus, indicating a four-transition
optimal reflectance. Thus, contrary to Schrédinger’s
belief, the two-transition assumption is invalid for
human vision.

Note that from Equation 9 it follows that a set of
cone sensitivity functions will induce the same set
of optimal reflectances as any linear (nonsingular)
transformation of them. It is also commonly believed
that the color matching functions are linearly related to
the corresponding cone spectral sensitivity functions
(e.g., Stockman, 2019). Although this belief can
be challenged from the theoretical point of view
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Figure 2. Spectral locus (blue) in the chromaticity diagram. Axes are the chromaticity coordinates. S, M, and L are the responses of the
short, middle and long-wave sensitive cones (i.e., the SML coordinates). The red dot indicates the long wavelength end of the spectral
locus. Straight line (purple) delimits the boundary of possible chromaticities.

(Logvinenko & Levin, 2023), for all practical purposes,
color matching functions can be used to estimate
optimal reflectances to a good first approximation.
Roughly speaking, the optimal reflectances can be
expected to remain practically the same irrespective

of whether they are derived from the color matching
functions, the cone sensitivity functions, or the cone
photopigment spectra (the latter two being equivalent
because the roots of Equation 13 are the same as those
of Equation 9).

However, this is only the case if continuous color
matching functions are used, which has never been the
case. By their very nature, color matching functions can
be only evaluated for some finite number of discrete
wavelengths. Furthermore, because color-matching
experiments are very time consuming, the number
of wavelengths sampled is limited, and has usually
not exceeded 35. Even more important is that these
wavelengths are predetermined and fixed. That is,
the sampling cannot be changed. This alone makes
the color matching functions (as well as the spectral
sensitivity functions) based on such discrete sampling
inappropriate for calculating optimal reflectances.
Indeed, the latter reduces to solving Equation 9, which
only makes sense for s; that are continuous functions.
Therefore, if, as noted elsewhere in this article, optimal
reflectances cannot accurately be determined using only
a discrete sample of the values of the spectral sensitivity
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functions, then it is a fortiori impossible with a discrete
sample of the values of the color matching functions as
well.

Worse still, dealing with a coarse sample of the
color-matching function values, one can come to
incorrect conclusions, even about some qualitative
aspects of the set of optimal reflectances such as the
number of wavelength transitions. For instance, as
West and Brill (1983) previously pointed out, because
the number of transitions in the optimal reflectances
corresponds to the number of intersections a straight
line makes with the spectral locus, the two-transition
assumption, therefore, is equivalent to assuming that the
chromaticity gamut (i.e., the spectral locus completed
with the purple interval) is convex. At first glance, the
chromaticity gamut of the CIE 1931 standard observer
(Figure 3 left) seems to be convex. Nevertheless,
the chromaticity gamut on an extended scale is not
convex. At a finer and extended scale, a residual
short-wavelength hook (see Figure 3, right) is clearly
visible. Although it is not as pronounced as in Figure 2,
it is pronounced enough to rule out the convexity
of the chromaticity gamut. The reason for the small
pronouncedness is that the CIE 1931 color matching
functions (thus the chromaticity gamut in Figure 3) are
based on data collected only for 400 nm to 700 nm.
Furthermore, the step size of 10 nm is too coarse to
observe reliably the presence of the hook. Interestingly,
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Figure 3. Left: CIE 1931 spectral locus (blue). Straight line (purple) delimits the boundary of possible chromaticities. Right: zoomed

view of the short wavelength segment of the spectral locus.

the short-wavelength hook in the chromaticity gamut
based on more recent (and more accurately measured)
color-matching functions, such as those accepted by
the CIE as the new standard (e.g., Stockman, 2019), is
much more distinct than that in Figure 3, and is more
in accordance with the corresponding hook in Figure 2.
One might argue that dealing with a finite-
dimensional vector of sample values of color matching
functions is usually accompanied by some sort of
continuous interpolation (e.g., spline interpolation)
of these values. However, such interpolation does
not ameliorate the problem that solving Equation 9
presents. Consider Figure 3 (right), where the
zigzag-shaped, seemingly continuous, short-wavelength
end of the spectral locus arises as a result of smoothing,
interpolation and extrapolation of the discrete data.
As a consequence, it is easy to see that there are many
straight lines in the chromaticity plane intersecting
this spectral locus at as many as six (possibly more)
points. Needless to say, all these intersections are simply
artifacts of the interpolation of the discrete data.
Admittedly, there are more recent color-matching
functions which are more elegantly approximated with
smooth functions. For example, Stockman and Rider
(2023) provide an approximation of the cone spectral
sensitivities derived from discrete color-matching
data and using Fourier polynomials of the eighth
order. As far as the optimal stimuli are concerned, the
spectral locus based on these approximations looks
consistent with that in Figure 2. However, as the
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authors themselves emphasize, these approximations
are “purely descriptive.” Moreover, they are far from
being unique. Given a finite sample of wavelengths
(e.g., the 31 CIE 1931 data points), there are infinitely
many smooth approximating functions satisfying the
data, each leading to a different chromaticity gamut,
and thus to different sets of optimal reflectances.

Strictly speaking, there can be no objective criterion
for preferring any such set of optimal reflectances over
another, which means that formal approximations of
discrete data from psychophysical experiments averaged
over a sample of subjects (e.g., as done for the CIE
1931 color matching functions) will never suffice. This is
why we use the continuous photopigment absorptance
curves provided by Govardovskii et al. (2000). The
Govardovskii photopigment absorptance functions
are based on a physical model of photon capture that
provides continuous functions (continuous in principle,
not simply continuous extrapolations of discrete
samples) describing each cone type.

To perform our calculations, we had to choose
a particular set of parameters, specifically the peak
absorbance wavelengths. Although these parameters
specify the particular absorptance functions of
one specific observer, we believe they are fairly
representative of human color vision. Generally
speaking, in the future, one should take the average (or
better, the median) value of these parameters for some
sufficiently large sample of human photoreceptors. It
is worth noting that averaging the cone photoreceptor
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sensitivity functions (not to mention the color-matching
functions) will not do, because the averaged cone
photoreceptor sensitivity functions, s(A), will no
longer be represented as a product of the averaged
transmittance spectrum of the ocular media, #(1), and
the averaged spectral absorptance of the photopigment,
p(A), as in Equation 12. As a result, averaging will result
in a contaminated set of optimal reflectances, that is, a
set that no real human observer will actually have.

Because the optimal reflectances map to the object-
color-solid boundary, which is itself homeomorphic to
(i.e., can be bijectively and continuously transformed
into) the surface of a sphere, it is clear that one can
represent the optimal reflectances for trichromatic
vision using only two parameters, even though their
degree will generally exceed two. In particular, the
object-color-solid boundary can be described in
spherical coordinates, which can be used to provide
a two-parameter representation, not only for the
object-color-solid boundary, but also for the optimal
reflectances. The optimal reflectances mapping to
the same color signal can differ at no more than
four wavelengths. To ignore any such difference, one
can agree always to assign O reflectance to these
wavelengths (i.e., to By). This will mean there will be
a one-to-one correspondence between the optimal
stimuli and the points on the object-color-solid
boundary.

Here we consider two approaches to two-
parameterization of the optimal reflectances for the
trichromatic vision: the first is a spherical representation
in the space of k-coefficients involved in Equation 6; the
second is in terms of transition wavelengths.

k-Parameterization

Consider the arithmetic linear space R? with
coordinates ki, k; and k3 (to be referred to as k-space).
Interpreting these coordinates as coefficients in
Equation 6, each k = (k1, k», k3) determines an optimal
spectral reflectance function. Evidently, one can
consider only unit vectors kK,

Ikl = 1. (20)

Equation 20 defines a unit sphere in k-space. Thus,
we have a map of the sphere (Equation 20) onto the
optimal reflectances. From the discussion about the
poles, we already know this map is not bijective (i.e.,
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not one-to-one). The area corresponding to Kz maps to
a single point representing the perfect absorber, as does
the area corresponding to Ky, which maps to a single
point representing the perfect reflector. Denote these
closed areas Ap and Ay, respectively. They are fully
specified by their boundary contours, which are defined
by the intersections of the polar cone, and its negative,
with the unit sphere. These cones can be evaluated as
follows.

As stated the tails of the spectral curve induced
by the spectral sensitivity functions based on the
Govardovskii absorptance spectra bend into the color
cone. Therefore, only a portion of the spectral curve,
not the entire spectral curve, belongs to the color cone
boundary. The wavelength interval corresponding to
this portion, denoted [A . , AL ]. is referred to as the
effective visible spectrum interval. The boundary of the
color cone is formed by the conical surface through
the effective visible spectrum interval along with the
straight interval connecting its ends. These ends were
found to be A/ . =420.8 nm and A, = 700.5 nm.
These values of A/ . and A, , have been obtained for
AT =430, AT™ = 530, and A7** 560 nm. Of course,
a different choice of the peak absorbance wavelengths
will bring about somewhat different values of the ends
of the effective visible spectrum interval (Logvinenko,
2015).

In terms of color signal coordinates z, z;, and z3,
the plane passing through the origin and tangent to the

smooth spectral curve at point el (Xo) is defined by the
following equation:

1 ) zZ3
s1(ho)  s2(20) s3(20)|=0. (21)
51 (ko) 85 (M) 85 (Ro)

Here, s’ (Ao) 1s the derivative of the i’ spectral
sensitivity function at A¢. This tangent plane can be
expressed as in Equation 8 with the coefficients ki, kj,
and k3 determined as

Sp ()‘U) Sq ()‘0)

ki (%) = (=1) s, (ko) 54 (20)

, (22)

where p, g = 1, 2, 3 such that p, ¢ # i.
As k ()L;nin) =k (A;nax) (Logvinenko, 2015), when A
runs over the effective visible spectrum interval, the set
of ks determined by Equations 21 and 22 makes a closed
curve. A conical surface through this curve in k-space
is the boundary of the polar cone. The corresponding
area, Ap, on the unit sphere is colored dark purple in
Figure 4. The area A4y is located symmetrically with
respect to the center, and is indicated by light purple in
Figure 4 (right).
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Figure 4. The unit sphere in k-space shown in two different orientations with the associated number of transitions of the
corresponding optimal reflectance functions plotted in dark/light purple for zero transitions, dark/light gray for one transition,
dark/light blue for two transitions, and dark/light green for three transitions, and dark/light red for four transitions. The dark colors
correspond to type T1, the light colors to type T2. The poles correspond to k = +[1, 1, 1].

Besides the areas Az and A4y surrounding the
poles, there are two other areas on the sphere where
bijectivity fails. These areas correspond to the ks that
generate one-transition spectral reflectance functions.
When stepping through wavelengths from one end
of the visible spectrum to the other, while for each
wavelength determining k along with the roots of the
corresponding g(A) from Equation 7, one finds that,
for any wavelength A between 455.4 nm and 664 nm
(again, it is worth remembering that these values have
been obtained for AY** = 430, A = 530, and AT
560 nm), there is a plane that intersects the spectral

curve only once at C (Xo). Any plane crossing the
spectral curve at a point outside the interval from
455.4 nm to 664 nm crosses the spectral curve at least
twice. It follows that the elementary step functions x(A;
A1) of degree 1 such that 455.4 nm <A; < 664 nm (and
the functions complementary to them, 1 — x;(A; A1))
exhaust the optimal reflectances having one wavelength
transition (for more detail see Appendix A). Note,
however, that for wavelength A in this interval there

is a whole bundle of planes intersecting the spectral

curve C (1) only at point < (X1). They all determine
the same root in Equation 7, which in turn defines two
complementary optimal reflectances with the single
transition wavelength A;. In other words, for each 1,

€ [455.4; 664], there is a curved interval on the sphere
that maps to x;(A; A1). The set of all such curvilinear
intervals for all wavelengths in [455.4 ; 664] makes up a
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closed area on the sphere. It is indicated by dark gray
in Figure 4. The symmetrical area (with respect to the
origin) is another area mapping to the one-transition
elementary step functions of type T2: {(1 — x;(}; 11)):
A1 € [455.4; 664]}. It is shown in Figure 4 in light gray.

All the remaining points on the sphere (marked
with blue, green, or red in Figure 4) represent ks that
determine optimal spectral reflectances with two or
more wavelength transitions. Each distinct k from this
area defines a different optimal reflectance. Clearly, if
two ks determine planes each of which intersects the
spectral curve at two (or more) identical points then
these planes (thus ks) coincide.

Figure 4, therefore, represents a graph of the
function N(k), where N(K) is the number of transition
wavelengths of the optimal reflectance induced by k.
The number of the transition wavelengths is represented
with colors as follows: purple, 0; gray, 1; blue, 2; green,
3; red, 4.

A-Parameterization

A second approach to parametrizing the optimal
reflectances is to parametrize them in terms of their
wavelength transitions, specifically pairs of transition
wavelengths determined as follows. First, note that
each k determines a plane in the color signal space
via Equation 8, and if k belongs to the blue, green
or red areas in Figure 4 then the plane will intersect



Journal of Vision (2025) 25(2):2, 1-33

the spectral curve at a minimum of two distinct
points. Consider the plane intersecting the spectral
curve at points C (A1) = (51 (A1), 52 (A1), 53 (A1)) and
< (XA2) = (51 (A2), 52 (A2), 53 (A2)). Because the plane
includes the origin, these points uniquely specify a
plane in color-signal space. Its equation is

Z1 V) z3
st (A1) s2(A1) s3(A)|=0. (23)
s1(A2) s2(A2) s3(A2)

As in the case of Equation 21, the coefficients
ki, k>, and k3 (see Equation 8) can be derived
from (Equation 23) as functions of the color signal
coordinates of the points on the spectral curve specified
by wavelengths A and A,:

sp(A1)  sq (A1)

ki , = (=1 i—1
(A1, 22) = (1) 5, () 5y (Aa)

. (24

with p, ¢ defined as in Equation 22.

Although this plane may intersect the spectral curve
at other points as well, it is, nonetheless, uniquely
determined by A; and A, because there is only one
plane through the origin in the color signal space

containing points el (A1) and el (12). Therefore,
although the optimal reflectance corresponding to this
plane might have more than two wavelength transitions,
it is completely specified by the transition wavelengths
A1 and A,. As a result, these two transition wavelengths
can be used to designate this optimal reflectance.

There will exist, however, some pairs of transition
wavelengths that designate the same optimal reflectance.

For example, consider a pair of points, < (x1) and
(X2), that together determine a plane intersecting the

spectral curve at some other point, < (A3). In this case,
the three pairs—(11, A2), (A2, A3), and (A1, A3)—all will
designate the same optimal reflectance. Thus, all three
are possible choices as the designator for that optimal
reflectance.

Because parameterization implies bijectivity, multiple
designators for the same optimal reflectance must be
eliminated. As shown in Appendix A, a subset of
transition wavelength pairs can be singled out such
that each different pair of transition wavelengths from
the subset uniquely specifies an optimal reflectance.
Hence, every optimal reflectance can be uniquely
designated by a single pair of transition wavelengths.
These wavelengths can be thought of as two parameters
in terms of which all the optimal reflectances are
uniquely specified. It will be referred to as the
A-parameterization.

For the sake of generality, one can formally designate
an optimal reflectance having n < 2 transitions by
imposing some constraints on transition wavelengths
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A1 and A;. Indeed, formally the perfect reflector can be
considered as an elementary step function of degree 2

and type T1 with transition wavelengths A, and Agax
(i.e., x2(A; Amin» Amax ). The perfect absorber, which is

of type T2, will be 1 — x2(A; Amin» Amax ). Likewise, an

elementary step function of degree 1 and type T1 with
transition wavelength A; can be designated as x»(A; Aj,
Amax )), and that of type T2 as 1 — x2(&; A1, Amax )-

The relationship between the k- and
A-parameterization

When k is fixed then g in Equation 7 is a function of A
alone. In general, g can be considered as a function g(,
k) of both A and k. To explore the relationship between
the k-parameterization and the A-parameterization,
consider Equation 9 as defining an implicit functional
relationship between A and k. Let (X9, ko) satisfy
Equation 9, i.e., g(1o, ko) = 0. According to the implicit
function theorem, Equation 9 defines A as a function of
variables k1, k», k3 in a neighborhood of point (X, ko)
if the partial derivative

g, = kisi )+ kasy M) + kssy (0) - (25)

is nonzero at (A, Ko).

When g/ (%o, ko) = 0 then g as a function of X has
either an extremum at Ay (Figure 5) or an inflection
point. If a k¢ determines a plane tangent to the

spectral curve at Z?(Ao), then g(1) must have a local
minimum at Ay, with the graph of g just touching
the horizontal coordinate axis at Ay. Such a case is
singular in the sense that a small change in k( causes
either the emergence of two roots (instead of the one
at Ag) close to Ag, or the disappearance of the root
at, or in the vicinity of, A¢. It follows that the point
corresponding to ko on the k-sphere in Figure 4 lies on
the border separating areas that differ in the number of
wavelength transitions. Specifically, if for this particular
k( there are no roots other than ¢, then kg lies on the
border of the purple/blue regions (dark purple/blue
or light purple/blue for reflectance functions of type
T1 and T2, respectively) in Figure 4, separating the
zero- and two-transitions areas. If there is just one
additional root then it is on the border separating one
of the two one-transition areas (dark/light gray) from
the three-transition areas (dark/light green). Finally,
it might separate the two- and four-transition areas,
corresponding to the dark/light blue and dark/light red
regions, respectively.

For all other points (X9, ko) such that g, (Ao, ko) # 0,
A is a smooth function of Kk, its partial derivatives being

o si (A)
oki — kis| (b)) + kash (1) + kasy (h)”

(26)
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Figure 5. Example plot of g(A) for k = (0.0052, 0.5953, —0.8035). In this case g, = 0 at A =480 nm and A = 598 nm.

Likewise, each k; is a smooth function of A with partial
derivative

ok kisp (M) + kasy (M) + kasy (1)
o 5 (1) '

27)

Last, we determine a condition for the existence of a
smooth one-to-one correspondence between the k- and
A-parameterizations. Let us fix one of the three ks, say
ks = 1. This constraint is more convenient to use here
than that of Equation 20. Of the transition wavelengths
satisfying Equation 9, choose two adjacent ones A; and
> and consider each as a function of k; and k,. The
change of parameterization from k; and k, to A and A,
(and back) will be smooth if the Jacobian matrix

Y
ok, ks
o 2 (28)

ok,  dky

is invertible, i.e., if its determinant is not zero.

In light of (Equation 26) and assuming that

kis| (L) + kas, (A) + 55 (A) # 0 for A; and Ao, the
determinant of matrix (Equation 28) is not equal to
zero if and only if the following determinant is not zero
as well:

s1 (A1)
52 (A1)

s1(A2)

52 (A2) 70 @
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Because the choice of the pair of ks is arbitrary, this
inequality needs to hold for any pair of the spectral
sensitivity functions. Therefore, the correspondence
between the k- and A-parameterizations within an
area of the same number (two or more) of wavelength
transitions will be smooth when the determinant
(Equation 29) is not zero for all three pairs of the
spectral sensitivity functions, as is the case for the cone
photopigments (Figure 1).

adr-Parameterization

Let us consider the advantages of one more
parameterization that is a particular case of the
more general parameterization proposed previously
by Logvinenko (2009). Specifically, for any spectral
reflectance function x(A) producing color signal (¢;(x),
@2(x), ¢3(x)) under illuminant /(1) (see Equation 1),
there exists a function of the form

(x0.5 (M) + o (x2 (A5 A1, 22) — x05(A))),  (30)

where x,(A; A1, A2) is the elementary step function of
degree 2 of type T1 (Equation 17) with the transition
wavelengths A; and X,, xo.5(A) stands for the flat gray,
and « is a real number, such that the following equalities
hold:

Amax
/ (x0.5(1) + a(x2(s A1, 22) — X0 sGONI()si()dA

Amin

= §0i(X), (l = 1’ 2? 3) (31)
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Indeed, given the three numbers ¢ (x), 2(x), and @3(x),
the simultaneous (Equation 31) can be resolved with
respect to the three unknowns, Aq, A», and «.

When || < 1, Equation 30 can be interpreted as
describing a reflectance function. It is one of the infinite
number of the other reflectance functions evoking the
color signal (¢1(x), @2(x), ¢3(x)). It can be considered
as a representative of the whole class of such functions,
the numbers A, A, and « being thought of as the
parameters characterizing that class (of metameric
reflectances).

For a color signal lying on the boundary of the
object-color solid, Equation 31 yields |«| > 1. If |o| =1,
Equation 30 becomes either x(A; A1, Ay) or 1 — x»(X;
A1, A1), depending on the sign of «. In other words,
Equation 30 then defines an optimal reflectance with
A1 and A, forming its A-parameterization. For those
color signals on the boundary that are produced by
elementary step functions with more than two transition
wavelengths, the solution to Equation 31 always results
in || > 1. Although, the expression in Equation 30
with || > 1 cannot be physically implemented as a
reflectance function, it can be included as an improper
reflectance function (Logvinenko, 2009; Logvinenko &
Levin, 2023). In other words, the solutions A, A», and
o to Equation 31 can be considered as the parameters
of an optimal reflectance (corresponding to the color
signal in question) even though |o| may exceed 1.

As argued elsewhere (Logvinenko, 2009; Logvinenko
& Levin, 2023), it can often be more convenient to
convert (A1, A») to a new set of parameters as follows.
Specifically, for an optimal reflectance, x;(A; Ay, A3) of
type T1, define its central wavelength, A, = (A + 1»)/2,
and spectral bandwidth, § = |*; — A,|. The reflectance
x2(A; A1, Ao) expressed in terms of its central wavelength
and spectral bandwidth will be denoted as x,(A; A., §).
For a general definition that encompasses both the type
T1 and type T2 cases, see that provided by Equations 13
through 16) in Logvinenko (2009). As shown there, each
optimal reflectance is uniquely determined by these
three positive numbers, «, §, and A.. These numbers will
be referred to as the adA-parametrization of optimal
reflectances. Adopting the terminology proposed
previously (Logvinenko, 2009; Logvinenko and Levin,
2023), we refer to (xg.s(A) + a(x2(A; A, 8) — X0.5(A))) as
the rectangular metamer of x(1.).

The adr-parameterization proves to be more
natural and convenient than either the A- or k-
parameterizations. First, because central wavelength
and spectral bandwidth uniquely determine a direction
in the color signal space; whereas, the transition
wavelengths determine two different directions, one
per type, in color signal space. Second, the form of
the corresponding optimal reflectance is intuitively
easy to deduce from the central wavelength and
spectral bandwidth (especially, as compared with the
k-parameterization). Third, the proximity between
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the components of two pairs (8, A.) and (8', 1) is, in
fact, the proximity between the corresponding optimal
reflectances (and well correlated with the proximity
between the color signals produced by them). In
comparison, proximity in k-space is highly nonlinearly
related to the proximity of the corresponding optimal
reflectances. Finally, central wavelength and spectral
bandwidth are closely related to such color attributes as
hue and blackness/whiteness, respectively (Logvinenko,
2009; Logvinenko & Levin, 2023). Moreover, the
parameter « correlates well with the purity of the object
color invoked by the rectangular metamer with that .
Such a good correlation of the parameters «, &, and

A with the perceptual attributes of the object color
provides a good reason to use them as color descriptors
(e.g., Mirzaei & Funt, 2015a); and to use the entire set
(including improper ones) of rectangular metamers

as defining the object-color atlas (Logvinenko, 2009;
Logvinenko & Levin, 2023)

To get a general idea of the shape of the object-color
solid, it suffices to generate a very large sample of
optimal reflectances, calculate their corresponding color
signals, and then plot them in the color signal space. It
seems natural to think that such a plot will sketch the
outline of the object-color solid. However, the question
is as to how to carry out a sampling of the optimal
reflectances that will result in a representative sample
in the color signal space, that is, a sample of points in
the object-color-solid boundary that gives an accurate
idea of the object-color-solid’s shape. It is clear that
such sampling should be carried out in parametric
form, that is, as sampling in terms of either the k- or
A-parameterizations. From the computational point
of view, it is easy to generate an optimal reflectance
sample using the k-parameterization. However, as
shown below, a homogeneous sample in k-space brings
about a sample of the points in the object-color-solid
boundary that is very far from homogeneous. This
seriously narrows the possibilities of using this method,
making it suitable only for constructing the first, very
rough sketch.

Sketching the object-color solid via k- and
A-parameterizations

To carry out k-parameterization we resort to
reparameterization in terms of spherical polar
coordinates. In the view of the constraint expressed
in Equation 20 the k-parameterization is, actually, in
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Figure 6. The object-color solid under the equal-energy
illuminant in SML coordinates. The gray and black contours are,
respectively, those of constant y, the azimuthal angle, and g,
the zenith angle, in the spherical coordinate representation of k
space. The right-hand part of the plot is black simply because
the black contour lines become very tightly packed.

terms of a unit sphere. Hence, we introduce spherical
polar coordinates 8 and y, with y within (0, 27),
corresponding to the azimuthal angle, and g within
(0, ), corresponding to the zenith angle, and generate
a uniform sample of the polar angles 8 and y. Then,
for each sample (8, y) (i.e., for each k), the transition
wavelengths (i.e., zero-crossings for g(1) in Equation 7)
were calculated. These define an optimal reflectance.
Each optimal reflectance x,,,(1) determines a point
®(x,,,) on the object-color-solid boundary to which it
maps. This point is found by substituting x,,,(1) into
Equation 1 and computing the three components of
qD(xopt)-

Figure 6 presents the object-color solid thus
obtained. The solid black and gray contours in
Figure 6 correspond to constant values of 8 and y,
respectively. Note that this regular sampling of 8 and y
yields a highly irregular grid on the object-color-solid
boundary. In other words, a regularly spaced collection
of directions (rays) in k-space brings about rather
irregularly spaced beam of vectors in SML space.
This irregularity is easily seen in Figure 7A, where the
resulting sample of SML vectors is presented as the
points in the chromaticity plane (same as in Figure 2)
corresponding to these vectors. Although the cluster
of the chromaticity points in this graph results from a
homogeneous sample of the polar angles (qualitatively
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similar results are found when using geodesic sampling),
there are vast areas in the chromaticity plane void of
markers despite a rather dense k-sampling resulting

in 1,288,417 ks. This alone is enough to undermine

the use of k-sampling as a practical way of sketching
the object-color solid; however, that is not the only
reason. As can be seen from Figure 4, many of the
k-samples generate either zero- or one-transition
reflectances. Specifically, for this sample of polar angles
defining a set of k-samples the zero-, one-, two-, three-,
and four-transition reflectances arise from 27.2%,
55.1%, 17.2%, 0.42%, and 0.008% of the k-samples,
respectively. Since the chromaticity loci corresponding
to the zero- and one-transition reflectances comprise the
poles and a curve, that is, occupy a zero-area fragment
of the chromaticity diagram, only 18% of the k-samples
are actually mapped onto the vast majority of the
chromaticity gamut. Given the extremely nonlinear
relationship between the rays in k-space and vectors

in SML space, we must conclude that k-sampling

is highly ineffective when using it for evaluating the
object-color-solid boundary.

In contrast, homogeneous A-sampling (for
details, see Appendix A) produces a much more
homogeneous cluster of chromaticity points as is
clearly visible if we look at Figure 7B where the results
of A-sampling are presented in the same way as those
of k-sampling in Figure 7A. Figure 7B presents the
chromaticities resulting from the reflectances generated
by homogeneous A-sampling at a step size of 0.2221 nm.
With the number of A-samples being as large as the
number of k-samples the pattern in Figure 7B is
much denser than in Figure 7A, although it too is not
completely even.

Generally, the advantage of A-sampling over
k-sampling reveals itself in the following: i) there
are no large areas void of chromaticity points (as
in Figure 7A); ii) the pattern of chromaticity points
effectively covers the entire chromaticity gamut; and
last but not least; iii) A—sampling provides a one-to-one
correspondence between the set of parameters and
the resulting set of chromaticity points (for details see
Appendix A). Therefore, we are in full control of the
density of the resultant cluster of the chromaticity
points. Hence, in terms of becoming familiar with the
general shape of the object-color solid, we recommend
using A-sampling rather than k-sampling.

Figure 7B can be made even more informative by
associating with each chromaticity point the distance
from the origin to its corresponding point (SML) on the
object-color-solid boundary. In Figure 7C, the greyness
of the markers encodes this distance. In Figure 7D
it is encoded as the z-value. In other words, what is
presented in Figure 7D is the graph of the function z(x,
y)where x=L/(S+ M+ L), y=M/I(S+ M+ L)),
and z = /(S? + M? 4 L2). This volume is referred to
by Wyszecki and Stiles (1982) as the Rosch color solid.
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Figure 7. (A) Chromaticities of a regular sampling of y, the azimuthal angle, and 8, the zenith angle, in the spherical coordinate
representation of k space with colors representing the number of transitions (cyan, 0; yellow, 1; blue, 2; green, 3; red, 4) of the
corresponding optimal reflectances. (B) Chromaticities of a regular A-sampling for the same number of samples as for (A). (C) Length
of the corresponding A-sampling SML vector encoded as intensity. (D) Rosch’s object-color solid with the vertical axis representing the

length of the corresponding SML vector.

They are distinguishing it from a volume in the SML
space like that depicted in Figure 6, which they term
the Luther-Nyberg color solid. Figure 7D, therefore,
presents the RAsch object-color solid obtained using
the homogeneous A-parameterization.

Figures 7C and 8A show the sum M + L plotted
in terms of the greyness of the markers. By redrawing
Figure 7D and plotting M + L along the z-axis
as in Figure 8B, we get an idea of the maximal
luminance achievable for a given direction (from
the origin) in the object-color solid. Indeed, M + L
is generally believed to serve as a good estimate of
luminance (Lennie, Pokorny, & Smith, 1993). Here it
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is appropriate to remember that it was this problem,
namely, that of finding the brightest surface having
a given chromaticity, which prompted Schrodinger
to study the object-color solid. Whereas Figures 7D
and 8B give a general idea of what the answer to this
question might be, determining the exact answer for a
specific chromaticity requires finding its corresponding
optimal reflectance. We refer to the problem of
finding this optimal reflectance as Schrodinger’s
problem.

It is noteworthy that a significant part of the
chromaticity gamut in Figure 7B is colored green.
In other words, the chromaticity area corresponding
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Figure 8. (A) Luminance (M + L) of the corresponding A-sampling SML vector encoded as intensity; and (B) The Rosch object-color
solid with the vertical axis representing M+L. Colors indicate the number of transitions (cyan 0; yellow 1; blue 2; green 3; red 4).

=1 0.5

5 et
0 - _—
o5 — — 05
1 0
S M

1
=1 0.5 -
8 ~
\\ =
0.5 B 0.5
1 1
M S

Figure 9. Two sides of the object-color solid under the equal-energy illuminant in SML coordinates. The plot on the right depicts the
side opposite to that on the left. Because of the central symmetry of the object-color solid, the near side (left) looks symmetrical to
the far side (right). The coloring indicates the number of transition wavelengths of the corresponding optimal reflectance (cyan, 0;
yellow, 1; blue, 2; green, 3; red, 4). Darker colors indicate type T1 optimal stimuli, lighter ones type T2.

to the three-transition reflectances is larger than one
would think when comparing the green and blue areas
in Figure 9. It is curious that this difference is hidden
when the object-color solid as such is observed (see
Figure 9). Figure 9 presents the object-color solid
obtained by using the A-parameterization. The areas of
different numbers of transition wavelengths are marked
with different colors in the same way as in Figure 7. As
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can be seen, the object-color solid boundary consists
of two symmetrical parts, which differ in type. Each
part contains a curve, a portion of which is in yellow
(one-transition-wavelength reflectances) with a second
portion in red (four-transition-wavelength reflectances),
that begins at one pole and ends at the other. Let us call
these two lines the main meridians. Together they form
a close loop that delimits these symmetrical halves of
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Figure 10. The regular (i.e., two-transition-reflectance-based)
object-color solid in SML coordinates under the equal-energy
illuminant. The contours are those of constant § (black) and
constant A. (gray).

the object-color solid boundary. (Note, however, that
each half in question does not have a closed boundary.
As a geometrical analog, consider a square two sides of
which belong to it, and the other two do not.)

Before moving on to Schrédinger’s problem, a few
words about the a§A-parameterization in the present
context. It cannot be used for sketching the object-color
solid since it implies solving Schrodinger’s problem.
This is the case because the adA-parameterization
requires the set of optimal reflectances undergoing the
parameterization to be specified in advance. True, one
can produce a uniform sample for § and A.; however, to
find out what « corresponds to a particular pair (8, A.),
one has to i) determine the direction in the color signal
space that is determined by this pair; ii) determine the
optimal reflectance corresponding to this direction
(Schrodinger’s problem); iii) determine the point in this
direction corresponding to this optimal reflectance;
and iv) compute « for that point. Certainly, when
this optimal reflectance has precisely two wavelength
transitions the last two steps can be omitted, because in
that case o equals 1.

As follows from Figures 7 to 9 the number of
directions with more than two wavelength transitions
is considerable. Still, as mentioned, it is common
practice to ignore this fact and simply consider a plot
similar to that in Figure 10 as representing the true
object-color solid. What is shown in this figure—let
us call this volume “the regular object-color solid”—is

Downloaded from jov.arvojournals.org on 02/03/2025

Logvinenko, Funt, & Bastani 17

the plot of all two-transition step functions based on
a regular sample of § and A.. Notice, by the way, that
the black and gray grid of contours for fixed § and
A, respectively, is more uniform than in Figure 6.
The regular object-color solid constitutes a volume
inscribed within the true object-color solid.

Identifying the object-color solid by solving
Schrodinger’s problem

Each ray in the color-signal space intersects
the boundary of the object-color solid just once.
Specifically, given the ray determined by the color
signal (S, M, L), there exists a unique vector (S,
My, Ly) from the origin, collinear to (S, M, L) and
ending at the point of intersection with the boundary.
The vector (Sy, My, Ly) is determined by the optimal
reflectance corresponding to the ray in question.
Therefore, establishing the object-color solid equates
to the problem of identifying the optimal reflectance
corresponding to the direction (ray) determined by
any arbitrary (S, M, L). In other words, we have to
derive the optimal reflectance x,,,(S, M, L) from (S,
M, L), and then evaluate the color signal (Sy, M,
L) corresponding to x,,,(S, M, L). This is where
Schrodinger’s problem lies. Plotting the resulting points
(So, My, Lo) in the color-signal space will identify the
object-color-solid boundary (as a cloud of discrete
points).

In mathematics, this type of problem is called an
inverse problem. Given a color signal (z{, 29, 29),
find the optimal reflectance x,,;(1) such that
D (xopr) = (2), 29, 23), where « is some unknown
constant. In other words, find the optimal reflectance
Xopi(A) satisfying the following equations:

)Vmax
/ Yo MW)T (V) si (M) dr=x2), i=1,2,3. (32)
A

min

The existence of a solution to such equations becomes
clear when the optimal reflectance is expressed in
a parametric form, a solution being sought with
respect to the parameters. For instance, using the
A-parameterization we arrive at the following equivalent
form of Equation 32:

}tmax
/ X rn ) I(W)si(Mdr=xz, i=1,2,3,(33)

Amin

where A; and A, are the smallest two transition
wavelengths of the optimal reflectance X.

Being a set of three simultaneous equations with
respect to three unknowns (11, A, and «), (Equation 33)
have an exact solution for any color signal
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20 = (2), 25, 23). However, to find it for some particular
0

z”, one has to resort to numerical methods, which
can only bring an approximate solution. That is, the
solution can be found only with a certain degree of
accuracy. Solving the inverse problem numerically is
not an easy task and the topic deserves a separate
paper. Below we restrict ourselves to illustrating

the nature of the problems that arise both when
applying the well-known Newton method for solving
(Equation 33) (see Appendix B) as well as when applying
some other methods available as part of Matlab’s
repertoire.

A uniform sampling of A? (with a 1.5 nm wavelength
separation) leads to 35,511 pairs (A1 < A,). Of these,
22,260 pairs turned out to be admissible (see Figure Al
in Appendix A). For these admissible pairs, the
corresponding optimal reflectances were evaluated for
both types (as described in Appendix A). The resulting
44,520 optimal reflectances will be referred to as the
test reflectances. For each test reflectance its SML
coordinates (i.e., the test color signal) were computed
and then substituted into (Equation 33) as z. The
optimal reflectance obtained by solving (Equation 33)
with this z° will be referred to as the solved reflectance.
The SML coordinates of the solved reflectance will be
denoted as the solved color signal.

The median angular difference between the solved
and test color signals was found to be 0.0041 arc
minutes, the maximum difference being 2.4008 arc
minutes. Only 258 (0.58%) solved color signals differ
from the test color signals by more than 1 arc minute.
The proximity (ideally, coincidence) of color signals is a
necessary (but, of course, not sufficient) condition for
the solution. We decided to leave out of consideration
those cases when the angular difference exceeded 1 arc
minute; that is, consider the solved reflectance as an
acceptable solution only if the angular difference in
question is less than 1 arc minute. Of the remaining
44,262 reflectances (they will be referred to as admitted
reflectances), 39,580 (89.4%) were of degree 2 (i.e., with
two transition wavelengths); 4,654 (10.5%) of degree 3
(i.e., with three transition wavelengths); and 28 (0.06%)
of degree 4 (i.e., with four transition wavelengths); all
of both types.

We considered the inverse problem (33) to be solved
for some direction in the color signal space (i.e., for
some test color signal) if 1) the solved reflectance
is of the same degree (i.e., it has the same number
of transition wavelengths) and type as the test
reflectance; and ii) the difference between each pair of
corresponding transition wavelengths does not exceed
0.1 nm in absolute value. In total, the solution was
found for 81.3% of the test reflectances. In particular,
the solution was found for 79.1% of the two-transition
test reflectances; for 99.96% of the three-transition
test reflectances; and for 100% of the four-transition
optimal reflectances.
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Figure 11. Areas of the object-color solid coded as in Figure 9
with the addition of black dots overlaid, indicating unsolved
cases.

Figure 11 demonstrates how the no-solution
cases (marked in black) are distributed over the
object-color-solid boundary. It should be noted that,
because of the small difference between their SML
coordinates, many test reflectances map to the same
black dot so there are fewer dots than cases.

Relaxing the threshold value from 0.1 nm to 1 nm
does not lead to a significant increase in the number of
solutions, which in this case only grows to 83.3%. This
is because the number of cases in which the test and
solved reflectances differ only in degree is not affected
by the threshold value. In other words, if the solution is
of the right degree, its accuracy (in terms of transition
wavelengths) is generally quite high.

As a matter of fact, the vast majority of degree
mismatches (96.3%) occur in cases when the test
reflectance has two transition wavelengths, whereas the
solved reflectance has only one transition wavelength.
It should be noted, however, that an elementary
step function with one transition wavelength (i.e.,
of degree 1) can be thought of as a particular case
of an elementary step function with two transition
wavelengths (i.e., of degree 2), when one of its transition
wavelengths is either 380 or 780 nm. This becomes
clear if we consider defining the step functions, as
Logvinenko (2009) suggests, on the spectrum circle
rather than on the spectrum interval. The latter can
be achieved by identifying the ends of the spectrum
interval and ‘gluing’ them together. On the spectrum
circle, step functions having no more than what two
wavelength transitions (of both types) have a single
rectangular bump (defined by the wavelengths at
which the function takes value 1), and functions with
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Figure 12. Wavelength of first transition of the solved reflectance vesus wavelength of first transition of the test reflectance.

three and/or four wavelength transitions have two
rectangular bumps, usually, one wider than the other.
Hence, elementary step functions with either one or
two transition wavelengths (of both types) have the
same waveform; namely, a single bump (i.c., where the
reflectance function takes 1). The difference between
them can be specified by the bump width and the
bump position on the spectrum circle. The same is the
case for elementary step functions with three and four
transition wavelengths (i.e., of degree 3 and 4). Their
waveform comprises two bumps, the difference between
the elementary step functions being determined by the
difference between their respective bumps. Therefore,
the genuine difference in kind takes place only when
for a test reflectance with two transition wavelengths
the solved reflectance is found to have either three or
four transition wavelengths. The share of such cases
(of the admitted reflectances) turns out to be only
0.38%.

Still, even when such cases are excluded, the
proportion of solutions does not increase because the
second transition wavelength of the test reflectance
in question varies over a wide range (from 663.5 nm
to 779 nm), being less than the second transition
wavelength of the solved reflectance (i.e., 780 nm) by
at least 1 nm. Such discrepancy between the second
transition wavelengths is in striking contrast with
a fairly accurate match between the first transition
wavelengths of the test and solved reflectances
(Figure 12). Specifically, the median absolute difference
between the first transition wavelengths of the test
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and solved reflectances is found to be 0.03 nm, the
99th percentile being 4.02 nm. We believe it is all about
where the transition wavelengths are in the visible
spectrum interval. As a matter of fact, in this particular
case, the second transition wavelengths of the test
reflectance gravitate towards the long-wave end of
the visible spectrum. (It should be said, however, that
not every two-transition reflectance, with the second
transition wavelength falling into this range, leads to
a one-transition solved reflectance, producing such
a large error. In particular, for 3,839 two-transition
test reflectances satisfying this condition (which
is 8.7% of the admitted number of reflectances),
solutions were successfully found (with an accuracy
of 0.1 nm).

Still, the fact is that even a considerable shift in
the transition wavelength in this range of the visible
spectrum interval leads to an extremely small effect on
the color signal produced by the optimal reflectance. It
is worth remembering that we are talking only about
the admitted reflectances (the color signals of which
differ from the corresponding test color signals by no
more than 1 arc minute). In other words, a difference
(between the second transition wavelengths) of tens of
nanometers does not lead to any noticeable angular
difference between the color signals (it remains less than
1 arc minute) provided that this occurs at the long (or
short) wavelength end of the visible spectrum interval.
This is due to the highly nonlinear relationship between
proximities in terms of color signal and those in terms
of wavelength.
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Such a strong discrepancy between the SML-
proximity and the wavelength proximity presents a
serious problem for solving the inverse problem. It is
an issue that has often been overlooked. In particular,
in some cases, it makes it almost impossible to solve
the inverse problem since the SML proximity does not
guarantee the wavelength proximity. Specifically, as
shown above, despite the closeness of less than 1 arc
minute between the test and solved color signals, the
difference between the transition wavelengths can be
large; the solved reflectance can be of a different degree;
and even of a different type.

As to type, there were six cases when the test and
solved reflectances were of different type. Consider one
of these cases as an example. The test reflectance is of
type T1 with two transitions wavelengths: 441.5 and
587 nm. The solved reflectance is of type T2 with three
transitions wavelengths: 380.02, 441.5, and 587 nm. The
latter comprises two bumps, one of which is virtually
identical to the bump of the test reflectance. The second
bump is so narrow (0.2 nm wide) that its contribution
to the SML value is negligible (making the angular
difference of 0.01 arc minute).

It is worth noting that a change in type can occur
without a change in degree. If one of the transition
wavelengths is close to either end of the visible spectrum
interval (i.e., to the point on the spectrum circle where
the long wavelength end of the spectrum is ‘glued’ to
the short wavelength end), then its shift beyond the
gluing point will lead to a type change. If the shift is
small enough, there will be no significant change in
the color signal. This accounts for the appearance of
solutions of the wrong type.

Generally speaking, given a test color signal,
the type and degree of the corresponding optimal
reflectance (i.e., a key component of the solution
of the inverse problem for this color signal) can be
determined in advance. To do this, one needs to find
out the color of the area in Figure 9 to which the
direction specified by this signal projects. Note that
Figure 9 results from Figure Al (in Appendix A) by
applying the map ® = (¢, ¢2, ¢3) (see Equation 1)
to it. How to evaluate the boundaries between the
regions (of various colors) in Figure Al is described
in Appendix A. In principle, the search for a solution
to the inverse problem should then be carried out in

areas of the admissible region A? with the same number
of transition wavelengths (i.e., of the same color in
Figure Al in Appendix A). This condition was not
enforced in our calculations, which, judging by the
results, caused some number of traversals across these
boundaries.

In brief, one has to start by calculating in advance
the boundaries between these areas of the same degree
and type on the object-color solid surface (in terms
of SML coordinates). Given these boundaries, one
can immediately find out the degree of the solved
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optimal reflectance, and then, using calculations, refine
the values of the transition wavelengths, not going
beyond them in the process of finding a solution.
Note that the algorithm in Appendix B does not imply
changing the degree during the course of the solution.
Once the initial value is chosen at the beginning, the
degree remains the same throughout the solution
process.

Last but not least, as mentioned elsewhere in this
article, the object-color solid in the region of the black
pole is shaped like the color cone, its southern apex
is just as sharp. Due to the central symmetry of the
object-color solid, the same is the case for the northern
apex. Hence, the poles of the object-color solid are not
smooth. Also, as Logvinenko and Levin (2023, p. 383)
showed, there is a lack of smoothness for points on
both meridians. The method described in Appendix B
can be used only for smooth points of the object-color
solid boundary. Therefore, it is not surprising that such
a straightforward method does not work properly for
such points. As seen in Figure 11, a fairly significant
proportion of black dots (marking cases of no solution)
are located along the main meridians, especially near
the poles. A more subtle method is required to solve
the inverse problem for directions close to the main
meridians. Still, whatever the method, there will always
be small regions around the meridians that will remain
unsolved.

The regular object-color solid (i.e., the set of
color signals induced by a set of reflectances « X’
(0 < k < 1) where X7 stands for all elementary
step functions of degree m < 2) lends itself as a
2-transition approximation of the true object-color
solid. In other words, the two-transition approximation
to the trichromatic object-color solid is a volume
delimited by the image, ® (X”), of the map & : X'—R?,
where ® = (¢1, @2, ¢3). Really, ® (X”) lies in the
object-color solid ® (X'). Moreover, the boundary of
the object-color solid, ® (X), and ® (X’) partially
coincide. Specifically, they overlap along those
directions (from the origin) in the color signal space
for which the corresponding optimal reflectances are
the elementary step functions of degree m < 2. For all
other directions, the points of ® (X”) lie closer to the
black pole of the object-color solid. For, according to
the estimates made by Logvinenko (2009), the deviation
of the points of & (X”) from the true object-color
solid boundary is rather small, ® (X”) is quite suitable
for the role of approximation of d® (X'). Because,
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the use of ® (X”) instead of a® (X') has become a
common practice in color research, it is interesting
to find out what errors are made in this case. The
very fact that committing such errors is not always
recognized only adds to the importance of such
research.

To quantify the discrepancy between the boundary of
® (X)and ® (X’), one can use elementary step functions
of degree m < 2 with a value greater than unity. In
other words, allowing for the elementary-step-function
amplitude to be greater than one, one can consider a set,
X", of elementary step functions of degree m < 2 whose
®-image will then be exactly the object-color-solid
boundary, i.e., ® (X”) = 9 (X). In particular, consider
an elementary step function, x (i; A{, 9), of degree
2, and its ® -image: ® (x (A; 17, A9)) = (=), 23, 29).

If (2}, 25, 23) does not belong to 9 (X'), one can
always find such number « > 1 that @ (kx (A; A7, 19))
lies in d® (X'). Note that x > 1 corresponds to a
theoretical reflectance > 100%. The ratio 1/« can be
used to characterize the goodness of the two-transition
approximation. Indeed, it is effectively the ratio of

the distance from the origin to point ® (x (A; A9, 19))
versus to @ (kx (A; A7, 19)). Therefore, it shows how
close @ (x (A; A7, A9)) is to the corresponding boundary
point @ (kx (4; A7, 19))

We evaluated « for 10,681 three-transition and
7,606 four-transition optimal reflectance functions
resulting from an approximately uniform sample
of the corresponding three- and four-transition

areas in the admissible region A2 (the green and

red areas in Figure Al in Appendix A). For every
color signal, (z}, 23, z3), determined by these 18,287
optimal reflectances, we were seeking a two-transition
elementary step function x (i; A7, A9) and a number

x such that @ (kx (1; A7, 19)) = (2], 23, 23) using
numerical methods 51m11ar to those used when solving
the inverse problem in the preceding section. Solutions
were found for 17,425 color signals (95.3%). Of these, we
took into consideration only those for which the angle
between the vectors (z{, 29, 23) and @ (x (kA; A9, 19))
(in the color signal space) did not exceed 1 minute of
arc. Such cases accounted for three-quarters (13,069)
of the total number of solutions. As an estimate of K,
the norm ratio x’ = || ® (x (KA A /11, 28, 23) I
was evaluated. The largest «” was found to be 1.133, the
smallest being 0.989. The presence of solutions with «’
less than one, we believe, is a consequence of inevitable
computational errors.

Figure 13 shows the relative frequency distribution
of the «’ values over the interval between the 1* and
99" percentiles (i.e., [0.9968,1.0053]). Although the
distribution is evidently skewed toward values greater
than 1, its mean (1.0005) does not considerably differ
from 1, and its median is actually 1. This indicates that
the two-transition approximation is, in fact, very good.
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Hence, for any practical purpose, the object-color solid
boundary can be evaluated by using only two-transition
elementary step functions. As our calculations show,
the resulting error will be negligibly small (from the
practical point of view).

The fact that SML coordinates of two-transition
reflectances provide a good approximation to the
SML coordinates of arbitrary n-transition optimal
reflectances on the object-color-solid boundary does
not, however, mean that two-transition elementary
step functions can be considered as an appropriate
approximation of the optimal reflectances themselves.
The idea of such an approximation naturally arises if
we consider step functions as defined on the spectrum
circle rather than on the spectrum. On the spectrum
circle, step functions with three and/or four wavelength
transitions have two rectangular bumps, usually, one
wider than the other. Moreover, for many optimal
stimuli one bump turns out to be a great deal wider
than the other. Let us call this wider bump the main
bump, and the pairs of wavelengths that define it, the
main transition wavelengths. As a matter of fact, the
bump of the two-transition approximation (for an
optimal reflectance with three and/or four wavelength
transitions) is found, quite often, to be rather similar
to the main bump of the optimal reflectance in
question.

To quantify the similarity of the bumps in width,
define the §-approximation index as the absolute value of
the difference between the widths of the main bump and
the bump of the approximating two-transition optimal
reflectance. The similarity of the bumps in positioning
can be characterised in terms of a A.-approximation
index defined as the absolute value of the difference
between the central wavelengths of the main bump and
the bump of the approximating two-transition optimal
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Figure 14. (A) A four-transition elementary step function x(A; A1, X, A3, A4) defined on the spectrum circle; and (B) its complementary
reflectance X (A; A1, A2, A3, As), which now has two main bumps as discussed in the text.

reflectance. Values for both indices were found to be
rather small for many optimal reflectance with three
and/or four wavelength transitions.

As an example, consider four-transition optimal
reflectances for which the solution (i.e., the two-
transition approximating elementary step function)
is of the same type. There are 4,392 (77.4%) such
reflectances. For 205 (27.4%) of them, both the
§-approximation and A.-approximation indices do not
exceed 2 nm. In other words, the main bump of optimal
reflectance and the approximating two-transition
bump are pretty much the same. At first glance,
this corroborates the idea of approximating the
optimal reflectances by two-transition elementary step
functions. Specifically, for these reflectances, it seems
that a slight change in the main transition wavelengths,
along with a minor increase in «, is enough to make up
for the second bump in terms of yielding the identical
SML coordinates.

However, this impression is rather misleading. Really,
even for this sample, the spread of approximation
indices is quite large. Specifically, the average
d-approximation index over the 4,392 approximating
reflectances was found to be 11.5 nm, with the maximum
being 83.2 nm. The maximum X -approximation index
was 41.5 nm, with the mean being 5.7 nm. One reason
for this is that the effect (on the color signal) of
shifting the transition wavelength by a fixed amount
is very different for different parts of the spectrum.

In particular, the effect sharply decreases as one
moves towards either end of the spectrum. Therefore,
when at least one transition wavelength of the main
bump is located near either end of the spectrum, both
approximation indices are likely to take on large values.
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When the optimal reflectance and the approximating
two-transition elementary step function were of
different types, the range of the approximation
indices was even larger, which further undermines
the idea of a two-transition approximation of the
optimal reflectances. To put an end to this idea once
and for all, let us illustrate its unsolvability with the
following example. Consider on the spectrum circle a
four-transition elementary step function, x(A; A1, Az,
A3, Aq), wWith a wide main bump centred in the middle
of the visible spectrum interval (i.e., A, = 580 nm) and
a narrow secondary bump centred at the glue point of
the ends of the visible spectrum interval (i.e., A = 380
or 780 nm) (see Figure 14A). It is clear that for a
sufficiently narrow secondary bump the approximating
two-transition elementary step function, x (A; A}, 15),
will be practically identical to the main bump. Consider
now the reflectance, X (A; A1, A2, A3, A4), complementary
to x(A; A1, A2, A3, Ag) (i.e., with the same transition
reflectance but of different type) (see Figure 14B).
Obviously, its two-transition approximation will be
a reflectance complementary to x (i; A}, ) denote it
(X (2 A}, 15)). Note, however, that X (A; A1, A2, A3, A4)
will comprise two identical bumps, the width of which is
less than one-half as wide as the width of X (A; 1], A}).

When the bumps are equal, the concept of the main
bump loses its meaning. Moreover, whichever one is
chosen as the main bump, the approximation indices
will be very large. Although we can allow the secondary
bump to shift from the glue point in one direction or
another, so as to avoid the equality of the bumps of
X (A; A1, A2, A3, Ag), unless this shift is very large, the
approximation indices will remain large. Therefore, the
two-transition elementary step function X (A; A}, 15)
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cannot in any way be thought as an approximation of
the optimal reflectance X (A; A1, A2, A3, Ag).

In general, note that the better x (A; A}, 1))
approximates x(A; A1, A2, A3, A4), the worse X (A; A, 1))
approximates X (A; A1, A2, A3, A4), up to the complete
loss of the very meaning of the approximation. In
other words, it is impossible in principle to achieve a
good two-transition approximation for all three- and
four-transition optimal reflectances.

To summarize, although two-transition elementary
step functions can be successfully used to approximate
the object-color-solid boundary, they should not be
considered as even a rough approximation of those
optimal reflectances having more than two transition
wavelengths.

Being a closed convex set in the color-signal space, the
object-color solid is fully determined by its boundary
surface, which, in turn, is specified by the optimal
reflectances (i.e., those mapping onto this boundary).
Although the set of optimal reflectance functions
mapping to the boundary has, from the theoretical
point of view, been fully characterized (Logvinenko,
2009; Logvinenko & Levin, 2023), the question of
how to calculate these functions in a practical way
has remained open. The reason for this was, on the
one hand, the misconception that such functions are
limited to elementary step functions of the second
degree, and, on the other hand, the complexity of their
calculation. The question of the error that occurs when
estimating the object-color solid using such 2-transition
step functions has not previously been addressed. We
found that, although theoretically significant, this error
is rather small when estimated in terms of the distance
between the points in the color space.

It would be a mistake, however, to ignore the presence
of three- and four-transition elementary step functions
among the set of optimal reflectances. Indeed, the
difference between the true object-color solid and its
two-transition approximation (measured in terms of
the radial distance in the color signal space) depends
on the choice of units of measurement for the sensors’
outputs. Moreover, the shape of the object-color solid
changes with illumination. Any pre-receptor filters,
including the atmosphere, will affect the object-color
solid. Therefore, it cannot be ruled out a priori that
the difference between the true object-color solid and
its two-transition approximation (estimated by us only
for one particular illumination, assuming an ideally
transparent atmosphere, and when choosing very
specific units of measurements of the photoreceptors
response) for other viewing conditions will have a
different quantitative assessment. It is not possible
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to estimate this difference in general for all viewing
conditions. The lack of an invariant specification of
this volume in the color signal space (a volume referred
to in the vision literature as the object-color solid) leads
to the question as to whether or not there is anything
fixed and objective about it.

What is objective about the object-color solid is
that it represents the classes of metameric reflectances.
However, given the variability noted elsewhere in this
article, such a representation can hardly be considered
consistent. A more satisfactory representation of the
classes of metameric reflectances can be created using
optimal reflectances (Logvinenko, 2009; Logvinenko &
Levin, 2023); because the set of optimal reflectances
will remain unchanged regardless of illumination and
atmosphere. It will also be independent of the choice
of sensor output units. This invariance suggests that
the set of optimal reflectances is better suited to be
used as the basis of the representation in question than
the changeable shape of their image in the color signal
space (i.e., the object-color solid). A further benefit is
that this set itself has a well-defined geometry.

As shown previously (Logvinenko & Levin, 2023),
the set of optimal reflectances can be considered as
the boundary of the smooth manifold topologically
equivalent to a three-dimensional ball. More
specifically, this manifold contains, along with each
optimal reflectance x,;, all reflectances of the form
a0 Xy, Where « varies from 0 to 1, and only them. The
theoretical significance of this ball (of reflectances)
follows from the fact that it uniquely represents all
the classes of metameric reflectances (thus all the
object-colors). In other words, each reflectance is
metameric to one of the reflectances comprising this
ball. For this reason, it has been termed an object-color
atlas (Logvinenko, 2009; Logvinenko & Levin, 2023).
Interestingly, mapping this object-color atlas to the
color signal space results in the object-color solid.
Because such a mapping depends on the viewing
conditions, the object-color solid will be different for
different viewing conditions. The only thing that unites
the object-color solids obtained under different viewing
conditions is the object-color atlas whose images
they are. Therefore, it seems logical when studying
object-colors to turn, not to mutable object-color
solids, but rather to the invariant basis hidden behind
them—the object-color atlas.

Shifting the focus from the object-color solid to the
object-color atlas allows us to address the important
issue of how observations by observers with different
sensors relate. Consider, for instance, the following
simple question. Given two sets of trichromatic sensors,
do they produce the same object-color solid or different
solids? In particular, how should we distinguish human
observers having the same object-color solids from
those with different ones? Clearly, the formal overlap of
the corresponding volumes in the color signal spaces
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cannot serve as a criterion because it is not met even
for two identical observers unless the same units of
measurement are used. In particular, it is unclear what
the natural choice of “same” units of measurement
might be, for example, for human photoreceptors
versus camera sensors. Even if we normalize the sensor
responses to the common illumination, the shape of
object-color solids (as it was defined elsewhere in this
article) will differ. However, if we reformulate this
question in terms of the object-color atlas, relating
two different sensor sets becomes trivial. Namely, two
different sensor sets produce the same object-color atlas
when their sets of optimal reflectances are identical.
For example, all sensor triplets for which the optimal
reflectance sets comprise all and only two-transition
reflectances are equivalent in the sense that they have
the same object-color atlas. It is noteworthy that the
nature of the sensors does not matter (whether they are
animal photoreceptors or artificial sensors).

It is possible to introduce spherical coordinates in the
object-color atlas by using the adA-parameterization of
optimal reflectances (Logvinenko, 2009; Logvinenko
& Levin, 2023) described in a§A-Parameterization.

In this coordinate system, all the object-color atlases
can be represented in a uniform way. As stated, the
object-color atlas formed by all, and only two-transition
reflectances can be represented as a unit ball. All other
object-color atlases can be represented by a volume
enclosing a unit ball that extends beyond it along those
radii that correspond to the optimal reflectances with
more than two transition wavelengths. It is worth
noting that such a representation will not depend either
on the choice of units of measurement nor on the
observation conditions (i.e., illumination, atmosphere).
This uniform representation facilitates the comparison
of different sensor sets (regardless of their nature).
For example, if you want to make artificial vision as
close as possible to human vision, it is not necessary
to try to make artificial sensors similar to human
photoreceptors. Depending on the task facing the
designer of artificial vision, it may be enough to ensure
that their object-color atlases are identical or at least
quite similar.

For observers with equivalent sensor sets (i.e., those
which produce identical sets of optimal reflectances)
one can establish a one-to-one correspondence
between their object-color solids by identifying the
color-signal triplets produced by each of the sensor sets
in response to the same optimal reflectance. Although
this correspondence relates the classes of metameric
reflectances of these observers, it does not allow one
to predict what color an object will be perceived by
one observer based on the knowledge of the color of
that object by a second observer. Moreover, we cannot
even predict whether the second observer will see two
objects as identical in color when these objects are
metameric for the first observer (i.e., perceived by her or
him as the same color). It is quite possible that objects,
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metameric for one observer, will appear different in
color to another observer (even if these observers have
the same object-color atlases). This phenomenon is
usually referred to as metamer mismatching (Wyszecki
& Stiles, 1982).

One approach to quantitatively assessing metamer
mismatching is to evaluate the subset in the object-color
atlas of the second observer that comprises all the
reflectances which are metameric for the first observer.
Alternatively, metamer mismatching can be evaluated in
terms of the object-color solid. Specifically, reflectances
mapping to a single point of the color-signal space of
one observer can map into some subset of points in the
color-signal space of another observer. This subset is
commonly referred to as the metamer mismatch volume
(Wyszecki & Stiles, 1982). Needless to say, because the
metamer mismatch volume is defined in color-signal
space, it is subject to all the variability discussed above
concerning the object-color-solid variability. Hence,
the investigation of the metamer mismatch volumes
should, generally speaking, be carried out not in
the object-color solid, but in the object-color atlas,
where their shape does not depend on the observation
conditions. This remark is especially relevant if the
objective is to compare these volumes in size.

Unfortunately, there is, as yet, no method for
determining the exact metamer mismatch volumes
even in the object-color solid. The reason for this lack
is of the same nature as in the case of object-color
solid. The fact is that from the formal point of view,
metamer-mismatching volumes are three-dimensional
cross-sections of a sort of six-dimensional object-color
solid (Logvinenko & Levin, 2023). The doubling
of dimension is due to the fact that the sensors of
both observers are combined. It follows that, in its
essence, estimating metamer mismatch volumes will
be reduced to estimating a six-dimensional object-
color solid. Because we have some computational
problems evaluating the object-color solid in the
three-dimensional space, is it any wonder that we are
not able to do this easily in six-dimensional space? We
believe that the approach presented in this article could
be developed into an algorithm for calculating exact
metamer mismatch volumes.

As in the case of object-color solid, however, the
computation becomes significantly easier if one restricts
oneself to an approximate estimation. Specifically,
one can begin with a five-transition approximation
of metamer mismatch volumes (an analog of the
two-transition approximation of the object-color
solid). Calculations (based on the five-transition
approximation) (Logvinenko, Funt, & Godau, 2012;
Logvinenko, Funt, & Godau, 2014) showed that
the metamer mismatching volumes are much larger
than one would expect based only on common sense
and intuition. Such five-transition approximations
of metamer-mismatch volumes have been shown to
provide important information that can be used in color
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imaging (Roshan & Funt, 2020; Roshan & Funt, 2022),
color rendering (Mirzaei & Funt, 2015b), and other
color science applications (Funt & Roshan, 2021).

Unfortunately, the accuracy of these five-transition
approximations relative to the six-transition metamer-
mismatch volumes remains unknown. Solving the
five-dimensional analog of Equation 9 yields, as a rule,
reflectances with more than five transitions. Therefore,
the true metamer mismatch volumes can be expected to
be even larger. Establishing a practical algorithm for
determining the true metamer-mismatch volumes will
facilitate determining how accurate the five-transition
approximation actually is. However, this is a topic for
future research that will involve developing a method
for solving an inverse problem similar to the one
described above for solving the Schrédinger problem.

In summary, while there have been various
approximations made of the object-color solid, the
full extent of the object-color solid was previously
unknown. The theory, algorithm and results described
here establish, for the first time, the true object-color
solid. The theory and algorithm also point the way to
establishing a method for computing true metamer
mismatch volumes. Thus the theory and methods
presented in this article not only establish the true shape
of the object-color solid, but their significance extends
to other areas of color science and technology.

Keywords. object-color solid, optimal reflectances, set
of all colors
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To parameterize the optimal reflectances in terms
of two transition wavelengths, the crucial step is to
establish the subset of ordered wavelength pairs A
= {(M1, 22): Amin < A1 < Ao < Apax §, for which there
is a one-to-one map A’ — O, where O is the set of
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optimal reflectances of type T1. By symmetry, we
only need to consider optimal reflectances of one
type. As pointed out in the main text, every pair
(A1, X») in A? induces an optimal reflectance that is
determined by the intersections of the plane passing

through the two points, < (A1) and < (A7), on the
spectral curve. This gives us a map (denote it r, and
denote the number of transitions of the optimal
reflectance function r(A;, A»)) as N(A1, A2)) of A2 onto
O; however, the difficulty is that r is not bijective (i.e.,
not one-to-one).

Figure 4 shows that some pairs from A> map to
optimal reflectances having more than two transition
wavelengths. As mentioned, if, for example, a pair
(A1, A2) induces an optimal reflectance, x,,;, with four
transition wavelengths A; < Ay < A3 < A4 then all
other ordered pairings of these four wavelengths (i.e.,
(A3, A4), (A1, A3) and so on) will also induce the same
Xpi. Therefore, all these pairs (i.e., taken from (A1, A2,
A3, A4)) map to x,,;, thereby violating the bijectivity
of r.

Fortunately, it is possible to delimit a region within
A? for which the map r becomes bijective. In Figure Al,
the area overlaid with dots is what we show below
should be excluded from A? to make map r bijective.

Denote the excluded area E and let us call A2 =A%\E
the admissible region of A”. Our goal here is to
determine the set of (A1, A») that form this region.

Given any (A1, A7) in A2 (A # A2), the points € (A1)
and @ (X,) on the spectral locus in chromaticity space
determine a line in the chromaticity plane that may
intersect the spectral locus at one or two additional
points: say, @ (A3) and possibly @ (r4), with A} < Ay <
A3 < Agq. In either case, we define r to map the pair (A,
A2) to the corresponding optimal reflectance with three
(respectively, four) transition wavelengths, A, A5, and
)»3 or )\], )\2, )»3, and Ag.

For the sake of generality one can assume that when
A1 = Ay (i.e., when (A, Ay) belongs to the diagonal A
= {(A, A): A € [Amin»> Amax]} of A?) thenr (A, L) is the
optimal reflectance induced by the tangent line to the
spectral locus at A. Indeed, as wavelength A, approaches
wavelength A, the secant line to the spectral locus
defined by the points @ (A1) and @ (X,) becomes the
tangent at @ (A;). Similarly, A3 = A4 denotes a tangency
at ¢ ()u;)

If the tangent to the spectral locus at @ (1)
intersects the spectral locus at points ¢ (1,) and
perhaps ¢ (X3) then it seems natural to have r map
(A, 1) to an optimal reflectance with transition
wavelengths A,, and possibly A3;. However, if the
tangent line at @ (1) does not intersect the spectral
locus at any other point, then r (A, A) is the perfect
reflector (or, the perfect absorber). If the tangent
line at @ (A) intersects the spectral locus at only one
other point, say, @ (A»), then r (X, 1) is x;(A; A2). If
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Figure Al. Plot of the number of transitions N(Aq, A,) for A1 <
A2. The color coding is the same as in Figure 4: dark/light purple
for zero transitions, dark/light gray for one transition, dark/light
blue for two transitions, dark/light green for three transitions,
dark/light red for four transitions. The dark colors correspond
to type T1 reflectances, the light colors with type T2. The graph
for A1 > A, is symmetrical and corresponds to type T2 optimal
reflectance functions. The area that is not overlaid with dots
defines the admissible region, A2, for the A-parametrization:
each different pair of transition wavelengths from this subset
specifies a different optimal reflectance function.

it intersects at two points ¢ (A») and @ (A3), then
r(A, )\.) = X1 ()\.; )\,2, )\.3).

It should be noted that, for any line intersecting
the spectral locus at exactly one point, there is a
tangent to the spectral locus that determines the same
optimal reflectance function. Given a line through
a point @ (1) that has no other point in common
with the spectral locus, rotating this line clockwise
or counterclockwise one can make the line touch the
spectral locus at exactly one point. Hence, the map r is
surjective since for any optimal reflectance x,,, there
is a pair (A1, A») (possibly with equal As) such that
r(Al, )\.2) = Xopt-

Consider now in more detail the r-image of the
diagonal A, i.e., r (A). To begin, the wavelength A where
a tangent to the spectral locus at @ (&,) intersects the
spectral locus can be found by solving the following
equation with respect to A:

r'ov) 1) -1y

A= 5060 ™ me —mG)

0, (34
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where m(A) and /(1) are the components of vector
< (A) (e, @A) = (m(r), [(1))) and m’ and [ are the
corresponding derivatives.

Admissible region along the diagonal

To determine the number of transition wavelengths
along the diagonal, A, we vary A, from A, to Apnax and
solve for the intersections of the tangent line at A, with
the spectral locus using (Equation 34). Beginning with
Ar = Amin, direct calculation shows that the tangent to
the spectral locus intersects the locus at only one other
wavelength A = u; = 538.2160 nm (i.e., T(i41; Amin ) = 0).
See Figure A2. This means there is a single wavelength
transition, $0 N(Amin, Amin) = 1. As A, increases beyond
Amin, the number of transitions remains unchanged
until A, reaches pu, = 418.5598 nm (see Figure A3), at
which point the tangent line intersects the curve at u3; =
664.9525 nm and € (Amax ). Note that, as discussed in
the context of Figure 2, the spectral locus bends inward
in the long-wave range, although the scale is not fine
enough for the bend to be seen in Figure A3. Therefore,
lines that are tangent to the spectral locus in the interval
[Amin» 12) cross the curve at only one location in the
interval [y, u3).

Starting from u,, the tangent lines start to cross
the spectral locus at two locations. This continues
until A, reaches AY. = 418.6862 nm, at which point
the line also becomes tangent in the long wavelength
end of the curve at A}, = 700.8941 nm (Figure A4).
The values for A* . and A} are found by using
(Equation 34) twice to obtain and solve the two
equations describing a line that is tangent to the spectral

locus at both @ (A%, )and @ (A},): T(A% ;s k) =0
and T'(Aj . Ani) = 0. Thus, for A, € [, A%

tangents to the spectral locus cross the curve twice at
A1 € (A% Amax] and A € [u3, A%,.), which can be
solved for using (Equation 34). This section of the
diagonal is excluded from the admissible region as it can
be uniquely represented by coordinate pairs (A1, A,).

The portion of the spectral locus between @ (A%, )
and ¢ (A%,,) is such that the tangent line at any point
along it does not have any other point in common
with the spectral locus, since for A; € [A} ., AL,
(Equation 34) has no solution. Hence, in Figure Al
the points (A, A,) along the diagonal for this interval
correspond to zero-transition optimal reflectance
functions and are indicated in purple. Because
zero-transition reflectances are all represented by
the single point (A*. , A*. ), the remaining diagonal
points {(A;, ;) [ A, € (A}, A, )} are excluded from the
admissible region.

The portion of the spectral locus between @ (A%, )

and ¢ (A},,,) combined with the interval connecting

its ends (i.e., @ (A*. ) and 7 (A},,)) makes a closed

max
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Figure A2. Tangent line through € (Amin) crosses the spectral locus at ¢ (1)
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Figure A3. Tangent line at 1, crossing the spectral locus at € (Amax) and < (u3). Recall that the spectral locus has two hooks,
although the one at the long-wave end is not visible in the plot.
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Figure A4. Tangent line to the spectral locus at © (A, ,) and T (A% _,). This tangent line defines the ends of the effective visible

spectrum.

contour that outlines the chromaticity gamut, that is,
the set of the chromaticities of all possible lights. The
interval [A%. , A% ] has been called the effective visible
spectrum interval (Logvinenko, 2013).

As A, moves beyond A}, two new intersections
emerge in the short wavelength end of the spectrum.
This continues to happen until A, reaches ug4 =
700.8944 nm (see Figure AYS), at which point the tangent
line crosses the spectral locus at A, and s =452.1641.
Thus, for A, € (A}, n4] tangential lines cross the curve
at two locations, A1 € (A, us]and Ay € [A% . Amin),
that can be solved using (Equation 34). Because these
tangents can be uniquely represented by off-diagonal
points with coordinates (A, A;), the fragment of the
diagonal in the interval (A}, ., 4] is not included in the
admissible region shown in Figure Al.

As A, moves past 4, the tangent line crosses the
spectral locus at only one location. This continues until
the tangent line passes through ug = 564.9482 and Apax
at A, = w7 = 714.6564. Solving Equation 34 for X; €
(4, ;7), we obtain the location of the crossing in the
interval (us, ug). For A, past u7, the tangent lines cross
the spectral locus at two locations, and by the same
reasoning as above, the fragment of the diagonal in
the interval [147, Amax ] 18 not included in the admissible
region. Table A1 summarizes the numerical values of
the parameters described above. The first three rows
of Table A2 give the bounds of the intervals of the
admissible region on the diagonal.
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A 418.6862
a 538.2160
o 418.5598
s 664.9525
s 700.8944
s 452.1641
e 564.9482
wy 714.6564
P 700.8941

max

Table Al. Numerical values in nanometers of the parameters
used to describe the admissible region. Note that us =
700.8944 nm and A}, = 700.8941 nm only differ at the fourth
decimal place.

Admissible region off the diagonal

Having established the intervals on the diagonal of

the A;A,>-plane that belong to the admissible region A2,
what remains is to determine the off-diagonal points
that belong to it as well. To do so, we consider A;
cross-sections of the AjA,—plane (i.e., fix A; and vary
A2), and describe the valid A, interval for each given
value of A;.

To begin, consider a line that crosses the spectral
locus at @ (A1) and @ (1), and let A be the longest
wavelength at which this line crosses the locus. This
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Figure A5. The line through @ (Amin) and tangent at ¢ (u4) crosses the spectral locus at € (us) as well.

Transition 1 (A;) wavelength interval (nm)

Transition 2 (A,) wavelength interval

Amin = 380.0000 < A; < 418.5598 = 4,
A, =418.6862 = A,

s =700.8944 < A, < 714.6564 = yu;
Amin = 380.0000 < A; < 452.1641 = s
ws = 452.1641 < Ay < 564.9482 = ¢
[te = 564.9482 < A, < 664.9525 = L3

13 = 664.9525 < A; < 700.8941 = A*

max

A
A1
A1
A <Xy < AwlAmin; A1)
)\.1 < )\.2 < )\'t()‘-l)
)\.1 < )\.2 < )\max
A < Az < Ae(Aq)

Table A2. The admissible region (shown as the nondotted area in Figure A1) is characterized by the set of points {(A1, A,)}, where A,
and A, are specified according to this table. For a A, in an interval from the left column, X, is restricted to lie within the corresponding
interval in the second column. The first three rows where A, = A1, describe the segments of the diagonal belonging to the admissible
region. The remaining rows describe the off-diagonal portions of the admissible region. For example, the fourth row indicates that for
A1 in the interval (380, 452.1641), A, must be from the interval (11, 1,,(380; A1)) in order for the coordinate pair (A1, A,) to belong to

the admissible region.

wavelength is determined as the largest root of the
following equation:

m) —m(ry) 1) —102)
m(h) —m(hs) () —I(ha)
(35)

W (ks Ay, A2) =

For A{ € [Amin, 5) the admissible interval for A, is
given by (A1, A,,), where A,,(Anin, A1) 1S the largest root
of W()‘; Amin » )\1)-

To understand why this is so, first recall that us =
452.1641 nm is the wavelength at which the line through
¢(Amin) and tangent to the spectral locus at A = g4
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crosses the spectral locus (see Figure A5). Consider now
some A’ > A,,(Amin, A1). The line through 7 () and
< (1) in Figure AS intersects the spectral locus at a
third point @ (A*) such that Ay, < A* < A;. However,
the pair (A*, A;) will already have appeared under such
a procedure for determining pairs (namely, in the case
when the value A* was taken as A;, and A" as A»). Thus,
to preserve the bijectivity of A2, we specify only the
following subset as belonging to the admissible region:

{(X1, A2) | A1 € [Mmin, #5)and
Ay € ()‘l, )\w()\mina )\1))} S F (36)
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For A € [us, we), we have Ay € (Aq, A;), where A; > A;
is the wavelength at which the line through A, becomes
tangent to the spectral locus, with A, being determined
by (Equation 34). The points in this section of the
admissible region are:

{(A1, 22) | A1 € [1s, p6) and Ay € (A1, A,(A1))} € A2 (37)

As before, Ar & [A;, Amax] Since for these values the
line through ¢ (A1) and 7 () would cross the spectral
locus at A < A, resulting in coordinate pairs (A1, A2)
that have already been allocated.

When A; € [/L(), M3) the cross-section of the
admissible region is given by A; € (Al, Amax]. Recall (see
Figure A3) that 3 = 664.9525 nm is the wavelength at
which the line through XA,«x and tangent in the short
wavelength region (i.e., at u,) crosses the spectral locus.
Unlike the previous cases, we do not need to exclude
points from the interval (1|, An.x] because the line
through 7 (X) and ¢ (X») does not cross the spectral
locus at any other location. Thus, this section of the
admissible region is:

{(h1, 22) [ A1 € [, ie3) and Az € (A1, Amax]) € A2 (38)

Finally, if A1 € [u3, Aj,,), then Ao € (A1, A7), where
A7 > A1 1s the second intersection of a line that goes
through X, and is tangent to the spectral locus at the
short wavelength end. To find A7, we first solve for
A«(x1) using (Equation 34). Then, with A, known, we
solve the same equation for the largest wavelength (i.e.,
solve T'(A7; A;) = 0). Note that for Ay > A,(}}) the line
through @ (X) and @ (X») crosses the spectral locus at
A < A1, resulting in coordinate pairs that have already
been allocated. For this reason, the interval for A, does
not include (A,(X), Amax]. This section of the admissible
region is then:

{()"17 )\2) | )\'1 € [IU“% max) and )‘2 € ()"la )"l()"l))} € A2
(39)

For A1 € [A} s Amax) and Ay > Ap, the crossings of
the line though @ (11) and @ (X») are all less than A;.
Thus, there are no points (A, A>) with A, > X1, that
belong to the admissible region for Ay > A} ...

To summarize, the admissible region can be divided
into several sections where each section can be described
by a set of points (11, A,) as defined in Table A2.

In Identifying the object-color solid via solving
Schrédinger’s problem, the inverse problem was
formulated as follows. Given a direction (i.e., a ray
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from the origin) in color signal space, find the optimal
reflectance that maps to some point along that ray.

In other words, given a color signal z* = (z}, 25, z3),
the problem is to find the optimal reflectance x,,,(A)
such that ® (x,,) = « (2}, 23, 25), where « is some
unknown constant (see Equation 33). More specifically,
it is required to solve the following equations for the
unknowns Aq, Ay, and «:

A'lﬂﬂ)(
/ xOu AL AT (W) sV dr=kzr (i=1,2,3),
s

(40)

where x(4; A1, A») is an optimal reflectance specified by a
(X1, A1) belonging to the admissible region as described
in Appendix A. Naturally, we will use numerical
methods to find an approximate solution instead of
the exact one, the existence of which was proved in
Appendix A.

Let us rewrite Equation 40 as

® (%) = kz*, (41)

where A = (A1, A2) and Z* = (2, 3, z3). Here @ is,
actually, the same as the color signal map, which
becomes a map R> — R? after parameterizing the
optimal reflectances with transition wavelengths 1,
and X,. It is convenient to change from Cartesian
coordinates zj, z,, and z3 to the spherical coordinates
0, o1, and oy, having radius p, and inclination («) and
azimuth («,) angles defined as

_ /2 2 2
P=4/2] T 25+ 23,
z3

b
/.2 2 2
Zl+22+23

Z—l . (42)
,/zf + z%

The range of the inclination and azimuth will be
restricted to the following intervals: 0 < o1 < 7 and
—T <0y <.

In these spherical coordinates, Equation 41 leads to
the following

F()=a" (43)

(af, o) is the direction corresponding to

o= arccos

ar= sgn(z;) arccos

where a* =

the point z*.
Here the two-variable function F = To®: R?> —

R’ is a composition of ® and part of the coordinate

transformation (Equation 42) involving «; and

oy (specifically, 7 stands for the last two lines in
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Equation 42). Relating @ = (a1, @) and A = (A, A2),
function F is invertible in a neighborhood, U (17), of a
point, A, provided that the Jacobian matrix, Jz, of F at
A is invertible, i.e., det (J5 (X)) # 0.

Suppose &* € F (U (1)), F (3*) =a*, F (A°) =a’,
and AX = 1" — 2, then

F() =F Q"+ Ax) ~ F (%) + 3 (A°) A%,
or

A=A 0 (@ - ),
where J;' (1°) is the matrix inverse of the Jacobian

matrix J7 (A°) of Fat Ao.
As a result, we have an approximate formula for the
solution to Equation 43:
Al =43 00 @ -, 44)
The smaller A%, the better the accuracy of this
approximation.
As we do not know A~ (thus, AX), we start from a A°

such that the corresponding direction @ is close to or*

. . .-l
so (@* —a") is small, and then iterate using A as the

new initial value. In particular, we have the following
iteration formula for a root of (Equation 43)

NATT =V )@ -, @5)

A sufficiently accurate approximation to A is reached in
a few iterations. This procedure is simply an application
of Newton’s method for solving nonlinear equations.

Applying the chain rule, Jacobian Jr (1) can be
expressed as

3 () = 3r.0 () =37 (& () J (7). @6)
From (Equation 42) we get by direct differentiation:

by By day
e 0z1 0zp 0z
h@mb{@m@]

dzy 0zy 0z3

/2,2
_ z1+z3

Z123 Z2Z3

— | VA A by
—22 Z1 0
:2—5—2% 22+:%

where p? = z3 + 23 + Z%
The entries of the Jacobian matrix Jo (A ) can be
found by differentiating the following equation:

Ao Aa

z,~=zi(x1,xz)=/s,(x)dx+fs,~(x)dx. (48)

Al A3
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Specifically, the partial derivative of z; with respect to
A 1S

821'

oly
— = 5. (r  (hg) —
7. s ( ‘)+S(4)ax

oA
— 5:(A3) a_xj (49)

Likewise, the partial derivative of z; with respect to A, is
given as

82[ 8)\.4
L ( () —2
7™ si (A2) + 5i (Ag) o7

oA3
503) 357 (50
Recall that the third and fourth transition
wavelengths A3 and A4 are functions of A and A,. In
fact, A3 and A4 are the roots of the function g(1) in
Equation 9, the coefficients, k;, of which are determined
by A1 and A, via Equation 24. Thus, we have

i=3 i=3

YW Z Org 0k;  Ohs I3 Ok;
& ok axl I — 9 e
o3 i Ohs Ok ks o s ok 1)
By ok; axl I ok; 9ry

i=1 =

The partial derivatives of A3 and A4 with respect to k;
were evaluated in Equation 26. So one gets

n; si (A)
oki — kis () +kash (1)) +kash (3;)

j=34

(52)

The coefficients k; are given in Equation 24 as functions
of A and A,. Differentiating Equation 24 yields

ak; i—1 S;) ()‘l) S; ()‘l)
O

A =1 sp(A2) 54 (X2) and
ki iy (S (A1) g ()
e Y oy san) Y

These formulae also apply when there are only three
transition wavelengths. In this case let A4 equal Ay .

When XA and A, are the only transition wavelengths,
we have

—51 (A1) 81 (A2)
Jo (A) = { —52 (A1) 52 (A2) }
—53 (A1) 83 (A2)

thus evaluation of the Jacobian matrix (46) becomes
simpler.

To summarize, we start solving by i) setting a
desired accuracy criterion; and ii) choosing some initial
value 1°. As to the accuracy, we wish to find a value
X, such that d (A*, 1) < e, where d is some metric,
and ¢ is the criterion value. In particular, we used
d (A, 1) = max {|A} — A1], |A3 — A2|}. As to the initial
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value, we produced a set of initial values by computing
the color signals Z = {® (A}, 1)} for an even grid
Ay = {(Al, k‘é)}, i,j=1,...N. Then, we computed the
set of directions 4 = {(a!, &])} corresponding to Z.
When solving Equation 41, we take as the first initial
value the one which corresponds to the direction in A
closest to @* = (7, o3) corresponding to z*. Formally,
the algorithm is as follows.

Step 1. Find the direction @’ = (), o) in 4 closest
(in terms of angular proximity) to a*. Let A° = (A{, 19)
and, perhaps, A3 and A4 be the transition wavelengths
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of the optimal stimulus for direction a°.
Step 2. Evaluate % via Equation 44.
Step 3. Repeat step 2 using %' as the initial value.

Specifically, given Xl, evaluate 1) all the transition
wavelengths (i.e., find A3 and A4, if any); and ii)
@' = F (2'). And then evaluate % via Equation 45; and
so on. 1

Stop when the difference between A" and A" is less
than the desired accuracy criteria €.



