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(57) ABSTRACT 

A method of estimating the chromaticity of illumination of 
a colored image consisting of a plurality of color-encoded 
pixels. The image colors are first mapped into an intensity 
independent chromaticity space which is then divided into a 
plurality of separate regions. For each region, a first binary 
value is assigned to the region if the region contains no 
chromaticity value; or, a second binary value is assigned to 
the region if it does contain a chromaticity value. The 
assigned values are then applied as inputs to a pre-trained 
neural network having two output ports and at least one 
intermediate layer containing a plurality rality of ports 
connectible between selected input ports and the output 
ports. The chromaticity space values which characterize the 
input image's chromaticity of illumination are then derived 
at the output ports. The network is pretrained trained by 
initially connecting an arbitrary number of the intermediate 
layer ports to selected input layer ports. A weight value is 
associated with each connection. The weight values, which 
have the effect of altering signals transmitted along each 
connection by a selected amount, are initialized with random 
values. Each one of a plurality of pre-stored data sets, each 
containing values characterizing presence or absence of 
color in selected regions of one of a corresponding plurality 
of known colored images, are sequentially presented as 
inputs to the network and the chromaticity space values 
derived at the output ports are compared with known chro 
maticity space values characterizing illumination of the 
known colored image to derive an error value representative 
of difference therebetween. The weight values are adjusted 
in response to the inputs in accordance with the well known 
back propagation algorithm. After the weights are adjusted 
the intermediate layer ports are adaptively reconnected to 
the input layer ports to eliminate connections to input layer 
ports which repeatedly receive zero value inputs. The train 
ing process continues until the error value is less than a 
selected threshold. 

13 Claims, 4 Drawing Sheets 
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1. 

METHOD OF EST MATNG 
CHROMATICTY OF LLUMINATION USNG 

NEURAL NETWORKS 

FIELD OF THE INVENTION 

This application pertains to a method for converting pixel 
values representing colors in a digitized color image from an 
illumination-dependent form to a standard, controlled 
illumination form by estimating the color of the ambient 
illumination, without requiring a set of known calibration 
colors to appear in the image. 

BACKGROUND OF THE INVENTION 

Colors expressed in a standardized form are preferable 
because they can be used, for example, by a robot to 
recognize objects on the basis of color. Non-standardized 
colors are so variable that a robot can not make reliable 
decisions on the basis of color. 

Colors expressed in standardized form are also useful for 
reproducing the colors in images more accurately. For 
example, the colors in a color image captured by a camera 
under illumination conditions that differ in color temperature 
from those for which the camera is color balanced will 
generally look "wrong'. For example, if a camera balanced 
for indoor incandescent light is used in outdoor daylight 
conditions, colors in the outdoor-captured image will look 
too blue since there is more blue in the daylight than there 
is in the indoor incandescent light. 

Digital color images can be created either by direct digital 
imaging on a charge-couple device ("CCD") chip, by digi 
tization of a video camera's analog output, or by digitization 
of images printed on paper, transparencies or film. In each 
case the basic principle whereby the resulting digital pixel 
values composing the image colors are created is the same. 
In particular, the spectral power distribution (spectrum) of 
the light reflected from a point on a matte surface is 
generally the product of the spectral power distribution of 
the illumination incident at that point and the percent surface 
spectral reflectance function of the surface. For a surface 
with a shiny, specular component the reflected light also 
includes a second component which has the same spectrum 
as the incident illumination. In either case, the spectrum of 
the reflected light as a function of position forms the light 
entering the camera and is known as the color signal. For 
each pixel, the digital color image's value depends on the 
imaging device's spectral sensitivity functions and on the 
spectrum of the incoming color signal. 

For sensitivity functions which are sensitive over a rela 
tively narrow range of wavelengths and which do not 
overlap significantly, the change in the resulting pixel value 
created by a change in the incident image illumination can 
be approximated well by scaling by the amount by which the 
color of the incident illumination changed. In this context, 
"the color of the incident illumination” means the camera's 
response to an ideal white surface viewed under that illu 
mination. If the sensitivity functions are not relatively nar 
row band, then a technique called "spectral sharpening” can 
be used to combine the output responses of the functions, 
prior to scaling, in order to optimize the scaling performance 
(see: Finlayson et. al. “Spectral Sharpening: Sensor Trans 
formations for Improved Color Constancy', J. Opt. Soc. 
America, May, 1994, pp. 1553-1563). If the color of the 
ambient illumination can be determined, then the difference 
between the color of the ambient illumination and the 
desired illumination can be used to produce an image which 
is colored as if it were taken under the desired illumination. 
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This process is often described as color correction. The 
present invention facilitates accurate estimation of ambient 
illumination and thereby facilitates image color correction. 
The "grey-world' method is one well known prior art 

technique for estimating the color of the incident illumina 
tion. With the grey-world method, the color of the incident 
illumination is estimated as the average of color in the 
image. This method is very unreliable because the average 
is very unstable. For example, the image of a large field of 
grass will be primarily green, so the average color in the 
image will be green, even though the skylight illumination 
illuminating the grass is far from green. Color correction of 
such an image based on the grey-world technique produces 
readily perceptible color errors throughout the image. 
Another prior art method of estimating the color of the 

incident illumination is the Retinex method (see: “The 
Retinex Theory of Color Vision', E.H. Land, Scientific 
American, 1977, pp. 108-129). This method effectively uses 
the maximum value found within the image for each of the 
three RGB color channels as the estimate of the color of the 
illumination. This method is unstable because it depends on 
the assumption that somewhere in every scene there will be 
a surface which is maximally reflective in each of the three 
color channels. This assumption is frequently violated. 

Another prior art method of estimating the color of the 
incident illumination is described by Wandell et al in U.S. 
Pat. No. 4,648,051. For 3-band color images, Wandell et al 
calculate the best two-dimensional subspace of the three 
dimensional space of image colors and then extract a model 
of the illumination based on the normal to that subspace. 
Unfortunately, this method is unreliable because the 
assumption that colors will lie in a two-dimensional sub 
space is generally violated. 

Another prior art technique estimates the spectrum of the 
incident illumination, from which its color is easily derived, 
by placing a set of surfaces of known percent spectral 
reflectance in the image where their color will be recorded 
in the image. This method has limited practical utility, since 
in general it is not possible to include the known surfaces in 
the image prior to imaging the image. 
The 2D convex hull gamut mapping algorithm is another 

prior art technique, which considers the set of possible 
illuminants that could map the observed gamut of image 
pixels to a canonical gamut of expected possible pixels 
under the standard, known illuminant. See: “Color Con 
stancy in Diagonal Chromaticity Space", Finlayson, Proc. 
IEEE Fifth Intl. Conf. on Computer Vision, June, 1995, pp. 
218-223. Although gamut mapping sometimes yields more 
accurate results than other prior art techniques, it is more 
time consuming. 
Von Kries adaptation is another prior-art color correction 

technique which can be used once the illumination is known. 
This is a process of scaling the RGB channels by a correc 
tion factor. See: “Necessary and Sufficient Conditions for 
Von Kries Chromatic Adaptation to Give Color Constancy”, 
West et al, J. Math. Biology, 1982, pp. 249-258. 

U.S. Pat. No. 5,351,079 Usui describes a method of 
estimating the illumination by using a 3-input, 3-output 
neural network as a decorrelator to minimize the correlation 
between the R, B and G bands of a color image. The neural 
network by itself does not accomplish color constancy; 
instead, it is trained to decorrelate the R, G, and B bands 
from one another. Usui's neural network uses only 6 
weights, depends on unsupervised instead of supervised 
learning, uses a feedback instead of a feed forward process, 
and functions only to decorrelate the signals in the color 
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bands. Moreover, Usui performs passive input-image 
independent color correction. In other words, Usui's correc 
tion steps are fixed once his neural network has been trained. 
By contrast, the present invention uses the input image data 
to adaptively determine the color correction to be applied. 

SUMMARY OF THE INVENTION 

In accordance with the preferred embodiment, the inven 
tion provides a method of estimating the chromaticity of 
illumination of a colored image consisting of a plurality of 
color-encoded pixels. The image colors are first mapped into 
an intensity-independent chromaticity space which is then 
divided into a plurality of separate regions. For each region, 
a first binary value is assigned to the region if the region 
contains no chromaticity value; or, a second binary value is 
assigned to the region if it does contain a chromaticity value. 
The assigned values are then applied as inputs to the input 
layer of a pre-trained neural network having an output layer 
with two output ports and at least one intermediate layer 
containing a plurality of ports connectible between selected 
input ports and the output ports. The chromaticity space 
values which characterize the input image's chromaticity of 
illumination are then derived at the output ports. 
The neural network is pre-trained by initially connecting 

an arbitrary number of the first intermediate layer ports to 
selected ones of the input layer ports. All other layers' ports 
are either fully or partially connected. A weight value is 
associated with each connection. The weight values, which 
have the effect of altering signals transmitted along each 
connection by a selected amount, are initialized with random 
values. Each one of a plurality of pre-stored data sets, each 
containing values characterizing presence or absence of 
color in selected regions of one of a corresponding plurality 
of known colored images, are sequentially presented as 
inputs to the neural network and the chromaticity space 
values derived at the output layer's output ports are com 
pared with known chromaticity space values characterizing 
illumination of the known colored image to derive an error 
value representative of difference therebetween. The weight 
values are adjusted in response to each input in accordance 
with the well known back propagation algorithm. During 
each training "epoch', all of the data sets are sequentially 
input to the network and the weight values adjusted as 
aforesaid. After each epoch, the intermediate layer ports are 
adaptively reconnected to the input layer ports to eliminate 
connections to input layer ports which repeatedly receive 
Zero value inputs. The entire training process continues 
through further epochs until the error value is less than a 
selected threshold. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic representation of a neural network 
architecture for implementing a preferred embodiment of the 
invention. 

FIG. 2 is a schematic representation of a typical neuron in 
the FIG. 1 neural network. 

FIG. 3 is a graphical representation of a colored image 
transformed into a two dimensional chromaticity space. 

FIG. 4 is a table comparing average angular error values 
obtained by applying the methodology of the invention to 
various images with average angular error values obtained 
by applying prior art methodologies to the same images. 

FIG.S is a table comparing root mean square error values 
obtained by applying the methodology of the invention to 
various images with average angular error values obtained 
by applying prior art methodologies to the same images. 
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4 
DETALED DESCRIPTION OF THE 

PREFERRED EMBODIMENT 

The “problem” is to determine the illuminant under which 
a given scene was imaged by a camera, without prior 
knowledge of the scene; or, to determine what an unknown 
scene, imaged under an unknown illuminant, would look 
like if illuminated by a given illuminant. 
The most common prior art methodologies make a series 

of assumptions in an attempt to constrain the problem. For 
example, the prior art "grey-world” algorithm assumes that 
the average of all colors in a scene is grey, i.e. the red, green 
and blue components of the average color are equal. By 
computing the actual departure of the average color from the 
assumed grey color, the grey-world algorithm determines 
the color of the illuminant. As another example, the prior art 
“white patch' or "Retimex' algorithm assumes that the color 
components of the illuminant are the maximum values of the 
components, over all colors in a scene. 
The present invention makes no such assumptions 

respecting the unknown scene. Instead, a neural network is 
used to adaptively estimate the unknown scene's chroma 
ticity of illumination. Before any unknown scene image is 
presented to the neural network for analysis, the network is 
first trained to "learn' from a training data set consisting of 
a large number of artificially generated known color images, 
including images of surfaces having a significant specular 
reflectance component. As hereinafter explained, the inven 
tion's neural network based methodology outperforms the 
prior art grey-world and white-patch algorithms, especially 
in the case of images containing a small number (1 to 5) of 
distinct RGB measurements. Accordingly, the invention is 
well suited to independent analysis of separate regions of an 
image, thus facilitating determination of multiple illumi 
nants in a single scene. 
The preferred embodiment of the invention employs a 

feed-forward perceptron-like neural network 10, shown in 
FIG. 1 (see "An Introduction to Computing with Neural 
Nets', Lippmann, IEEE ASSP Magazine, April, 1987, pp. 
11-15 for a discussion of perceptron neural networks). 
Neural network 10 has an input layer consisting of a large 
number of binary value input ports 12, an output layer 
consisting of two output ports 14, and two intermediate or 
"hidden” layers H1, H2. 

FIG. 2 schematically illustrates one of the neurons (or 
ports) of neural network 10.x, are the inputs (binary values 
of 0 or 1, as hereinafter explained) and W are the neuron 
weights. The neuron's output is a function of its total 
activation A: 

A =X w. X, 
ise 

The output transfer function f()is the sigmoid function: 

e-A-8) 

where 6 is a threshold value and A is the neuron activation 
as above. 

Since "color” is a perceptual quality, it is preferable to use 
a term such as "RGB' to mean the response of the image 
taking camera at a given pixel. "Good performance” with 
only a small number of distinct RGB's thus means that the 
neural network is particularly well suited for processing 
small, local image regions. This is important because gen 
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erally an imaged scene will contain more than one source of 
light, so the assumption that the scene illumination is 
constant will, at best, hold true only locally within an imaged 
St. 

Before an imaged scene is input to the neural network, 
each of the scene's colors is transformed from the RGB 
space into an intensity independent chromaticity space. 
Suppose that the color-encoded pixels are RGB-encoded 
pixels, where R, G and B are first, second and third color 
channel values respectively. Optionally, before the image 
colors are mapped into an intensity-independent chromatic 
ity space, the image itself is divided into a plurality of 
separate portions. Then, the following steps are taken with 
respect to each portion of the image: 

1. All pixels in the image portion having R, B or G values 
less than a selected minimum threshold are disregarded; 

2. All pixels in the image portion having R, B or G values 
greater than a selected maximum threshold are disregarded; 

3. The average R value of all non-disregarded pixels in the 
image portion is assigned as the image portion's R value; 

4. The average G. value of all non-disregarded pixels in the 
image portion is assigned as the image portion's G value; 
and, 

5. The average B value of all non-disregarded pixels in the 
image portion is assigned as the image portion's B value. 
Additionally and/or alternatively, before the image colors 
are mapped into an intensity independent chromaticity space, 
the color-encoded pixels can be mapped into a color 
encoding spectrally sharpened color space by combining the 
R, G and B color channels. The image is then divided into 
a plurality of separate portions as above; and, the five steps 
noted above are performed with respect to each portion of 
the image. 
Any one of a number of different chromaticity spaces can 

be used, including rg, rb, bg, perspective or vector-norm 
chromaticity spaces. In this context, a “perspective” chro 
maticity space has coordinates (rib, g/b) and a vector norm 
chromaticity space has coordinates (r/(r^+b+g)", b/(r'+ 
b'+g)'). Other intensity-independent or lightnessindepen 
dent spaces such as those defined by the u, v components 
or a, b components of the CIE 1976 (Luv") and CIE 1976 
(Lab) spaces (see: “Color Science: Concepts and 
Methods, Quantitative Data and Formulae, 2nd Edition, 
Gunter Wyszecki and W.S. Stiles, John Wiley & Sons Inc. 
1982) may also be used. 

Taking an rg chromaticity space as exemplary, the trans 
formation r-R/(R+G+B) and gaG/(R+G+B) is employed. 
Thus, as shown in FIG. 3, after transformation to chrona 
ticity space, all possible color chromaticities lie inside a 
square having sides of unit length; and, in fact, all the 
transformed data points lie in the lower left part of the 
square, under the diagonal. Transformation of colors from 
the 3 dimensional RGB space to the two dimensional rg 
chromaticity space results in loss of color intensity 
information, but preserves color chromaticity. 

After all colors in a scene are transformed to the rg 
chromaticity space, that space is uniformly sampled over a 
grid of notional squares having sides of length "S'. All 
colors inside any grid square correspond to one entry in an 
index array whose elements have binary values of either 0 
(color not present in grid square); or, 1 (color present in grid 
square). More particularly, because the neural network's 
input ports 12 form a one dimensional array, the two 
dimensional chromaticity space values are further trans 
formed into a one-dimensional array corresponding to the 
number of input ports 12. 
The larger the input layer (i.e. the greater the value of n), 

the better the color resolution, although a very large input 
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layer can significantly increase the required training time. 
Input layers having 900, 1600 and 2500 input ports have 
exhibited comparable results. 

Discrete sampling as aforesaid results in some loss of 
resolution because only color approximations are retained. 
But, it has the advantage that permutation-independent data 
is extracted for input to the neural network. This substan 
tially reduces the size of the training data set, significantly 
reducing the time required to train the neural network. 

During the training process, the chromaticity of the illu 
minant of each artificially generated image is also provided 
to the neural network. The data points plotted in FIG. 3 
correspond to colors present in a scene. The scene repre 
sented by FIG. 3 contains many colors. As can be seen, the 
data points do not cover the whole lower tri-angular region 
of the Figure since most colors occurring in nature are not 
very saturated. 
The neural network's hidden layers H1, H2 are much 

smaller than the input layer, with about 100-150 ports being 
typical in hidden layer H1 and about 20-50 ports being 
typical in hidden layer H2. Hidden layer H1 is not fully 
connected to the input layer; instead, only about 200-400 
randomly selected input ports 12 are initially connected to 
the H1 ports. Training can be done in accordance with the 
well known back-propagation algorithm: see Hertz et al, 
"Introduction to The Theory of Neural Computation', 
Addison-Wesley Publishing Company, pp. 115-120; or, the 
aforementioned Lippmann article at p. 17. The output values 
derived at output ports 14 constitute the desired estimate of 
the illuminant in the rg (or other selected) chromaticity 
space. 

In addition, during training, connections previously made 
between any pair of ports in the input layer and H1 can be 
removed; or, new connections made between such ports. For 
example, if for all training data set images, a particular one 
of input ports 12 always receives a binary input value of 0, 
then that input port is disconnected from H1, a different 
input port is selected for connection to H1, and training 
continues. Accordingly, neural network 10 is adaptively 
configured in a manner dependent upon the training data set, 
to bias the network so that it will process colors which are 
likely to occur and bypass colors which are not likely to 
C. 

Typically, the training data set consists of 100-1000 
scenes for each one of a number of different illuminants of 
interest. Each scene is composed of a number of artificially 
generated color "patches', which simulate real surfaces, as 
perceived by camera sensors under a specific illuminant. 
During training the training data set is presented several 
times to the network. As each data set scene is presented, the 
chromaticity space values derived at output ports 14 are 
compared with known chromaticity space values character 
izing the (known) illuminant for that data set scene, to derive 
an error value representative of the difference between the 
known and derived values. The training process cycles 
through all scenes in the training data set as many times as 
are required to reduce the cumulative mean error below an 
acceptable threshold. In practice, a mean error below 0.008 
is attainable. The error function used is the Euclidean 
distance in the chromaticity space between the known and 
derived values. 

Output ports 14 yield two values which together represent 
the neural network's estimate of the chromaticity of the 
illuminant in the rg (or other selected) chromaticity space. 
These values range from 0.00 to 1.00. In order to convert 
back to an RGB color space, one may derive the blue 
component as ba1-r-g and then scale the rg and b compo 
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ments by a selected factor. After deriving the color of the 
illuminant of an unknown imaged scene, one can easily 
determine what that scene would look like if illuminated by 
some other illuminant. Thus, the unknown scene image can 
be color-corrected to make it look like it was taken under a 
particular illuminant. 
The colour of animage is corrected by multiplying the red 

channel (the red part of each pixel) by a first correction 
factor. The green channel is corrected by a second factor, and 
the blue channel is corrected by a third factor. If the camera's 
sensitivity functions are not relatively narrow band, then 
spectral sharpening can be used to combine the camera's 
RGB output responses, prior to multiplying by said correc 
tion factor, so as to optimize the performance of the color 
correction. For example, in the case of RGB color-encoded 
pixels, where R, G and B are first, second and third color 
channel values respectively, the RGB-encoded pixels can be 
mapped into a color-encoding spectrally sharpened color 
space by combining the three channels. Derivation of the 
factors is explained below. In many cases a subsequent 
brightness correction step is also required. Thus, depending 
on the application, it may be necessary to maintain or 
specify a brightness property. For example, it may be 
required that the output image have the same average 
brightness as the input image, or have some specified 
brightness value. Alternately, the brightness of each pixel in 
the output image may be required to be the same as the 
corresponding pixel in the input image. In each case, the 
necessary adjustments to the formulae for the correction 
factors are straightforward, as hereinafter shown. 

In general, the colour correction procedure is based on the 
estimated chromaticity (p,q) of the unknown illuminant, and 
the known chromaticity of the target illuminant (p,q). These 
chromaticities are meant to include all possible choices of 
chromaticity space. First, (p,q) is used to construct a possible 
RGB colour of the illuminant designated by (R,G,B). The 
same method is then used to construct a possible RGB 
colour of the illuminant, designated by (R,G,B). The cor 
rection factors are the ratios of the three channel 
components, as follows: 
Red channel correction factor: R/R 
Green channel correction factor: Gi/G 
Blue channel correction factor: B/B 
Calculation of (R,G,B) from (p,q) depends on the chro 

maticity space. For the most common chromaticity spaces 
we have: 

(p,q) is (R/(R+G+B), G/(R+G+B); (R,G,B) is (p, q, 
1-p-q) 

(p,q) is (R/(R+G+B), B/(R+G+B); (R,G,B) is (p, 1-p-q, 
q) 

(p,q) is (G/(R+G+B), B/OR+G+B)): (R,G,B) is (1-p-q, p, 
q) 

(p,q) is (R/B, G/B); (R,G,B) is (p, q, 1) 
(p,q) is (R,G, B/G): (R,G,B) is (p, 1, q) 
(p,q) is (G/R, B/R): (R,G,B) is (1, p, q) 

In the following, Z-(R+G'+B)''': 
(p,q) is (R/Z, G/Z): (R,G,B) is (p, 9. (1-p- 2)/2) 
(p,q) is (R/Z, BZ): (R,G,B) is (p, (1-p?-q)'), q) 
(p,q) is (G/Z, B/Z) : (R,G,B) is ( (1-p- 2)/2), P, q) 

As mentioned above, the brightness of the image can be 
corrected, if needed. The chromaticity of a particular pixel 
does not change if each component is scaled by the same 
factor. Thus, each pixel can be corrected by a scaling “a” as 
follows: 

(R, G, B)->(aR, aG, aR) 
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The scaling factor “a” need not be the same for each pixel, 
although it often is. One of three methods can be used. 

In the first method, the average brightness of the output is 
set to a specific value M. N is defined as the number of 
pixels, and S is the sum of R+G+B over all pixels. Then the 
average brightness is given by AS/N, and the scaling factor 
“a” above is given by M/A, with "a"being the same for each 
pixel. 
The second method is simply a special version of the first 

method, in which M is set to the average brightness of the 
input image. 

In the third method, the scaling factor “a” is computed on 
a pixel by pixel basis so that the brightness of each output 
pixel is the same as that of the corresponding input pixel. In 
other words, for each (R,G,B) pixel, as(R+G+B)/(R+G'+ 
B'). 

Experimental Results and Comparisons 
A FIG. 1 type neural network having a 1250 port input 

layer, a 32 port hidden layer H1 and a 2 port output layer (i.e. 
hidden layer H2 was eliminated) was trained as described 
above with a large number of synthesized images, each 
containing a random set of from 1 to 60 surface reflectances. 
The illuminant portion of the training data set contained the 
spectral power distributions of 89 different illuminants, 
measured with a Photoresearch PR650 spectrophotometer at 
different places around a university campus. The reflectance 
portion of the training data set contained the percent spectral 
reflectance functions obtained from 368 different surfaces. 
During training, for each illuminant, the number of synthe 
sized images used usually ranged from 10 to 1,000. There 
was no noticeable improvement in the behaviour of the 
neural network, when trained on substantially larger training 
data sets. 
The number of training epochs was kept relatively small 

to reduce the required training time and reduce the size of 
the training data set. The training set was composed of 8,900 
images (i.e. 100 images for each illuminant) and each image 
had a random number of colors ranging from 1 to 60. The 
network was trained for 120 epochs. After completion of 
training the average error (i.e. Euclidean distance in the 
chromaticity space between the target output and the output 
obtained by the neural network) was 0.018608. 

Following training, the neural network was tested on a 
different set of images generated by randomly selecting 1,2, 
3, 5 or 10 surface reflectances. For each of these cases 100 
images were created. The average error obtained by the 
neural network for 100 images for each number of distinct 
reflectances is compared in Tables I and II (FIGS. 4 and 5 
respectively) to that obtained by three prior art color con 
stancy algorithms; namely, the aforementioned white-patch 
and grey-world algorithms; and, the 2D convex hull gamut 
mapping algorithms, with and without illumination con 
straints included. Comparisons with the aforementioned 
Wandell et all algorithm are not included, since that algo 
rithm has been shown to exhibit poorer performance than 
any of the three prior art algorithms tabulated in FIGS. 4 and 
S. 
The error measures shown in Tables I and II are the 

angular error and the root mean square error. The angular 
error is computed by converting the rg chromaticities of the 
illumination's true chromaticity and its estimated chroma 
ticity to 3-vectors and then measuring the angle between the 
two vectors. For the RMS error the chromaticities of all the 
surfaces in the image are corrected on the basis of each 
algorithm's illumination estimate. This yields an image as 
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the algorithm would expect it to be under the standard 
illuminant. The difference between the true chromaticities 
under the standard illuminant and those estimated by the 
algorithm is measured by the RMS error taken over all 
surfaces in the image. 
As will be apparent to those skilled in the art in the light 

of the foregoing disclosure, many alterations and modifica 
tions are possible in the practice of this invention without 
departing from the spirit or scope thereof. Accordingly, the 
scope of the invention is to be construed in accordance with 
the substance defined by the following claims. 
What is claimed is: 
1. A method of estimating the chromaticity of illumination 

of a colored image consisting of a plurality of color-encoded 
pixels which define a corresponding plurality of image 
colors, said method comprising the steps of: 

a. mapping said image colors into an intensity 
independent chromaticity space; 

b. dividing said chromaticity space into a plurality of 
separate regions; 

c. for each one of said regions: 
i. assigning a first value to said region if said region 

contains no chromaticity value corresponding to any 
of said image colors; 

ii. assigning a second value to said region if said region 
contains a chromaticity value corresponding to any 
of said image colors; 

d. applying each one of said assigned values to a different 
one of a plurality of input ports in an input layer of a 
pre-trained neural network, said neural network having: 
i. an output layer containing two output ports; 
ii. at least one intermediate layer containing a plurality 

of ports connectible between selected ports in layers 
adjacent to said intermediate layer; and, 

e. reading, at said respective output ports, chromaticity 
space values which characterize said chromaticity of 
illumination. 

2. A method as defined in claim 1, wherein said step of 
mapping said image into an intensity-independent chroma 
ticity space further comprises mapping said image into a two 
dimensional chromaticity space. 

3. A method as defined in claim 2, wherein: 
a. said two dimensional chromaticity space is one of: 

i. an rg chromaticity space; 
ii. an rb chromaticity space; 
iii. a bg chromaticity space; 
iv. a perspective chromaticity space; 
V. a vector-norm chromaticity space; 
vi. a uv chromaticity space; 
vii. an ab chromaticity space; 

b. said color-encoded pixels are RGB-encoded pixels, 
where R, G and B are first, second and third color 
channels respectively, and said step of mapping said 
image into said two dimensional chromaticity space 
further comprises: 
i. if said two dimensional chromaticity space is said rg 

chromaticity space, transforming each one of said 
RGB pixels to yield (p,q) components, where p is 
defined to be R/(R+G+B) and q is defined to be 
G/(R+G+B); 

ii. if said two dimensional chromaticity space is said rb 
chromaticity space, transforming each one of said 
RGB pixels to yield (p,q) components, where p is 
defined to be R/(R+G+B) and q is defined to be 
B/(R+G+B); 

iii. if said two dimensional chromaticity space is said 
bg chromaticity space, transforming each one of said 
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RGB pixels to yield (p,q) components, where p is 
defined to be B/(R+G+B) and q is defined to be 
G/(R+G+B); 

iv. if said two dimensional chromaticity space is said 
perspective chromaticity space, transforming each 
one of said RGB pixels to yield (p,q) components, 
where: 
(1) p is defined to be R/B and q is defined to be G/B; 

Or, 
(2) p is defined to be R/G and q is defined to be B/G, 

Or, 
(3) p is defined to be B/R and q is defined to be G/R; 

v. if said two dimensional chromaticity space is said 
vector-norm chromaticity space, transforming each 
one of said RGB pixels to yield (p,q) components, 
where: 
(1) p is defined to be R/(R+G'+B) and q is 

defined to be B/(R+G'+B)'; or, 
(2) p is defined to be R/(R+G'+B)' and q is 

defined to be G/(R+G+B); or, 
(3) p is defined to be B/(R+G'+B)' and q is 

defined to be G/(R+G'+B); or, 
vi. if said two dimensional chromaticity space is said 
uv chromaticity space, transforming each one of 
said RGB pixels to yield (p,q) components, where p 
is defined to be the u component of a CIE 1976 
(L'u'v) chromaticity space and q is defined to be 
the v component of said CIE 1976 (Luv') chro 
maticity space; and, 

vii. if said two dimensional chromaticity space is said 
ab chromaticity space, transforming each one of 
said RGB pixels to yield (p,q) components, where p 
is defined to be the a component of a CIE 1976 
(Lab) chromaticity space and q is defined to be the 
b' component of said CIE 1976 (Lab) chromatic 
ity space. 

4. A method as defined in claim 1, further comprising, 
before said step of applying said assigned values to said 
neural network input layer input ports, mapping said 
assigned values into a one-dimensional input space contain 
ing a plurality of input values corresponding to said plurality 
of input ports. 

5. A method as defined in claim 1, further comprising 
pre-training said neural network by: 

a. connecting an arbitrary number of said input layer ports 
to selected ports in one of said intermediate layers 
adjacent to said input layer; 

b. connecting said one intermediate layer's ports to ports 
in another of said layers adjacent to said one interme 
diate layer, and further connecting any remaining ones 
of said intermediate layers to a next adjacent one of said 
layers until all of said adjacent layers are connected; 

c. assigning, to each one of said connections, a selected 
weight value for altering signals transmitted by each of 
said connections by a selected amount; 

d. for each one of a plurality of pre-stored data sets, each 
of said data sets containing values characterizing pres 
ence or absence of color in selected regions of one of 
a corresponding plurality of known colored images: 
i. selecting a different one of said pre-stored data sets; 
ii. applying to said input layer said color presence? 

absence values contained in said data set, 
iii. comparing said two chromaticity space values 

derived at said respective output ports with known 
chromaticity space values characterizing illumina 
tion of said known colored image to derive an error 
value representative of difference therebetween; 
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iv. selectively reassigning said weight values to reduce 
said error value while minimizing changes to mini 
mized error values previously obtained in perform 
ing this step (d) in respect of data sets other than said 
one data set; and, 

e. repeating step (d) until said error value is minimized to 
a value less than a selected threshold. 

6. A method as defined in claim 1, wherein: 
a. said input layer has about 900 to 2,500 input ports, and, 
b. said intermediate layer has about 100 to 150 input ports. 
7. A method as defined in claim 1, wherein: 
a. said input layer has about 1,000 input ports, 
b. said intermediate layer has about 100 to 150 input 

ports; and, 
c. said neural network further comprises a second inter 

mediate layer having about 20-50 ports, said second 
intermediate layer connectible between selected ports 
in said at least one intermediate layer and in said output 
layer. 

8. A method as defined in claim 1, wherein said color 
encoded pixels are RGB-encoded pixels, where R, G and B 
are first, second and third color channel values respectively, 
said method further comprising, before said claim 1(a) step: 

a. dividing said image into a plurality of separate portions; 
b. for each one of said portions: 

i. disregarding all pixels in said portion having R, B or 
G values less than a selected minimum threshold; 

ii. disregarding all pixels in said portion having R, B or 
G values greater than a selected maximum threshold; 

iii. assigning, as said portion's R value, the average R 
value of all pixels in said portion which have not 
been disregarded; 

iv. assigning, as said portion's G value, the average G 
value of all pixels in said portion which have not 
been disregarded; and, 

V. assigning, as said portion's B value, the average B 
value of all pixels in said portion which have not 
been disregarded. 

9. A method as defined in claim 1, wherein said color 
encoded pixels are RGB-encoded pixels, where R, G and B 
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are first, second and third color channels respectively, said 
method further comprising, before said claim 1(a) step, 
mapping said color-encoded pixels into a color-encoding 
spectrally sharpened color space by combining said chan 
nels. 

10. A method as defined in claim 1, wherein said color 
encoded pixels are RGB-encoded pixels, where R, G and B 
are first, second and third color channels respectively, said 
method further comprising, before said claim 1(a) step: 

a. mapping said color-encoded pixels into a color 
encoding spectrally sharpened color space by combin 
ing said channels; 

b. dividing said image into a plurality of separate portions; 
c. for each one of said portions: 

i. disregarding all pixels in said portion having R, B or 
G values less than a selected minimum threshold; 

ii. disregarding all pixels in said portion having R, B or 
G values greater than a selected maximum threshold; 

iii. assigning, as said portion's R value, the average R 
value of all pixels in said portion which have not 
been disregarded; 

iv. assigning, as said portion's G value, the average G 
value of all pixels in said portion which have not 
been disregarded; and, 

v. assigning, as said portion's B value, the average B 
value of all pixels in said portion which have not 
been disregarded. 

11. A method as defined in claim 5, wherein said selec 
tively reassignment of said weight values further comprises 
calculation of said weight values by backpropagation. 

12. A method as defined in claim 5, further comprising, 
after said step 5(d) and before said step 5(e), adaptively 
reconnecting said intermediate layer ports to said input layer 
ports to selectively eliminate connections to inputlayer ports 
which repeatedly receive zero value inputs. 

13. A method as defined in claim 5, wherein at least some 
of said known colored images include surfaces having a 
significant specular reflectance component. 


