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Metamer mismatching underlies color difference sensitivity

Brian V. Funt
School of Computing Science, Simon Fraser University,

Vancouver, BC, Canada

Emitis Roshan
School of Computing Science, Simon Fraser University,

Vancouver, BC, Canada

Color difference sensitivity as represented by the size of
discrimination ellipsoids is known to depend on where
the colors reside within color space. In the past, various
color spaces and color difference formulas have been
developed as parametric fits to the experimental data
with the goal of establishing a color coordinate system in
which equally discriminable colors are equal distances
apart. These empirical models, however, provide no
explanation as to why color discrimination varies in the
way it does. This article considers the hypothesis that
the variation in color discrimination tolerances reflects
the uncertainty created by the degree of metamer
mismatching for a given color. Specifically, the greater
the degree of metamer mismatching for a color, the
wider the range of spectral reflectances that could have
led to it and, hence, the more finely a color needs to be
discriminated in order to reliably identify materials and
objects. To test this hypothesis, the available color
discrimination data sets for surface colors are gathered
and analyzed. A strong correlation between color
discrimination and the degree of metamer mismatching
is found. This correlation provides evidence that
metamer mismatching provides an explanation as to
why color discrimination varies throughout color space
as it does.

Introduction

Two objects with different spectral reflectance
functions are metamers under a given light if they
induce the identical cone response triples. When the
light is changed, their cone responses may no longer
be identical to one another. If so, they are no longer
metamers under the second light. In other words, they
match one another under the first light but fail to match
under the second light. This phenomenon is sometimes
referred to as metamerism, but we prefer the less
ambiguous term metamer mismatching (Logvinenko et
al., 2013). This article explores the relationship between
metamer mismatching and how accurately observers
can distinguish pairs of very similar colors.

Chromaticity discrimination ellipses, initially
measured and plotted by MacAdam (1942), describe
the set of colors surrounding a given color in CIE
xy-chromaticity space that are indistinguishable to the
average observer. The variation in the ellipses’ sizes
reveals the nonuniformity of the CIE 1931 color space.
In other words, Euclidean distance in CIE XYZ color
space does not reflect the perceived color difference
between two given colors for a human observer.
Subsequently, many researchers have conducted
related experiments to quantify and model the color
discrimination pattern in order to define more uniform
color spaces.

It is common to represent color discrimination
thresholds in terms of ellipses in two-dimensional
chromaticity planes or ellipsoids in three-dimensional
color spaces. The varying sizes and orientations of
the ellipses and ellipsoids show that the threshold for
discriminating one color from a very similar one varies
as a function of the color involved. While fits to the
data are valuable in the development of new uniform
color spaces and color difference formulas, they do
not explain the data. The hypothesis that metamer
mismatching is the underlying cause of the variation
in color difference sensitivity was posited and briefly
outlined before (Funt & Roshan, 2018). The present
article explores the hypothesis in detail and thoroughly
tests it by bringing to bear all the available experimental
data on color discrimination ellipsoids. This includes
a comparison to the CAM16-UCS uniform color
space showing that—despite being based on a direct
fit to experimental data—CAM16-UCS models color
discrimination no better than predictions based solely
on the metamer mismatching hypothesis.

Background

MacAdam (1942) was the first to fit ellipses for 25
color stimuli throughout the CIE 1931 chromaticity
space. Silberstein and MacAdam (1945) found that the
distribution of the matches in their color-matching

Citation: Funt, B. V., & Roshan, E. (2021).Metamermismatching underlies color difference sensitivity. Journal of Vision, 21(12):11,
1–11, https://doi.org/10.1167/jov.21.12.11.

https://doi.org/10.1167/jov.21.12.11 Received February 5, 2021; published November 23, 2021 ISSN 1534-7362 Copyright 2021 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from jov.arvojournals.org on 11/25/2021

mailto:funt@sfu.ca
mailto:rroshan@sfu.ca
https://doi.org/10.1167/jov.21.12.11
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2021) 21(12):11, 1–11 Funt & Roshan 2

experiments was statistically normal with different
standard deviations and covariances in different
directions about different colors. From this they
posit that the surfaces of standard deviation in
three-dimensional color spaces can be represented
by ellipsoids. Subsequently, other researchers
performed similar experiments aimed at measuring the
standard deviation of color matches made in different
regions of color space. Silberstein (1946) devised
formulas determining the coefficients and the axes of
color-matching ellipsoids from the experimental data.

Brown and MacAdam (1949) followed Silberstein’s
method and derived the coefficients of 39 ellipsoids in
one color space and presented methods for converting
the ellipsoid coefficients to other color spaces. Their
investigation involved a 2-degree monocular field of
view and a dark background. In a subsequent study,
Brown (1957) used a 10-degree field of view, binocular
matching, and a white surround.

There has been a great deal of study into threshold
color differences. For example, many different
apparatuses using a mixture of primary lights as the test
or reference colors have been used to gather the data
that were later used in modifying color spaces and color
difference formulas (Romero et al., 1993; Wyszecki,
1965; Wyszecki & Fielder, 1971; Yebra et al., 2001).
Sharma et al. (2005) provided a data set for additional
tests of the CIEDE2000 formula. CIEDE2000,
introduced by the International Commission on
Illumination (CIE), is a color difference formula based
on the CIELAB color space that models the color
difference between any two CIELAB color values.
Subsequent testing by Sharma et al. (2005) revealed
three sources of discontinuity in the CIEDE2000
equations. Wen (2012) proposed calculating the color
difference by counting the number of just noticeable
differences between two colors and showed that it
outperforms CIEDE2000 in predicting threshold
color differences. Wyszecki and Fielder (Wyszecki &
Fielder, 1971) state that their results “show remarkable
discrepancies between ellipses obtained by the same
observer at different occasions (separated by weeks
or months) under otherwise identical observing
conditions” (p. 1140).

Another group of studies has used colored surface
samples. Huang et al. (2012) conducted an experiment
using 466 pairs of printed samples surrounding 17
color centers to evaluate 10 color difference formulas.
In another study, Luo and Rigg (1986) combined the
ellipses for surface colors from different sources to
produce a consistent set of ellipses. The RIT-DuPont
data set (Berns et al., 1991) is based on color-coated
aluminum panels and provides color difference data for
19 color centers. Melgosa et al. (1997) subsequently
derived a set of color difference ellipsoids from the
RIT-DuPont data. Witt (1987) and Cheung and Rigg
(1986) reported color discrimination ellipsoids for four

and five CIE reference color centers, respectively, using
printed samples and dyed wools.

Pridmore and Melgosa (2005) analyzed the ellipse
area and dimensions from four different data sets
and observed that the principal semiaxes of the
discrimination ellipses increased at lower luminance
levels. Luo et al. (2006) employed a combination of
different data sets based on surface color samples and
CRT colors to test the performance of CIECAM02.
CIECAM02 is a color appearance model (CAM)
introduced by the CIE that provides a description of
how a color stimulus appears to a human observer. It
models different aspects of human color perception
based on the context in which a color sample is
observed, including viewing conditions such as the
surrounding colors and the color of the ambient light.
Luo et al. (2006) introduced three modified versions of
CIECAM02 known as CAM02-SCD, CAM02-LCD,
and CAM02-UCS by fits, respectively, to three data
sets: the SCD (small color difference) data set (Luo et
al., 2001) of 3,657 color pairs from different 4 data
sets, the LCD (large color difference) data set (Zhu
et al., 2002) of 2,954 color pairs from 6 different
data sets, and the combined SCD plus LCD data set.
While all these modifications have the same structure
as the original CIECAM02 version, Li et al. (2016)
and Li et al. (2017) derived a new color appearance
model named CAM16 by performing both chromatic
and luminance adaptation in the same space rather
than in two different color spaces. CAM16 avoids the
unexpected problems that sometime occur with the
CIECAM02 lightness computation and at the same
time outperforms it in predicting the corresponding
color data sets and color appearance data sets.

All of the models and uniform color spaces derived
from the above experiments are based on fits to the
experimental data. Many provide good fits to the
data, but they remain data models. Smet et al. (2016)
argue that the existing algorithms for specifying the
basic structure of color appearance “are designed
only by describing empirical measurements of color
discrimination or similarity ratings, and not by asking
what causes color appearances to be as they are.” In line
with our goal here, they derive a color appearance model
by making general assumptions about the physiological
and neural mechanisms of color encoding. While their
model predicts an organization of color experience
that is qualitatively similar to that of the Munsell
system, no quantitative analysis is provided, nor is color
discrimination explicitly addressed, and in particular, it
does not explain the fundamental underlying reason as
to why color discrimination thresholds vary as they do.

The Smet et al. (2016) model and the earlier models
by Eskew and Kortick (1994) and Stockman and
Brainard (2010) build on the three-stage Müller
zone model (1930) that describes cone-opponent and
color-opponent pathways and model additional factors
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such as noise and signal compression. These studies
aim to explain how neural mechanisms implement
the computation of color discrimination. In contrast,
the metamer mismatching hypothesis aims to help
explain why the visual system computes the differences
between colors the way it does. These are parallel, but
fundamentally different, questions. However, progress
in answering one can be expected to be useful to
answering the other.

Hypothesis

Metamer mismatching arises from the fact that
normal trichromatic color vision is based on only three
weighted-sum measurements of the reflected light’s
spectrum impinging at any given point on the retina,
whereas that spectrum—the product of the illuminating
light’s spectrum and the surface’s underlying spectral
reflectance function—is much more complex. This lack
of information allows two reflectances that induce the
same color signal (i.e., cone response triple) under one
light, and hence are a metameric match, to differ in
their color signals (i.e., mismatch) under a second light.

In general, given the color signal of an object with
respect to a given illuminant, many other surface
reflectances can lead to the same color signal with
respect to the same illuminant. The color signals of
these metamers will disperse into many different color
signals under a second, different illuminant. The set of
all such color signals forms a convex body referred to
as the metamer mismatch volume (Logvinenko et al.,
2013) or metamer mismatch body (MMB) (Zhang et
al., 2016). The study by Zhang et al. (2016) on metamer
mismatching showed that it is most severe for gray and
least severe for highly saturated colors (see Figure 1).
Our hypothesis is that to be able to reliably discriminate
physically distinct surfaces from one another, observers
must be more sensitive to the differences between colors
for which metamer mismatching creates significant
uncertainty (i.e., when metamer mismatching is
extensive) and least sensitive for colors for which
metamer mismatching creates little uncertainty.

The volume of the MMB (i.e., the volume of the set
of all possible color signals that can arise under the
second light given the color signal under the first light)
for a given color signal is a measure of the possible
variability in the nature of the underlying physical
reflectance. The larger the MMB, the larger and more
varied is the set of reflectances that are all metameric
(i.e., create the same LMS cone response) under a given
light. Hence, for colors with large MMBs, there is more
uncertainty as to the exact nature of the underlying
surface reflectance function. Intuitively, it is clear that
there are likely more reflectance functions that lead to a
mid-gray, where the entire range of the visible spectrum

Figure 1. Plot of MMB volume averaged over all hues showing
how the MMB volume decreases with distance in Munsell value
and/or chroma from gray (value 6, chroma 0).

is likely to be involved, than there are to a saturated red,
for example, where mainly the long-wave portion of the
spectrum is involved. Color discrimination experiments
typically use a fixed illumination condition, a rather
artificial circumstance. However, for an observer
wishing to identify a given physical surface by its
color under typical but varied lighting conditions, it is
therefore more important to distinguish the shades of a
grey surface as precisely as possible and less important
to distinguish the exact tint of a red one. Similarly, there
are very few reflectances leading to pure white, with the
limit being the ideal white created by a uniform 100%
reflectance. The set of all color signals that a set of
sensors can produce under a given light forms a convex
hull in Rn, which is known as the object color solid
(OCS). In contrast to the gray, which is at the center of
the OCS, for any color signal on the boundary of the
OCS, there is only one possible reflectance creating it,
so the volume of the MMB drops to zero for such color
signals. This is illustrated by the plot in Figure 1.

Metamer mismatching is usually discussed from
the point of view of two physically distinct surfaces
that appear identical (i.e., match in the sense of
creating identical cone response triples) under
some first illuminant become distinguishable (i.e.,
mismatch) under some second illuminant. From the
reverse perspective, however, the degree of metamer
mismatching can be considered the likelihood that
two different color signals (i.e., cone response triples)
corresponding to two different reflectances under one
illuminant could become indistinguishable under some
other illuminant. Why might this matter? Consider, for
example, the green leaves of two different plants, one
poisonous, the other not, that appear different at noon
but become almost indistinguishable at sunset. Clearly,
it is important to be able to distinguish them at all
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times of day. Since the degree of metamer mismatching
varies throughout color space, to reliably identify
similarly colored but physically different surfaces
from one another, the visual system needs to be more
discriminating in some regions of color space than
others.

As an illustrative case, let us consider the uncertainty
with which a color identifies a particular surface
reflectance, S. For example, suppose that under D65,
S has color CD65. The MMB of CD65 for a change of
illumination to CIE A, for example, represents the set of
all colors that could result when S is lit by CIE A instead
of D65. From the reverse perspective, under CIE A,
any color CA in that MMB is a candidate for matching
CD65 under D65. Now suppose that we observe CA;
does it correspond to S? The answer is “almost certainly
not” because CA could have arisen from any one of
an infinite set of metameric reflectances, only one of
which is reflectance S. Hence, the MMB represents the
“uncertainty” in being able to identify a specific surface
such as S by its color under some other illuminant (i.e.,
CIE A in this example).

The MMB itself represents the minimum degree of
uncertainty. When inaccuracy in matching a specific
color is added, then the uncertainty increases. For
example, suppose that under D65, colorC ′

D65 is similar
enough to CD65 that it matches CD65. The uncertainty
then becomes the union of the MMB of CD65 and
the MMB of C ′

D65 along with the MMBs of all
colors in between. In other words, it is the set of all
colors that either CD65 or C

′
D65 (or those in between)

could become under CIE A. Given a threshold for an
acceptable level of uncertainty (keeping in mind that
metamer mismatching means that some uncertainty is
unavoidable), how does the tolerance for error in color
discrimination vary as a function of color? To provide
some further intuition, Figure 2 shows the trend from
gray to both blue and red (Munsells 5B 5/6 and 5R
5/8). The figure is based on keeping the volume of
the convex hull of the two MMBs fixed. That choice
of volume is quite arbitrary other than needing to be
somewhat larger than the volume of the MMB for
flat-spectrum gray under a change in illuminant from
D65 to CIE A. The convex hull of the two MMBs
provides a good approximation to the union of the
infinite set of MMBs for all points between the two
colors. The qualitative upward trend in the Figure 2
(bottom) is unaffected by the precise number. Note
that this example is only an illustration, not a complete
model (e.g., it models distance, not volume, and it
will fail for colors approaching the boundary of the
object color solid where in the limiting case, the volume
of the MMB tends to zero). The figure is intended
to provide some intuition as to how the uncertainty
reflected in metamer mismatching could affect the size
of discrimination ellipsoids, but intuition only. A formal
statistical analysis of the evidence of the relationship

Figure 2. Example illustrating how the distance between two
points in XYZ needs to increase in order to keep the volume of
the convex hull of their MMBs equal to a constant. (Top) The
two-dimensional projection of the MMB pairs showing their
fixed-volume convex hulls containing MMBs that get
progressively smaller as the color is moved from gray on the left
to blue Munsell 5B 5/6 on the right. The distance between the
two samples making up each pair is adjusted to make all the
convex hull volumes the same. (Bottom) Plot of the distance
between colors in a pair for flat gray (i.e., uniform 50% spectral
reflectance) to blue (solid blue curve) corresponding to the
MMBs (top) and, in addition, gray to Munsell red 5R 5/8
(dashed red curve).

between metamer mismatching and ellipsoid volume is
presented in the next section.

Color discrimination data sets and statistical
analysis

Four color discrimination data sets of Cheung
and Rigg (1986), Witt (1987), Huang et al. (2012),
and Melgosa et al. (1997) report the parameters of
the color discrimination ellipsoids, not just ellipses,
and are therefore useful for evaluating the metamer
mismatching hypothesis. Since the data sets use a
variety of different color spaces, they are first converted
to a common color space and their ellipsoid coefficients
updated correspondingly. Details of the conversion are
provided in the Appendix.
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Data set Sample type
Number of color

centers
Number of
observers Number of samples

Witt Painted samples 4 22 to 24 50 to 64 per color center
Cheung Dyed plain wool serge 5 20 59 to 82 per color center
Huang Samples produced using EPSON Stylus PRO 7800 ink-jet printer 17 9 20 to 30 per color center
Melgosa Acrylic-lacquer automotive coating sprayed on primed aluminum panels 19 50 642 pairs in total

Table 1. Summary of the four data sets used in our study.

The details of the data sets are as follows. Cheung
and Rigg (1986) prepared one standard pair along with
59 to 82 sample pairs made of dyed wool fabric for each
of the five CIE reference color centers of Gray, Red,
Yellow, Green, and Blue (Robertson, 1978) and asked
the observers to express the color difference for each
of the sample pairs as a ratio of the perceived color
difference to that of a fixed standard pair. The fitted
ellipsoid parameters are reported in xyY color space,
which we convert to CIE XYZ color space.

Witt (1987) used painted samples around four of the
five CIE reference color centers: Yellow, Red, Blue, and
Gray. Observers were asked if the color difference was
perceptible in the sample pairs or not. The coefficients
of the fitted ellipsoids are reported in xyY color space.

Huang et al. (2012) prepared 446 pairs of printed
color patches surrounding 17 color centers for a
grayscale psychophysical experiment to scale the
color differences of the sample pairs. Although the
parameters of the fitted ellipsoids in CIELAB color
space are reported in Table VII of their article, Huang
et al. considered the ellipsoid’s parameters less reliable
than the ellipses’ parameters because their research was
focused on chromatic differences and the sample pairs
were selected such that, compared to the variations

in chromatic directions (axes A and B), they had
small variations in the lightness direction (axis L).
Nevertheless, we compute the boundary points of the
ellipsoids using the given parameters in CIELAB color
space and then transform them to CIE XYZ to be
consistent with other data sets.

Berns et al. (1991) prepared a gray anchor pair
with a color difference of 1.02 �E∗

ab units (CIELAB
color space). They asked the observers to compare the
magnitude of the color difference of the sample pair to
that of the anchor pair. Probit analysis was then used to
compute 156 median tolerances around 19 color centers
in different directions. Melgosa et al. (1997) then used
the 156 median tolerances reported in the RIT DuPont
data set (Berns et al., 1991) to compute the ellipsoid
parameters in x, y, Y/100 color space. For our purposes,
we convert the Melgosa ellipsoids’ coefficients to XYZ
color space. The four data sets explained above are
summarized in Table 1.

To test the metamer mismatching hypothesis, the
volumes of both the discrimination ellipsoids and
the MMBs are needed. The discrimination ellipsoids’
coefficients from all four data sets converted to XYZ
color space are used to compute the volumes of
the color discrimination ellipsoids, Evol, in XYZ, as

Figure 3. Plots of the volumes, Evol, of the color discrimination ellipsoids in XYZ space as a function of the inverse of the normalized
volumeM of the corresponding metamer mismatch bodies (i.e., C3/M) for the two color discrimination data sets having samples with
a minimum of 17 color centers. Left: C3/M fit to the Melgosa data set, r = 0.83, mean jackknife estimate of r = 0.83, bias = 0.03, SE =
0.13. Right: C3/M fit to the Huang data set, r = 0.9, mean jackknife estimate of r = 0.9, bias = −0.05, SE = 0.11.
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described in the Appendix. For each color center, the
volume, M, of the corresponding MMB for a change in
illuminant from CIE D65 to CIE A is computed directly
in XYZ space using the algorithm of Logvinenko et
al. (2013). M is then normalized by C3, the cube of
the Euclidean distance, C, from the origin to the given
color center. This normalization eliminates the effect of
the intensity/luminance on the volumes.

If the hypothesis that metamer mismatching
underlies the variability in color discrimination as a
function of color center is correct, then there should
be a high correlation between Evol and C3/M. Note
that C3/M is dimensionless. The jackknife method
is used to examine the accuracy of the correlation
coefficient estimates. Jackknife uses a leave-one-out
strategy to derive the bias in an estimator, resulting in a
bias-corrected estimate of the original statistic.

The correlations between Evol and C3/M for the
Melgosa (i.e., 19 color centers based on the Berns et
al. [1991] data) and Huang (17 color centers) data sets
are shown in Figure 3. The figure caption includes
the Pearson correlation coefficient (r), mean jackknife
estimate of r, bias, and standard error (SE) in jackknife
replicates. A y-intercept is included in the linear
regression model. The null hypothesis is rejected at the
5% significance level, with p values in all cases being less
than 10−5. The results are as follows: r = 0.83 with a
mean jackknife estimate of r = 0.83, bias = 0.03, and
SE = 0.13 for the Melgosa data set; and r = 0.9 with
a mean jackknife estimate of r = 0.9, bias = −0.05,
and SE = 0.11 for the Huang data set. The correlation
between Evol and C3/M includes the nonlinearity of
the inverse 1/M. The corresponding, simpler (negative)
linear correlation results between Evol and M/C3 are
significantly weaker: −0.52 and −0.7, respectively.

Merging the data sets

In the previous section, the statistical analysis is
conducted separately for the two color discrimination
data sets that contain at least 17 color centers each. Two
of the other data sets include discrimination ellipsoids
for only four color centers, in one case, and five in the
other. The goal of this section is to combine the data
from all four different data sets into one larger data set.
The difficulty in doing so is that the data sets are all
based on different experimental protocols resulting in
different scales. We combine the ellipsoid measurements
from the various data sets following the basic strategy
that Luo and Rigg (1986) used when combining ellipse
data.

Luo and Rigg (1986) measured color discrimination
ellipses (not ellipsoids, unfortunately) for 70 color
centers and plotted the discrimination ellipses from
their experiment along with those from 13 other data
sets (all measurements are based on physical samples,

Cheung et al. Melgosa et al.

Color x y Y x y Y

Gray 0.314 0.331 30.0 0.315 0.335 27.4
Red 0.484 0.342 14.1 0.481 0.341 12.7
Green 0.248 0.362 24.0 0.263 0.367 23.53

Table 2. xyY coordinates of the common color centers in the
Cheung and Melgosa data sets.

Figure 4. Linear fit of the ellipsoid volume (Evol) versus the
inverse of the normalized MMB volume (i.e, C3/M) for the
merged data set of 45 color centers, with the null hypothesis
again rejected at the 5% significance level with p value 7e-16, r
= 0.88, mean jackknife estimate of r = 0.88, bias = −0.01, SE
= 0.06.

Inverse of normalized
Dataset MMB volume CAM16-UCS

Melgosa data set 0.83 0.84
Huang data set 0.9 0.89
Merged four data sets 0.88 0.87

Table 3. Correlation coefficients between the experimental
ellipsoids and (a) the ellipsoid volumes predicted by the inverse
of the normalized MMB volume and (b) the ellipsoid volumes
predicted by CAM16-UCS.

not lights) and observed that the main discrepancy was
in the relative sizes of the ellipses. They introduced the
individual set factor (referred to as R̄) as a scaling factor
for each ellipse and the mean of R̄ values for each group
(referred to as S) to adjust the ellipses onto a common
scale. They showed that adjusting the individual ellipses
with R̄ values results in a more consistent plot than
using the group mean for each data set.
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Following the basic approach of Luo and Rigg
(1986), but modified for ellipsoids rather than ellipses,
we use scaling factors to bring the different data sets
onto a common scale. To combine different color
discrimination data sets, we use the ratio of the ellipsoid
volumes for the color centers that the data sets have in
common. For each pair of data sets, we find the color
centers that exist in both, average the ratios of their
ellipsoid volumes, and then use that average ratio to
normalize the data sets with respect to one another. As
one example, the xyY coordinates of the color centers
that are in common in the Cheung et al. and Melgosa et
al. data sets are listed in Table 2.

Figure 4 shows a linear fit for the data in the merged
data set derived from the Cheung, Melgosa, Witt, and

Huang data sets. The null hypothesis is again rejected at
the 5% significance level with r = 0.88 and a p value of
7e-16.

Ellipsoid volume prediction using normalized
MMB volume

The statistics reported in the two previous sections
show that there is a strong correlation between the
volumes of the color discrimination ellipsoids reported
in the literature and the inverse of the normalizedMMB
volumes. Overall, the statistics support the hypothesis
that the uncertainty introduced by the presence of
metamer mismatching explains the variation in color
discrimination thresholds. In other words, for a given

Figure 5. Plots of the ellipsoid volumes, Evol, of the experimental color discrimination ellipsoids in XYZ space versus the ellipsoid
volumes, ECAM16, of the unit CAM16-UCS �E spheres, for both the individual and combined color discrimination data sets. The
statistics for the linear fits (summarized in Table 3) are very similar to those in Figures 3 and 4. (Upper left) CAM16 prediction of
Melgosa data set, r = 0.84, mean jackknife estimate of r = 0.85, bias = 0.04, SE = 0.11. (Upper right) CAM16 prediction of Huang
data set, r = 0.89, mean jackknife estimate of r = 0.89, bias = −0.014, SE = 0.07. (Bottom) CAM16 prediction of merged data set, r =
0.87, mean jackknife estimate of r = 0.87, bias = 0.0001, SE = 0.04.
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color, the inverse of the normalized MMB volume
predicts the volume of that color’s discrimination
ellipsoid.

Since CAM16-UCS is one of the most uniform
color spaces developed thus far, it is natural to consider
whether or not it predicts the color discrimination
ellipsoid volumes of data sets that were not used in
its development any better than the proposed MMB
hypothesis. CAM16-UCS describes color appearance in
terms of six attributes: lightness, brightness, chroma,
colorfulness, saturation, and hue. Its coefficients are
based on a direct fit to the experimental data. In an
ideal uniform color space, the color discrimination
thresholds would be equal in all directions and about
all colors, and color discrimination ellipsoids would
become spheres. Therefore, we consider spheres of
unit �E in CAM16-UCS around each of the color
centers included in the four data sets, convert them
to XYZ coordinates, and fit the volumes of the
resulting ellipsoids in XYZ to those of the color
discrimination ellipsoids. Figure 5 shows the Pearson
correlation coefficient (r) between the unit �E spheres
in CAM16-UCS color space (ellipsoids in XYZ space)
and the discrimination ellipsoid volumes reported in
the data sets, the mean jackknife estimate of r, and the
bias and standard error (SE) in jackknife replicates.

The CAM16-UCS fits can be compared to those
shown in Figures 3 and 4 obtained using the inverse
of normalized MMB volume. The results are also
summarized in Table 3. The reported statistics are
very close to the ones calculated with normalized
MMB volumes. Given that the CIE CAM16-UCS
model is optimized to fit experimental data that
includes the RIT-Dupont (Berns, Alman, Reniff,
Snyder & Balonon-Rosen, 1991) data set (i.e., the
same experimental data as the Melgosa data set), it is
significant that the normalized MMB volume performs
equally well, based as it is on an underlying theoretical
principle rather than a fit to the psychophysical data.

Discussion and conclusion

The results shown in Figures 3 and 4 indicate a
strong correlation between color discrimination and
metamer mismatching. In particular, as the extent of
metamer mismatching increases, color discrimination
thresholds decrease. Zhang et al. (2016) showed that
metamer mismatching is most significant for ideal gray,
is high for colors of low saturation, decreases with
increasing saturation, and tends to zero for colors on
the boundary of the object color solid. The strong
correlation supports the hypothesis that the uncertainty
created by metamer mismatching underlies color
discrimination thresholds since it correctly predicts that
color discrimination is finest near gray and becomes
coarser and coarser for more and more saturated colors.

Four sets of experimental data measuring color
discrimination ellipsoids are available for testing. The
fits shown in Figures 3 and 4 are not perfect, but they do
indicate the hypothesized relationship. Furthermore, as
the results in Table 3 and Figure 5 show, CAM16-UCS,
even though based on direct fits to similar experimental
data, is no better a predictor of color discrimination
than metamer mismatching.

This article has explored the hypothesis that the need
for the visual system to overcome the uncertainty (as
illustrated by Figure 2) due to metamer mismatching
is the reason why there is more precise discrimination
between colors in some regions of color space than
others. The strong correlation found between the
experimental data and the inverse of the metamer
mismatch body volumes, while not proof, is an evidence
supporting the idea that metamer mismatching provides
an explanation for as to why color discrimination varies
in the way it does.

Keywords: color discrimination, metamer
mismatching, discrimination ellipsoid
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Appendix

The conversion of ellipsoid parameters from one
color space to another is as follows. In general, given
gik, the ellipsoid parameters in one coordinate system,
such as the instrument’s RGB, the following relation
recommended by Brown and MacAdam (1949) can be
used to convert them to another color space such as
XYZ:

Gjl = (
∂xi/∂xj

)
(∂xk/∂xl ) . gik; i, j, k, l = 1, 2, 3 (1)

where

xi, xk = R, G,B and x j , xl = X ,Y , Z (i.e., x1 = R; x2 = G, etc.)

Gjl values are the ellipsoid parameters in XYZ color
space, and the partial derivatives are obtained using the
transformation equations:

R = a11X + a12Y + a13Z (2)

G = a21X + a22Y + a23Z (3)

B = a31X + a32Y + a33Z (4)

For instance,

∂R/∂X = a11; ∂R/∂Y = a12 (5)

As an example, writing one equation in full gives
G11 = (∂R/∂X )(∂R/∂X )g11 + (∂R/∂X )(∂G/∂X )g12

+ (∂R/∂X )(∂B/∂X )g13 + (∂G/∂X )(∂R/∂X )g21
+ (∂G/∂X )(∂G/∂X )g22 + (∂G/∂X )(∂B/∂X )g23
+ (∂B/∂X )(∂R/∂X )g31 + (∂B/∂X )(∂G/∂X )g32
+ (∂B/∂X )(∂B/∂X )g33

(6)

Cheung and Rigg (1986) and Witt (1987) report the
ellipsoid parameters in xyY space so in our case, R, G,
B in Equation 2 to Equation 4 should be replaced with
x, y, Y. The transformation between xyY and XYZ is
given by

x = X/ (X +Y + Z) (7)

y = Y/ (X +Y + Z) (8)

Y = Y (9)

Proceeding similarly to the example above, we find
that

G11 = A2g11 + 2ACg12 +C2g22 (10)

G12 = ABg11 + (AD + BC) g12 + Ag13 +CDg22 +Cg23
(11)

G13 = ABg11 + (AC + BC) g12 +C2g22 (12)

G22 = B2g11 + 2BDg12 + 2Bg13 + D2g22 + 2Dg23 + g33
(13)

G23 = B2g11 + (BC + BD) g12 + DCg22 + Bg13 +Cg23
(14)

G33 = B2g11 + 2BCg12 +C2g22 (15)

where

∂x/∂X = (X +Y + Z) − X
(X +Y + Z)2

= A (16)

∂x/∂Y = ∂x/∂Z = −X
(X +Y + Z)2

= B (17)

∂y/∂X = ∂y/∂Z = −Y
(X +Y + Z)2

= C (18)

∂y/∂Y = (X +Y + Z) −Y
(X +Y + Z)2

= D (19)

∂Y/∂X = ∂Y/∂Z = 0, ∂Y/∂Y = 1 (20)

Silberstein (1946) and Brown and MacAdam (1949)
suggested that the radii of the discrimination ellipsoid
defined by G11,G12,G13,G22,G23,G33 coefficients are
equal to 1√

σ i
when σ i (i = 1, 2, 3) are the roots of the

following equation:

σ 3 − G2σ
2 + G1σ − G0 = 0 (21)
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where

G2 = G11 + G22 + G33 (22)

G1 = G22G33 − G2
23 + G33G11 − G2

31 + G11G22 − G2
12

(23)

G0 = det (�) , � =
⎡
⎣
G11 G12 G13
G21
G31

G22 G23
G32 G33

⎤
⎦ (24)

To compute the ellipsoid’s volume, we need to
compute the product of its radii ( 1√

σ1
∗ 1√

σ2
∗ 1√

σ3
=

1√
σ1∗σ2∗σ3

). This is equivalent to finding the product
of the roots of Equation 21 (σ 1*σ 2*σ 3). The roots
of Equation 21 (σ i) are in fact the eigenvalues of the
matrix �. The product of the eigenvalues of a matrix
is equal to the determinant of that matrix. Therefore,
rather than solving Equation 21, the determinant
of matrix � can be used in the ellipsoid volume
calculations:

det (�) = σ1σ2σ3, radii =
[

1√
σ1

, 1√
σ2

, 1√
σ3

] yields→ Ellipsoidvol = 4
3π 1√

det(�)
.
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