
0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2015.2420560, IEEE Transactions on Pattern Analysis and Machine Intelligence

 1 

  
Abstract— A robust and accurate hue descriptor that is useful 

in modeling human color perception and for computer vision 
applications is explored. The hue descriptor is based on the peak 
wavelength of a Gaussian-like function (called a wraparound 
Gaussian) and is shown to correlate as well as CIECAM02 hue to 
the hue designators of papers from the Munsell and Natural 
Color System color atlases and to the hue names found in 
Moroney’s Color Thesaurus. The new hue descriptor is also 
shown to be significantly more stable under a variety of 
illuminants than CIECAM02. The use of wraparound Gaussians 
as a hue model is similar in spirit to the use of subtractive 
Gaussians proposed by Mizokami et al., but overcomes many of 
their limitations.  
 

Index Terms—Color, hue, Gaussian reflectance, wraparound 
Gaussian, color atlas. 
 

I. INTRODUCTION 
UE is an important component of color 
appearance. We explore a representation of hue 

for object colors in which, for a given color 
stimulus arising from the light reflected by an 
object, its hue is represented in terms of the peak 
wavelength of a Gaussian-like reflectance function 
metameric to that stimulus. Conventionally, hue is 
represented in terms of the angular component of 
the polar representation of a color in an opponent 
color space such as CIELAB in which two of the 
axes are roughly orthogonal to lightness [1]. 
Although these color spaces may work well for a 
fixed illuminant, they can lead to unstable results 
when the illuminant is changed. The source of this 
instability is that CIELAB and related spaces 
account for the illumination via von Kries scaling, 
but von Kries scaling can be subject to very large 
errors [2]. This is a serious problem even when the 
scaling is applied in a ‘sharpened’ [3] basis as in 
CIECAM02 [4].  

To overcome this problem, we explore [5][6] 
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basing hue on the peak wavelength of a metameric 
Gaussian-like reflectance from Logvinenko’s 
pseudo-color atlas as the representation of hue. 
Such Gaussian-like reflectances have been used 
previously as a tool for predicting how a color 
signal (i.e., cone response triple) changes with a 
change in illumination [7]. Similar, but somewhat 
different, Gaussian-based representations of hue 
have been proposed previously by Mizokami et al. 
[8][9] and further explored by O’Neil et al. [10] and 
shown to explain the class of hue shifts known as 
the Abney effect. As well, Mizokami et al. have 
shown that Gaussian-like functions can be used to 
provide reasonable 3-dimensional models of 
reflectance spectra.  

The tests reported below demonstrate that the 
proposed hue descriptor correlates well with the hue 
designators for the 1600 glossy Munsell papers and 
the Natural Color System samples. It also correlates 
well with the hue names used in Moroney’s Color 
Thesaurus. In addition, to correlating well with the 
hue categories in these datasets, we find that it is 
considerably more consistent under different 
illuminants than CIECAM02 hue.  Given these 
features, we show that it is also useful for automatic 
hue classification in digital images. 

II. BACKGROUND 
The Gaussian-like representation for hue used here 

has its roots in Logvinenko’s illumination-invariant 
object-color atlas [11]. In contrast to 
CIELAB/CIECAM02, his object-color atlas 
provides a coordinate system that does not change 
with a change in illuminant. The atlas is defined in 
terms of a special set of optimal spectral reflectance 
functions, no pair of which becomes metameric 
under any strictly positive illuminant (p λ >
0;   380 ≤ λ ≤ 780). For any sensor set and strictly 
positive illuminant spectral power distribution, any 
color stimulus (i.e., cone response triple) maps to a 
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unique element of the object-color atlas—in 
particular, to the element metameric to it under the 
given illuminant. The atlas’s rectangular reflectance 
functions are defined as a mixture of flat grey 
(constant reflectance of 0.5) and a rectangular 
optimal reflectance component taking only values 0 
or 1, with at most 2 transitions between 0 and 1.  

Given λ1 and λ2 as transition wavelengths, it is 
also possible to express the optimal reflectance 
functions by their central wavelength 𝜆 =(λ1 + λ2)/2 
and spectral bandwidth 𝛿 = 𝜆2−𝜆1 (see [11] Eqs. 
(13) and (14) for complete definition). We will refer 
to the triple αδλ as ADL coordinates. 

The 3-parameters of the atlas, α (chromatic 
purity), δ (spectral bandwidth) and λ (central 
wavelength) were shown [11] to be rough 
perceptual correlates of apparent purity, 
whiteness/blackness, and hue, respectively. When 
the illumination changes, the mapping of object 
colors to the rectangular atlas coordinates—and 
hence of the perceptual correlates too—is subject to 
a phenomenon referred to as color stimulus shift. 
Although the object-color atlas itself is illumination 
invariant, this does not mean that an object’s 
coordinate specification within the atlas will not 
change with the illumination. This is simply a 
consequence of the fact that two objects that are 
metameric under one illuminant may no longer be 
metameric under a different illuminant. In the case 
of the rectangular object color atlas, this means that 
the coordinates of the object may change as the 
object becomes metameric to a different one of the 
atlas’s rectangular functions.  

The effect of color stimulus shift is exacerbated by 
the fact that, by their very nature, the rectangular 
functions include two very sudden jumps, one up 
and the other down. In a subsequent paper, 
Logvinenko [12] suggests a “wraparound” Gaussian 
parameterization of the rectangular color atlas.  
Since Gaussians are smooth, and hence more like 
natural reflectances, they may mitigate the effects of 
color stimulus shift.    

Logvinenko’s wraparound Gaussian 
representation follows from, but also differs from, 
earlier such representations such as proposed by 
Weinberg [13] and Mizokami et al. [8]. The 
parameterization of the rectangular color atlas 

involves reflectances defined in terms of 3-
parameter wraparound Gaussian functions 

 defined as follows: 
If : 

For   (1) 

For    (2) 

 
On the other hand when :   

For    (3) 

For     (4) 

where  are the ends of the visible 
spectrum,   and . For , 

 and positive , we have a Gaussian-
like reflectance function (i.e., it is everywhere 
between 0 and 1). Although the function definitions 
are piecewise and a bit complex, intuitively they 
simply describe a Gaussian-like function centered at 
µ on the hue circle. We will refer to the triple kσµ as 
KSM coordinates, where σ stands for standard 
deviation, µ for peak wavelength, and k for 
scaling.  Fig. 1 shows an example of a wraparound 
Gaussian metamer and a rectangular metamer for 
the spectral reflectance of Munsell paper 5 YR 5/6 
under D65. In this, and all other cases below, the 
calculations are based on the  2-degree 
standard observer color matching functions [14]. 
The color matching functions are only available at 
finite number of discrete wavelengths (5nm 
spacing) so when calculating metamers values at 
intermediate wavelengths are interpolated. 

 
Fig. 1.  The spectral reflectance of Munsell 5 YR 5/6 (dashed black) illuminated 

by D65 and its metameric rectangular (dashed blue), subtractive Gaussian 
(dashed green), and wraparound Gaussian (solid red) spectra. Results are 
for the 𝐶𝐼𝐸  1931  𝑥𝑦𝑧  2-degree standard observer. 

Logvinenko parameterizes the rectangular object 
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color atlas using the wraparound Gaussians as 
follows. “If for any rectangular metamer 
𝑟 𝜆;𝛼, 𝛿, 𝜆  and a positive light 𝑝 𝜆  the equations 
(i=1,2,3) 

 

𝑟 𝜆;𝛼, 𝛿, 𝜆 𝑝 𝜆 𝑠! 𝜆 𝑑𝜆

!!"#

!!"#

= 𝑔! 𝜆; 𝑘!, 𝜃!, µμ! 𝑝 𝜆 𝑠!(𝜆)𝑑𝜆

!!"!

!!"#

              (5) 

 
have a unique solution with respect to the triplet 
(𝑘!,𝜃!, µμ!), we will say that we have the Gaussian 
representation of the rectangle color atlas.” [12].  In 
other words, if the conditions are met then for 
illuminant p(λ) there is a one-to-one mapping 
between the kσµ and αδλ coordinate systems. 
Logvinenko does not provide a proof as to when 
these conditions will be met; however, numerical 
testing has not yet yielded a counterexample except 
along the achromatic, black-white axis, where a 
singularity is to be expected. Note that for the case 
of sampled data such as the CIE color matching 
functions a proof will not be possible without 
additional assumptions about the form of the color 
matching functions. 

III. COMPARISON TO OTHER GAUSSIAN-LIKE 
MODELS 

Note that Logvinenko’s wraparound Gaussians are 
neither the same as the “inverse Gaussians” defined 
by Weinberg [13] and later used by MacLeod et al. 
[15] nor the same as the “subtractive Gaussians” 
defined by Mizokami et al. [8]. In the inverse 
Gaussian representation, illuminant and reflectance 
spectra are characterized by three parameters: the 
spectral centroid, spectral curvature, and scaling 
factor. The inverse Gaussian spectrum P(λ) is 
defined as:  

 
𝑃 𝜆 = γ. 𝑒!!(!!!)!    (6) 
 
where γ is the scaling factor, C is the curvature and 
T is the centroid. Note that depending on the sign of 
the quadratic term these functions are either 
Gaussians or the reciprocals of Gaussians. In the 
subtractive Gaussian representation [6] the spectra 

are specified in terms of the amplitude (𝛼), peak 
wavelength (𝜙), and standard deviation (σ) of the 
function: 
 

𝑆 𝜆 = α𝑒!!.!(
!!!
! )!                     for  α ≥ 0

1+ α𝑒!!.!(
!!!
! )!     for  α < 0

          (7) 

 
We will refer to these two cases as Gaussians of 

type G+ and type G-, respectively. 
In a previous study [7] we compared (see Fig. 2 of 

[7] page 1682) the gamuts of chromaticities in the 
CIE 1931 XYZ tri-stimulus space for subtractive 
Gaussians, inverse Gaussians, and wraparound 
Gaussians under illuminant CIE D65 and found that 
neither subtractive Gaussians nor inverse Gaussians 
can cover the entire chromaticity gamut when the 
functions are restricted to being reflectance 
functions (i.e., all values in [0,1]). On the other 
hand, wraparound Gaussians do cover the entire 
chromaticity gamut.  Given an XYZ, the parameters 
of the subtractive and wraparound Gaussians can be 
found via a two-parameter optimization [7] that is 
independent of the scaling parameter; however, in 
the case of inverse Gaussians such a decomposition 
is not possible, so a much more difficult, three-
parameter optimization is required. Given that 
inverse Gaussians are more difficult to compute and 
do not cover the chromaticity gamut, we do not 
consider them further here. 

The work of Mizokami et al. [8][9] and O’Neil et 
al. [10] has shown that Gaussian spectra may 
provide a good model of hue in the case of lights. 
However, there are some difficulties that arise in 
applying Gaussians of the subtractive type as a 
descriptor of hue for objects. In particular, the G+ 
and G- chromaticity gamuts overlap (see Fig. 2(a) of 
[7]) or Fig. 8. (a) page 17 of [9]) quite significantly. 
For the wraparound Gaussian, however, there is no 
such overlap (see Fig. 2(c) of [7]). The overlap for 
the subtractive Gaussians implies that for a given 
XYZ we might find metameric Gaussians of both 
type G+ and G-. Searching for just such a case, we 
easily found the example shown in Fig. 2. The fact 
that there are two metameric (up to 4-digit 
precision) subtractive Gaussians differing 
significantly in their peak wavelengths (380nm 
versus 621nm) poses a serious impediment to using 
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them as a hue correlate. A similar search of the 
space of wraparound Gaussians found no two 
different sets of KSM parameters resulting in 
metameric wraparound Gaussians. Note that this is 
excluding ‘white’ and ‘black’ reflectances, where 
there is a well-known singularity—What is the hue 
of black, grey or white? Of course, not finding such 
a case does not mean that it might still not exist, so 
we are not claiming that the wraparound Gaussians 
are better than subtractive Gaussians in this regard, 
only that there clearly is a problem with subtractive 
Gaussians. 

Another difficulty with subtractive Gaussians is 
that the scaling parameter affects the chromaticity 
of the resulting Gaussian differently depending on 
the type. In the case of type G+ changing α has no 
effect on the resulting chromaticity; however, for 
type G- changing α results in a different 
chromaticity.  Gaussians of type G- of the same 
chromaticity will differ in their 𝜙 and σ. Fig. 3 
shows an example. Whether it is preferable for a 
hue descriptor to remain the same for all XYZ of 
the same chromaticity or instead differ with the 
scaling can be debated, but it makes little sense for 
it to do both. In the case of wraparound Gaussians, 
all XYZ of the same chromaticity are always 
represented by Gaussians of the same σ and µ. 

 
Fig. 2.   Two metameric subtractive Gaussian functions, one of 

type G+ (black) and type G- (red).  Under D65, both these 
reflectances have CIE XYZ values (63.69, 64.97, 20.95). 
Parameters (α, 𝜎, 𝜙) defining these G+ and G- spectra are 
(0.8670, 93.5557, 621.1427) and (-1.0000, 118.4952, 380.0106), 
respectively.	  
 

 
Fig. 3. Three G- spectra having the same chromaticity but with 

their XYZ differing by a scale factor. Red curve: G- spectrum 
having XYZ = (77.9114, 79.2585, 20.8546). Dotted blue curve: 
0.95 x XYZ. Dashed green curve: 0.9 x XYZ. Parameters 
(α, 𝜎, 𝜙) defining these three G- spectra are (-1.0000, 38.5005, 
469.9995), (-0.8835, 56.2495, 455.2326) and (-0.8922, 74.5022, 
436.1658), respectively. Although the three curves appear to 
intersect at a common point in the plot, they in fact do not.  
 

IV. TESTS AND RESULTS 
We address two main questions: How well does 

the peak wavelength, µ, correlate with hue? And is 
µ, as a hue descriptor, robust to changes in the 
illumination?  In terms of the first question we 
compare how well it describes the hues of the 
Munsell papers, the NCS papers, and the hues 
Moroney tabulated in a Color Thesaurus [16] that 
were derived from a large, crowd-sourced, color-
naming experiment [17][18]. In terms of the second 
question, we compare the shift an illuminant change 
induces in µ and compare it to the shift it induces in 
CIECAM02 hue. The results show that µ is an 
accurate hue descriptor that is more robust relative 
to the illuminant than CIECAM02 hue.  

Note that in what follows, the plots are of hue 
versus log(σ) or hue versus CIECAM02 saturation, 
but all the analysis is strictly in terms of hue. 
Possible perceptual correlates of σ will be 
investigated elsewhere. In the present context, it is 
simply being used to spread out the hue plots nicely. 

In terms of computational requirements, KSM and 
ADL are very similar. The results reported below 
are based on the lookup-table-followed-by-
optimization approach originally proposed by 
Godau et al. [19] and require on the order of 60ms 
per sample. However, Finlayson et al. [20] 
developed a slightly less accurate, but much faster, 
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kd-tree method that requires only 0.1ms per sample 
and is fast enough to use with images. 

A. Munsell Dataset  
As a comparison of KSM µ and CIECAM02 hue 

correlates, we consider the set of 1600 papers of the 
Munsell glossy set. This follows a similar analysis 
by Logvinenko [11] of his ADL hue correlate λ. We 
synthesized the XYZ tristimulus values of all 1600 
papers based on the Joensuu Color Group spectral 
measurements [21] under the illuminant C using the 

 2-degree color matching functions and 
then computed the corresponding KSM (µ), ADL 
(λ), and CIECAM02 hues. When calculating the 
CIECAM02 appearance attributes, we adopted the 
parameters suggested for the “average surround” 
condition and full adaptation. 

Fig. 4 illustrates that qualitatively both KSM µ and 
CIECAM02 hue appear to correlate quite well with 
the plotted hues (approximate hues since published 
version is on an uncalibrated print/display) of the 
1600 papers of the Munsell glossy set. The 
correlation is indicated by the fact that the colors of 
the same hue align vertically. The plot of ADL λ, on 
the other hand, shows some intermingling of the 
reds and yellows. Here and in what follows, the 
units of λ and µ will be reported in degrees, rather 
than nanometers for consistency with CIECAM02 
for which hue is specified in degrees around the hue 
circle. The conversion of wavelength ω to degrees d 
is d = (ω – 380)/(780-380)x360.  

 
 

  
Fig. 4. Plots of the 1600 papers from the Munsell glossy set as a function of three different hue descriptors specified in degrees on the hue circle 

(see text). Left, KSM hue µ; middle, ADL hue λ; right, CIECAM02 hue. Each dot color only roughly approximates that of the corresponding Munsell 
paper under illuminant C.  

 
As a further qualitative comparison, we plot the 

KSM, ADL, and CIECAM02 hues of the papers of 
maximal chroma, but varying value, from five 
pages (10B, 10G, 10Y, 10R, and 10PB) of the 
Munsell Book of Color. As shown in Fig. 5, 
Munsell hue aligns better with the Gaussian KSM 
coordinate µ and CIECAM02 hue than with the 
rectangular ADL coordinate λ. 

To provide a quantitative measure of how well 
the three different hue descriptors account for the 
Munsell hue data, we trained a hue classifier based 
on genetic algorithm optimization. The problem is 
defined as finding the optimized hue boundaries 
that categorize the Munsell papers into 10 main hue 
groups (R, YR, Y, GY, G, BG, B, PB, P, RP) with 
the smallest misclassification rate. The 
misclassification rate then provides a measure of 
how well the given hue descriptor models Munsell 

hue. Note that the papers with Neutral Munsell 
designator have been excluded. These optimized 
boundaries are found in 3 separate optimizations 
using the GA optimization strategy [22]. For each 
optimization, the feature vector (i.e., vector of hues 
along with corresponding KSM Gaussian peak 
wavelengths µ, ADL rectangular central 
wavelengths λ, or CIECAM02 hues) is input to 
Matlab’s ga function from the Matlab Global 
Optimization Toolbox. The Matlab ga function 
optimizes the choice of hue boundaries so as to 
minimize the number of misclassified samples in 
the given feature vector. The resulting 
misclassification rates for KSM µ and CIECAM02 
hue are low at 7% and 6%, respectively, but higher 
at 19% for ADL λ.  

To evaluate the hues of Munsells papers in more 
detail, we have used the same genetic algorithm 

CIE 1931 x y z
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optimization to determine the optimal hue 
boundaries for the intermediate Munsell hue classes 
and measured the corresponding misclassification 
rates. Fig. 6 shows the misclassification rates for the 
intermediate Munsell hue designators which are red 
(Munsell hues R, 2.5R, 5R, 7.5R, and 10R) yellow-
red (YR, 2.5YR, …), yellow, green-yellow, green, 
blue-green, blue, purple-blue, purple, and red-
purple papers.  The average misclassification rate 
across all the hues combined is 31% for KSM µ 
versus 41% for CIECAM02 hue. 
 
B. NCS Dataset 

The Natural Color System (NCS) [23] provides 
another set of hue data. In the NCS notation hue is 
defined in terms of the percentage of the distance 
between the neighboring pairs of the ‘elementary’ 

hues red, yellow, green, blue. The two other 
components of the NCS notation specify the 
blackness and chromaticness. We carried out a 
sequence of tests using the NCS data that are 
similar to those described above using the Munsell 
data. The plot of the 1950 NCS papers analogous to 
Fig. 4 is qualitatively very similar and therefore is 
not included here.  As in the case of the Munsell 
papers, KSM µ and CIECAM02 hue show a very 
good correlation with NCS hue, while ADL 
correlates, but not as unambiguously.  

Fig. 7 plots the NCS papers of NCS hues R, 
Y50R, Y, G50Y, G, B50G, B, and R50B as a 
function of the KSM µ, ADL λ and CIECAM02 hue 
descriptors in a manner analogous to that of Fig. 5 
for the Munsell papers.  

	    	  	  	  	    	  
Fig. 5. Munsell hue versus hue descriptor specified in degrees. The triangle interiors represent the approximate color under illuminant C of the 

Munsell papers of different Munsell value, each at maximal chroma for the given value, for the five hues 10B, 10G, 10Y, 10R, and 10PB. The triangle 
boundaries are colored with the maximal chroma for the given Munsell hue. Left to right the plots are of the KSM Gaussian peak wavelength µ, the 
ADL rectangular central wavelength λ, and CIECAM02 hue. The vertical alignment in the left and right panels shows that papers of the same Munsell 
hue but differing value are all being assigned the same hue descriptor. In the central panel, there is some mingling of the red with the yellow and of 
the blue with the purple hues.  

 

Fig. 6. Hue misclassification rate for KSM µ (grey) versus CIECAM hue (black) over papers of the intermediate Munsell hues. The average 
misclassification rate for all the hues combined is 31% for KSM µ versus 41% for CIECAM02 hue.  
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Fig. 7. NCS hue versus hue descriptor specified in degrees. The triangle interiors represent the approximate color under illuminant C of the NCS 

papers of hues R, Y50R, Y, G50Y, G, B50G, B, and R50B for chromaticness greater than or equal to 40. The triangle boundaries are colored to 
indicate the given NCS hue name.  Left to right the plots are of the KSM Gaussian peak wavelength µ, the ADL rectangular central wavelength λ, and 
CIECAM02 hue. The vertical alignment in the left and right panels shows that papers of the same NCS hue but differing chromaticness and blackness 
are all being correctly assigned the same hue descriptor. In the central panel, there is some intermingling of the red, orange and yellow.  

 

C. Thesaurus Hue Names 
The issue of color naming is in many ways similar 

to hue classification. In terms of color naming data, 
Moroney’s color thesaurus summarizes the result of 
a very large online, crowd-sourced color naming 
experiment [16][18]. Subjects were asked to 
provide unconstrained color names for colors 
displayed against a uniform grey background 
viewed on an uncalibrated computer display. The 
question we ask is: How well do KSM hue and 
CIECAM02 hue predict the color names found in 
this color thesaurus?  

Many of the hue names in the thesaurus are not 
standard hue names (e.g., ‘crimson,’ ‘sunburst,’ ‘sea 
foam’). However, many others like ‘fire red’ and 
‘sea green’ include a standard hue name as a 
component of the name.  To limit the set of hues to 
‘standard’ ones, the tests described below are based 
on all the color names from the color thesaurus that 
included the 8 color names red, green, yellow, blue, 
brown, purple, pink, and orange from Berlin and 
Kay [24], excluding black, gray, and white. All the 
color names that include one of these 8 as a 
component are extracted from the thesaurus; 
however, those that include more than one of the 8 
names as components are excluded. For example, 
names such as ‘delft blue’ and ‘sage green’ are 
include under the categories blue and green, but 
‘blue green’ is excluded since it is not clear whether 
it describes a blue or a green. The result is 8 sets of 
color names of which there are 22 red, 99 green, 18 
yellow, 79 blue, 14 brown, 21 purple, 28 pink, and 
14 orange. 

Each entry in the thesaurus has an associated 
sRGB color descriptor. This sRGB value is 
converted to CIECAM02 and KSM [25][19]  
coordinates under the assumption that the display 
settings and viewing environment are intended to be 
D65. It should be noted that Logvinenko’s color 
object color atlas describes the colors of objects 
(surfaces) not lights.  Converting sRGB to KSM 
implies that the sRGB values are recorded from a 
surface, when in fact in Moroney’s experiment they 
were not, but rather from the light emanating from 
an emissive display.  This might mean that KSM 
hue will not model displayed colors as well as 
object colors, but the results below show that it 
models display colors well in any case. Fig. 8 plots 
the 8 color-name sets in terms of hue and saturation.  

As can be seen from Fig. 8, KSM hue appears to 
correlate with the hue names as well or better than 
CIECAM02 hue in terms of compactness of the hue 
range along the hue axis, and distinctiveness of the 
hues from one another. To compare the two hue 
descriptors quantitatively, we again test their 
effectiveness in terms of hue classification with 
class boundaries determined by genetic algorithm 
optimization. The optimized boundaries are drawn 
as vertical dashed lines in Fig. 8. The 
misclassification rate for the classifier based on 
KSM hue is 7%, whereas, for the classifier based on 
CIECAM02 hue it is 10%.  

D. Robustness of KSM Hue to Illuminant 
Thus far KSM µ has been shown to provide a good 

perceptual correlate of hue. The next question is 
whether or not this hue descriptor remains relatively 
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consistent under different illuminants. 
To determine the relative stability of KSM versus 

ADL and CIECAM02 hue coordinates under a 
change in illuminant, we synthesize the XYZ 
tristimulus values of 1600 Munsell chips under two 
illuminants (e.g., D65 and A) using the 

 2-degree observer color matching 
functions and then determine the corresponding hue 
coordinates. Table I provides a quantitative 
comparison based on circular statistics (since hue is 
defined on the hue circle) where it can be seen that 
KSM hue is significantly more stable than either 
ADL hue or CIECAM02 hue. 

It might be argued that one reason KSM hue is 
more stable than CIECAM02 is that it incorporates 
knowledge of the full illuminant spectrum.  Of 
course, there is no reason why CIECAM02 could 
not have been defined to make use of this additional 
spectral information too since it is readily available 
in the type of laboratory setting in which 

CIECAM02 is generally applied. In terms of digital 
imaging, however, it is often the case that only a 3-
channel measurement of the illuminant’s “color” is 
available, so we consider the situation in which the 
KSM hue calculation is based only on the 
illuminant XYZ, not its spectrum. For this we 
follow the procedure proposed by Mirzaei et al. [26] 
in the context of predicting the change in XYZ 
induced by a change in illuminant. Given the 
illuminant XYZ, a metameric wraparound Gaussian 
illuminant spectrum is found, and then this 
spectrum is used in the KSM hue calculation in 
place of the true illuminant spectrum. We will 
denote this method (KSM)2 since it involves two 
sets of KSM coordinates: one for the wraparound 
Gaussian illuminant and the other for the 
wraparound Gaussian reflectance. The last row of 
Table I gives the hue shift using the (KSM)2 

approach, which is comparable to the KSM result. 
 

 
Fig. 8. The color thesaurus samples from the 8 sets of color names (green, red, blue, yellow, purple, brown, pink and orange) plotted in terms of 

their KSM µ (left) and CIECAM02 hue (right). A dot’s color indicates the corresponding hue set to which the sample belongs. The dashed vertical 
bars indicate the hue boundaries minimizing the misclassification rate.  
 

TABLE I  

KSM, ADL AND CIECAM02 HUE SHIFTS FOR D65 TO A IN DEGREES 

 Median Mean 
KSM hue µ 2.10 3.87 
ADL hue λ 5.16 9.27 

CIECAM02 (full adaptation) hue 4.99       5.69 
(KSM)2  hue µ 2.43 3.76 

 
As a further test, we use all non-identical pairings 

of the different illuminants used by Logvinenko and 
Tokunaga [27] in their asymmetric color matching 
experiments. The illuminant spectra are plotted in 
Fig. 9. With the exception of the neutral illuminant, 
these lights are quite distinctly colored. As in the 
test described above using D65 and A, we first 

calculate the XYZ tristimulus values of Munsell 
chips under each of the illuminants and then 
compute the corresponding KSM and CIECAM02 
hues.  

The mean and median differences (circular 
statistics) of the KSM hues, (KSM)2 hues and 
CIECAM02 hues for the different illuminant pairs 

CIE 1931 x y z
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are tabulated in the Table II. Clearly, KSM hue µ is 
significantly more stable than ADL λ and 
CIECAM02 hues. Surprisingly, there is very little 
penalty, if any, for using the metameric Gaussian 
illuminant spectrum in place of the true illuminant 
spectrum—(KSM)2 hue is as stable as KSM hue on 
average. 

  
Fig. 9. Spectra (peaking in left-to-right order) of the blue (B), 

neutral (N), green (G), yellow (Y), first red (R1) and second red 
(R2) illuminants used in Logvinenko and Tokunaga’s experiments 
[27]. The plot colors indicate the corresponding spectrum’s name, 
along with grey for N and dashed red for R2. 

E. Real Images 
The tests above show that KSM hue is quite stable 

with respect to the illuminant, but is it also stable on 
images of real scenes? As a test, we consider the 
“Flowers” multispectral image from the University 
of Columbia spectral database [28] and synthesize 
the XYZ tristimulus values for it under illuminants 
CIE D65 and CIE A using the  2-
degree observer. For each pixel, we then compute 
the corresponding KSM µ and CIECAM02 hue and 
classify each according to the 8 hue ranges shown 
in Fig. 8 that were determined as described above 
using the Moroney dataset. The results are shown in 
Fig. 10. The upper row shows an approximate 
sRGB rendering of the image under the illuminant 
D65, along with KSM µ and CIECAM02 hue 
classification maps. The pixel colors have been 
chosen to indicate the hue names (but not the hues 
themselves). The lower row provides the 
corresponding results for illuminant A.  

Comparing the results in the two rows of Fig. 10, 
we can see, for example, that the CIECAM02 hue 
class assigned to a large portion of the central 
flower in the image changes from purple under D65 
to pink under A. Fig. 11 shows a map of the 
difference in assigned hue class between the upper 

and lower rows. Since there are eight classes, and 
they are defined on the hue circle, the differences 
range from 0 to 4. It is clear from Fig. 11 that the 
classes defined by KSM µ remain relatively 
constant, while those of CIECAM02 change. In 
quantitative terms, the class shift averaged over all 
distinct colors in the image was 0.07 for µ versus 
0.21 for CIECAM02 hue. To avoid large areas of a 
single color biasing the class shift results, we bin 
the XYZs and count each bin only once when 
computing the statistics of hue class shift. Each of 
the X, Y, and Z ranges is divided into 50 equal 
intervals so the total number of bins used is 503.  

As a second example, results of a similar test 
using the “Oil Painting” multispectral image from 
the Columbia dataset, along with illuminants D65 
and CIE F3 (fluorescent) in place of D65 and A, are 
shown in Fig. 12 and Fig. 13. Again, it is clear that 
KSM µ is more stable than CIECAM02 hue. The 
average class shift is 0.29 for KSM µ versus 0.48 
for CIECAM02 hue. 

To investigate how hue stability might vary with 
the illuminant, we consider the “Flowers” image 
when the illuminant is changed from D65 to each of 
10 very different illuminants: G, B, N, Y, R1, R2, 
CIE F12, CIE F3, and a standard LED light bulb of 
correlated color temperature 2700o Kelvin. The 
average hue class shift for a change from D65 to 
each of these illuminants, respectively, is plotted in 
Fig. 14.  

To investigate how hue stability might vary with 
the image content, we consider the entire set of 
images from the Columbia multispectral image 
dataset. Fig. 15 is a bar chart comparing KSM to 
CIECAM02 for each image for a change in 
illuminant from D65 to F3.  Fig. 16 provides a 
similar plot for a change from D65 to the 2700o K 
LED. Although the average shift in hue class varies 
from image to image, in the significant majority of 
cases the KSM hue class shift is less than the 
CIECAM02 hue class shift. This is reflected in the 
mean and standard deviation of the hue class shift 
across all the images in the dataset, which for Fig. 
15 are KSM (0.38 mean; 0.10 s.d.) versus 
CIECAM02 (0.61 mean; 0.21 s.d.); and for Fig. 16 
are KSM (0.14 mean; 0.05 s.d.) versus CIECAM02 
(0.18 mean, 0.10 s.d.). 

CIE 1931 x y z
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TABLE II 

KSM, ADL AND CIECAM02 HUE SHIFTS IN DEGREES FOR EACH ILLUMINANT PAIR 

Illuminants Median Mean  
From To KSM (KSM)2   ADL CIECAM02 KSM (KSM)2  ADL CIECAM02 

G B 11.23 13.17 21.79 17.43 22.36 25.77 43.42 27.37 
G N 12.94 15.56 17.71 15.45 14.16 16.66 28.56 20.95 
G Y 12.60 14.67 17.34 15.73 14.40 16.55 30.30 21.42 
G R1 29.25 28.23 50.67 34.24 36.36 31.44 54.39 46.22 
B N 11.83 17.34 36.23 33.77 21.38 25.22 51.19 36.87 
B Y 12.48 17.96 39.21 37.66 23.70 27.14 53.93 40.10 
B R1 32.12 31.59 68.26 61.97 41.22 38.46 69.00 71.28 
N Y 0.90 1.17 2.38 3.54 1.89 2.18 4.51 3.56 
N R1 15.68 11.85 19.43 32.48 24.87 17.98 31.91 36.93 
Y R1 14.93 11.79 18.00 29.38 23.94 17.51 29.01 33.57 

Column Means 15.40 16.33 29.10 28.17 22.43 21.89 39.62 33.83 

 

V. CONCLUSION 
Hue descriptors based on Gaussian models of 

spectra in which the peak wavelength of the 
Gaussian is used as a hue descriptor have been 
proposed previously by Mizokami [8][9] and 
Logvinenko [12]. Mizokami et al. directly model 
illuminant and reflectance spectral functions as 
Gaussians. In contrast, Logvinenko considers 
objects and suggests [12] (but does not test) using 
Gaussian reflectance functions that are metameric to 
the observed object color signal (XYZ).   

In this paper, we have investigated both the 
subtractive Gaussians Mizokami et al. use and the 
wraparound Gaussians that Logvinenko suggests in 
terms of three fundamental issues. First, what is the 
gamut of colors they can represent and is the 
representation unique? Second, in comparison to 
CIECAM02 how well does the peak wavelength of 
the Gaussian correlate with Munsell and NCS hue 
descriptors, as well as with the color names found in 
Moroney’s Color Thesaurus [16]. Third, in 
comparison to CIECAM02 how stable is the hue 
correlate (i.e., Gaussian peak wavelength) across 
different illuminants? Logvinenko had previously 
shown [11] that the central wavelength of the 
rectangular reflectance functions correlated 
reasonably well with hue so we include tests with 
those functions for comparison. 

In answer to the first issue, we found that the 
chromaticity gamut of subtractive Gaussians does 
not cover the entire chromaticity space. Perhaps 
more importantly, the subtractive Gaussian 
representation was found to be non-unique in the 
sense that two metameric subtractive Gaussians 

with different peak wavelengths exist in many 
cases. Whether or not the wraparound Gaussians are 
unique is an open question until a uniqueness proof 
is provided; however, numerical searching failed to 
turn up a metameric pair. A uniqueness proof is an 
important issue for future work. 

In terms of the second and third issues, tests with 
the Munsell, NCS and Moroney data under D65 
clearly show that the peak wavelength of the 
metameric wraparound Gaussian correlates with the 
different hue descriptors as well as CIECAM02 hue 
does on average. However, in terms of stability 
under a widely varied set of illuminants, the 
Gaussian hue descriptor is significantly more stable 
than CIECAM02 hue. This was also shown to hold 
true for (KSM)2 which relies only on the illuminant 
XYZ, not its full spectrum. The fact that the 
Gaussian hue descriptor correlates well with hue as 
defined by the Munsell and NCS color systems as 
well as the Moroney color naming data supports the 
hypothesis [9] that Gaussian spectra may in some 
way underlie hue perception.  

As demonstrated by the example of classifying the 
hues in two sample images, the fact that the 
Gaussian hue descriptor is relatively unaffected by 
the illuminant shows that it could be advantageous 
in any image processing application that depends on 
naming or classifying hues. The fact that in the case 
of (KSM)2 it was also shown to be stable even when 
a metameric Gaussian illuminant spectrum is 
substituted for the actual spectrum of the illuminant 
is important in the context of image processing 
when only the illuminant color, not its spectrum, is 
available. 

The chief disadvantage of the KSM hue descriptor 
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is that it is more costly to compute than CIECAM02 
hue, a problem that can be easily addressed by 
appropriate use of lookup tables and kd-trees [20]. 
Although very important, hue is only one perceptual 

dimension of color. Future work will involve using 
the other KSM parameters in modeling dimensions 
such as purity/saturation.  

 
Fig. 10. Hue classification using KSM µ versus CIECAM02 hue of the Flowers image from the Columbia University spectral database [28]. First 

and second rows depict the classification results for illuminants D65 and A, respectively. Left panel: Approximate sRGB rendering of the image. 
Middle: segmentation based on µ. Right: classification based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to 
it.	  

 
Fig. 11. Map of hue class shift for µ (left) and CIECAM02 hue (right) when the illuminant is changed from D65 to A. Class shifts can range from 0 

to 4. 
 

 
Fig. 12. Hue classification using KSM µ versus CIECAM02 hue of the Flowers image from the Columbia University spectral database [28]. First 

and second rows depict the classification results for illuminants D65 and F3, respectively. Left panel: Approximate sRGB rendering of the image. 
Middle: classification based on µ. Right: classification based on CIECAM02 hue. Each pixel is colored to roughly represent the hue name assigned to 
it.	  
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Fig. 13. Map of hue class shift for KSM µ (left) and CIECAM02 hue (right) when the illuminant is changed from D65 to F3 for the Flowers image. 

Class shifts can range from 0 to 4
 

 
Fig. 14. Average shift in hue class for KSM hue µ (grey) and 

CIECAM02 hue (black) for the “Flowers” image for a change in 
illuminant from D65 to each of 10 other illuminants. 

 

 
Fig. 15. Average hue class shift for each image when using 

KSM hue µ (grey) and CIECAM02 hue (black) for the whole 
Columbia dataset when the illuminant is changed from D65 to F3.  
Abscissa: image number. Ordinate: average hue class shift over 
corresponding image. 

 
Fig. 16. Average hue class shift for each image when using 

KSM hue µ (grey) and CIECAM02 hue (black) over the entire 
Columbia dataset when the illuminant is changed from D65 to the 
2700o K LED. Abscissa: image number. Ordinate: average hue 
class shift over corresponding image. 
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