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Metamer Mismatching
Alexander D. Logvinenko, Brian Funt, Christoph Godau

Abstract—A new algorithm for calculating the metamer mis-
match volumes that arise in colour vision and colour imaging is
introduced. Unlike previous methods, the proposed method places
no restrictions on the set of possible object reflectance spectra.
As a result of such restrictions, previous methods have only be
able to provide approximate solutions to the mismatch volume.
The proposed new method is the first to characterize precisely
the metamer mismatch volume for any possible reflectance.

Index Terms—Colour vision, metamerism, metamer mismatch-
ing, metamer set, metamer mismatch volume. EDICS: ELI-COL

Φ = (ϕ1, ..., ϕn) a set of sensors (ϕ1, ..., ϕn)

ϕi(x) ith sensor response to spectral reflectance
function x(λ)

Ψ = (ψ1, ..., ψn) a set of sensors (ψ1, ..., ψn)

ψi(x) ith sensor response to spectral reflectance
function x(λ)

Υ concatenated set of sensors
(ϕ1, ..., ϕn, ψ1, ..., ψn)

ri(λ) spectral sensitivity of ith sensor
p(λ) illuminant spectral power distribution
X set of all spectral reflectance functions

Φ : X → Rn colour signal map
Υ : X → R2n colour signal map

Φ (X ) object colour solid (i.e., the Φ-image of X )
Υ(X ) object color solid (i.e., the Υ-image of X )
∂Υ(X ) boundary of the object color solid Υ(X )
xopt(λ) optimal spectral reflectance function
O (Υ) optimal reflectances of color signal map Υ

xm (λ;λ1, ..., λm) elementary step function with transition
wavelengths λ1, ..., λm

M (z0; Φ,Ψ) metamer mismatch volume induced by the
Φ colour signal z0 for sensor sets Φ and Ψ

∂M boundary of metamer mismatch volumeM
Φ−1(z0) metamer set for the Φ colour signal z0 (i.e.,

the set of reflectances Φ-metameric to z0)
Table I

NOTATION

I. INTRODUCTION

TWO objects that look the same colour under one light
can differ in colour under a second light. An important

reason for the difference in perceived colour of the two objects
under the second light is that although the tristimulus values
of the two objects may be identical under the first light, it is
possible that they differ under the second. In other words, they
are metameric matches (i.e., invoke identical sensor response
triplets) under the first light, but fail to match, and hence are
no longer metamers, under the second. This phenomenon is
called metamer mismatching [1].

If a colour under one light can become two colours under
a second light, then it is natural to ask: What is the range
of possible colours that might be observed under the second
light? More specifically, given a tristimulus value under, say,
CIE illuminant D65, what is the set of possible tristimulus

values that could arise under, say, CIE illuminant A? This set
has been proven to be a convex body1 [2], and it is commonly
known as the metamer mismatch volume [1]. In general,
given the spectral power distributions of two illuminants and
the tristimulus values of an object under one illuminant,
the problem is to compute the metamer mismatch volume.
It suffices to compute only the metamer mismatch volume
boundary, because the body is completely specified by its
boundary.

Metamer mismatch volumes are both of theoretical and
practical importance. They are important in image processing
for many reasons. For example, in camera sensor design it
is well known that there is a trade-off between image noise
and colour fidelity. Sensors whose sensitivity functions are not
within a linear transformation of the human cone sensitivity
functions will introduce error, but this error has been difficult
to quantify. The size of the metamer mismatch volume induced
by the change from cone to camera sensitivity functions is
potentially a good measure of the error, but requires an accu-
rate method for computing the metamer mismatch volumes of
the sort proposed here. Metamer mismatch volumes are also
relevant to the problem of color ‘calibration,’ often referred
to as the colour correction problem. Again, because of the
differences in cone versus camera sensitivities, there is no
unique answer as to how RGB camera responses should be
mapped to human cone respones or a standard colour space
such as CIE XYZ. Urban et al. [3] and Finlayson et al. [4]–
[6] have used characteristics such as the center of gravity
of (approximate) metamer mismatch volumes as a means of
improving colour correction.

Metamer mismatch volumes are also very important in
defining the limits of both human and machine-based colour
constancy. In the image processing field, the goal of computa-
tional colour constancy has been to provide colour descriptors
that are independent to the incident illumination. With the
method described here, Logvinenko et al. have shown serious
metamer mismatching can be [7] and therefore how the issue
of colour constancy needs to redefined [8]. Furthermore, in
the related field of lighting design metamer mismatch volumes
are also important. In particular, lights leading to the smallest
mismatch volumes are naturally expected to yield the best
colour rendering [9], [10]). All of these applications have been
limited, until now, by the lack of a method for computing
metamer mismatch volumes precisely.

In terms of theoretical importance, work on calculating
mismatch volumes has a long history (for a review see, e.g.,
Wyszecki & Styles, 1982). Generally, previous methods have
been based on generating metameric reflectances under one

1That is, a closed convex set such that it can be radially "inflated" to include
any element of the ambient vector space.
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illuminant and then evaluating their tristimulus values under
a second illuminant, thus producing points lying within the
mismatch volume. However, it remains an unsolved problem
as to how to describe fully the set of all the reflectances
metameric to a given one under some fixed illumination, and
hence these methods do not completely specify the metamer
mismatch volume. Instead, they generate a sampling of the
infinite set of possible metameric reflectances without a clear
understanding how the resulting sample represents the com-
plete set of metameric reflectances. A key limitation of such
an approach is that the accuracy of representing the mismatch
volumes by the cluster of points obtained can be poor. More-
over, as the precise boundary of the mismatch volume remains
unknown, there is no way to determine the true accuracy of
the approximation. The situation only becomes worse when
the reflectances are sampled from a finite-dimensional subset
of the infinite dimensional set of all the reflectances [3], [11].
Of the methods proposed thus far, none directly describes
the theoretical limits of the metamer mismatch volume. In
other words, none provides the metamer mismatch volume’s
boundary.

In this report we investigate the boundary of the metamer
mismatch volume from the formal point of view and then
provide an algorithm for computing the metamer mismatch
volumes for arbitrary, strictly positive illuminants and strictly
positive sensor sensitivity functions2, without placing any
restrictions on the reflectances.

II. METAMER MISMATCHING THEORY

Consider a set of sensors Φ = (ϕ1, ..., ϕn), the response of
each of which to a reflecting object with spectral reflectance
function x (λ) illuminated by a light with spectral power
distribution p (λ) is given by

ϕi (x) =

ˆ λmax

λmin

x (λ) p (λ) ri (λ) dλ (i = 1, ..., n) , (1)

where [λmin, λmax] is the visible spectrum interval, and ri (λ)
is the spectral sensitivity of the i-th sensor. The vector
Φ (x) = (ϕ1 (x) , ..., ϕn (x)) of the sensor responses will be
referred to as the colour signal produced by the sensor set
Φ in response to x (λ) illuminated by p (λ). In the case of
trichromatic human colour vision n = 3, and r1 (λ) , r2 (λ) ,
and r3 (λ) are the human spectral sensitivities known as cone
fundamentals [12]. Alternatively, r1 (λ) , r2 (λ) , and r3 (λ)
can be treated as the sensors’ spectral sensitivity functions
of a digital camera or similar device.

Different objects may happen to produce equal colour
signals. Such objects are called metameric. Specifically, two
objects with spectral reflectance functions x (λ) and x′ (λ)
are called metameric under the illuminant p (λ) if they pro-
duce equal colour signals, that is, Φ (x) = Φ (x′). Object
metamerism depends on the illuminant. If the illuminant
p (λ) is replaced by a different illuminant p′ (λ) the hith-
erto metameric objects may cease to be metameric. In other

2We believe that this positivity constraint is not a serious limitation in
practice since any illuminant or sensor function can be approximated by a
strictly positive function as accurately as required.

words, the former metamers may no longer match under the
new illuminant. This phenomenon—metamers becoming non-
metamers—is called metamer mismatching [1].

Metamer mismatching may also happen if the spectral
sensitivity of the sensors changes. An illuminant change
(i.e., replacing p (λ) with p′ (λ)) is, formally, equivalent to
changing the spectral sensitivity functions of the sensors. As
a consequence, we will consider the general situation when a
set of abstract colour mechanisms ϕ1, ..., ϕn is replaced by a
different set ψ1, ..., ψn. The new set of colour mechanisms can
be understood as the result of altering either the illuminant or
the colour mechanisms’ spectral sensitivities, or both. Metamer
mismatching arising solely from a change in illuminant will be
referred to as illuminant-induced metamer mismatching, while
that arising solely from a change of colour mechanisms as
observer-induced metamer mismatching.

The general case of metamer mismatching concerns a set of
colour mechanisms, Φ = (ϕ1, ..., ϕn), each member of which
is thought of as a linear functional on the set X of all the
spectral reflectance functions (i.e., 0 ≤ x (λ) ≤ 1), that is,
ϕi : X →R, where R is the real line, and i = 1, ..., n. Every
colour mechanism ϕi will be assumed to have the form as in
(1):

ϕi (x) =

ˆ λmax

λmin

x (λ) si (λ) dλ (i = 1, ..., n) , (2)

where si (λ) is the spectral weighting function fully specifying
the colour mechanism ϕi. For example, si (λ) might amount
to p (λ) ri (λ). Consider another set of colour mechanisms,
Ψ = (ψ1, ..., ψn), with the spectral weighting functions
s′1 (λ) , ..., s′n (λ). We will assume that both sets of colour
mechanisms are linearly independent, and that Φ and Ψ are
not a linear transformation of one another.

Note that both Φ and Ψ can be considered as linear maps
(referred to as colour maps) of the form: X →Rn where Rn

is the arithmetic n-dimensional vector space. The sets of all
colour signals, that is, Φ (X ) and Ψ (X ), form convex bodies
in Rn [2], which are usually referred to as object-colour solids
[1].

Given an object x0 ∈ X , the Φ pre-image, Φ−1(Φ(x0))
(i.e., Φ−1(Φ(x0)) = {x ∈ X |Φ(x) = Φ(x0)}), of its colour
signal Φ(x0) is the set of all the objects metameric to x0 (with
respect to Φ), and is referred to as its metamer set. Generally,
when this set of metameric objects Φ−1(Φ(x0)) is mapped
by Ψ into the Ψ-object-colour solid, it will be spread into a
non-singleton set. It is the resulting set that is referred to as
the metamer mismatch volume. More formally, the Ψ-image
of the set of the Φ-metamers, Ψ(Φ−1(Φ(x0))) is called the
metamer mismatch volume associated with x0.

Given colour maps, Φ = (ϕ1, ..., ϕn) and Ψ = (ψ1, ..., ψn),
let us consider a map Υ : X → R2n such that Υ(x) = (z; z′),
where z = (ϕ1 (x) , ..., ϕn (x)) and z′ = (ψ1 (x) , ..., ψn (x)).
The corresponding object-colour solid Υ(X ) is a convex body
in R2n. The Φ-object-colour solid, Φ(X ), is the z-projection
of Υ(X ):

Φ(X ) = {z ∈ Rn : (z; z′) ∈ Υ(X ), z′ ∈ Rn}.
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Figure 1. Illustration of the metamer mismatch volume for a monochromatic
colour device based on CIE x̄(λ). The colour signals obtained under CIE
illuminant D65 are plotted along the horizontal axis ( z ) , and under A along
the vertical axis ( z ′). The shaded area indicates Υ(X ), which is the set of
all “colour” signal pairs arising under D65 and A from all possible object
reflectances. The metamer mismatch volume boundary for colour signal value
z = 35 under D65 is obtained from the projection to the z′ axis of the cross-
section (two points in this example) of Υ(X ) defined by the intersection of
the vertical line with the boundary of Υ(X ). As can be seen from the figure,
the colour signal z = 35 under D65 could, under A, potentially take on any
value in the metamer mismatch volume z′ ∈ [20.5, 58].

Similarly, given an object x0 ∈ X and its Φ colour signal z0 =
Φ(x0), the metamer mismatch volume Ψ(Φ−1(z0)) forms a
cross-section of Υ(X ); namely, {z′ ∈ Rn : (z0; z′) ∈ Υ(X )}.

To gain some intuition into metamer sets, metamer mis-
match volumes, and why a metamer mismatch volume cor-
responds to a cross-section of the Υ(X )-object-colour solid,
consider the one-dimensional case of a pair of colour mecha-
nisms ϕ1 and ψ1. In this case, the colour maps become simply
Φ = (ϕ1) and Ψ = (ψ1), and the object-colour solid Υ(X )
becomes a convex region in 2-dimensions as shown in Figure
1.

For Figure 1 the CIE 1931 x̄(λ) colour matching function
has been used as the single underlying sensor. Under CIE
illuminants D65 and A (spectral power distributions pD65(λ)
and pA(λ)) the spectral weighting functions of the correspond-
ing colour mechanisms are then pD65(λ)x̄(λ) for ϕ1, and
pA(λ)x̄(λ) for ψ1.

For a given colour signal z obtained under D65, finding the
metamer mismatch volume means determining the set of pos-
sible colour signals z′ arising under A whose corresponding
reflectances would be metameric to z under D65. The shaded
region in Figure 1 shows Υ(X ). Any point (z, z′) inside Υ(X )
represents the corresponding colour signals that would arise
from a given object under illuminants D65 and A. As can be
seen from the figure, using z = 35 as an example, all points
(z, z′) on the vertical line z = 35 and lying within the shaded

area arise from objects that are metameric under D65 and also
result in colour signal z′ under A. Hence the z′ values from
the vertical line segment lying within the shaded area make up
the metamer mismatch volume for the colour signal z = 35
under D65. In this example, the ‘volume’ degenerates to a line
segment on the vertical (z′) axis. The boundary of the volume
is given by the z′ values at the intersections of the z = 35
line with the boundary of Υ(X ) (i.e., z′ = 20.5 and z′ = 58).

The situation is analogous for a trichromatic colour device,
but Υ(X ) becomes 6-dimensional and the cross-section is
defined by the intersection of a 3-dimensional affine subspace
with the boundary of Υ(X ). In the general n-dimensional
case, determining the metamer mismatch volume (denoted as
M (z0; Φ,Ψ)) associated with the colour signal z0 = Φ(x0)
when switching from colour map Φ to colour map Ψ means
determining its boundary, denoted ∂M (z0; Φ,Ψ). Consider
also the boundary of the 2n-dimensional object-colour solid
Υ(X ), denoted ∂Υ(X ). The boundary ∂M (z0; Φ,Ψ)) is de-
termined by intersecting Υ(X ) with the n-dimensional affine
subspace containing z0 = Φ(x0).

The object-colour solid, Υ(X ), is determined by its bound-
ary, ∂Υ(X ), which in turn is fully specified by those objects
that map to the boundary. In the colour literature reflectances
mapping to the color-solid boundary are called optimal [1]. A
method of evaluation of the optimal reflectances has been de-
scribed elsewhere [2], [13]. Similarly, the metamer mismatch
volume M (z0; Φ,Ψ) is fully determined by its boundary,
∂M (z0; Φ,Ψ). In this report we present a theoretical method
and its computational implementation that for the first time
provides a means of determining the reflectances that map
to the mismatch volume boundary. We will refer to such
reflectances as µ-optimal with respect toM (z0; Φ,Ψ), or just
µ-optimal when it is clear which metamer mismatch volume
is meant.

Let us denote the set of optimal reflectances for Υ(X ) as
O (Υ). Given a z0 in the Φ-subspace, ∂M (z0; Φ,Ψ) will be
defined by the Ψ-images of those optimal reflectances xopt ∈
O (Υ) satisfying the following equation:

Φ (xopt) = z0. (3)

In other words, all the optimal reflectances satisfying this
equation will be µ-optimal, that is, they will be mapped by Ψ
to the boundary of the metamer mismatch volume:

∂M (z0; Φ,Ψ) = {z′ = Ψ (xopt) : Φ (xopt) = z0.}

It is not possible to solve this equation directly because
the set of possible optimal reflectances is infinite. However,
optimal reflectances O (Υ) lend themselves to finite param-
eterisation [2], [13]. The possibility of such parameterisation
emerges from the fact that the optimal reflectances are step-
like functions that can be characterized by a finite number of
transition wavelengths.

Historically, Schrödinger was the first to claim that the
optimal spectral reflectance functions can take only two values:
either 0 or 1 [14]. Moreover, he conjectured that for human
colour vision the optimal spectral reflectance functions have
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the form of elementary step functions. Following the termi-
nology accepted by other authors [2], [13], [15], functions

xm (λ;λ1, ..., λm) =

m∑
i=1

(−1)
i−1

x1 (λ;λi) (4)

and
1− xm (λ;λ1, ..., λm) ,

where
x1 (λ;λ1) =

{
0, if λ < λ1

1, if λ ≥ λ1;
(5)

λmin < λ1 < λ2 < ... < λm < λmax, are called the
elementary step functions of type m, with λ1, ..., λm being
referred to as transition wavelengths.

Schrödinger believed that for human vision the optimal
spectral reflectance functions were of type m < 3. However,
this is not correct. As pointed out by some other researchers
[13], [15], [16], the number of transition wavelengths may
exceed the number of the colour mechanisms. More generally,
a theorem has been proved by a Russian mathematician,
Vladimir Levin, showing that for a colour map Φ based
on colour mechanisms having continuous spectral weighting
functions s1 (λ) , ..., sn (λ), an elementary step function with
transition wavelengths λ1, ..., λm will be an optimal spectral
reflectance function if λ1, ..., λm are the only zero-crossings
of the following equation [2]:

k1s1 (λ) + k2s2 (λ) + ...+ knsn (λ) = 0, (6)

where k1, k2, ..., kn are arbitrary real numbers (at least one of
which is not equal to zero). We would like to emphasize that
while we use this theorem in the development of our algorithm,
the tests described later in the paper verify that the algorithm
works without relying on the theorem as proof.

It also follows that the perfect reflector and the perfect
absorber3 are optimal reflectances. Formally, they correspond
to the case when Eq. 6 has no zero-crossings [2].

Given another colour map Ψ with continuous spectral
weighting functions s′1 (λ) , ..., s′n (λ) and combining it with Φ
to form the colour map Υ, the zero-crossings of the equation

k1s1 (λ) + ...+ knsn (λ) + k′1s
′
1 (λ) + ...+ k′ns

′
n (λ) = 0 (7)

will determine an optimal spectral reflectance function with
respect to Υ. Let us designate this optimal reflectance
x (λ;k,k′), where k = (k1, ..., kn), and k′ = (k′1, ..., k

′
n).

Now consider an arbitrary reflectance x0 mapping to colour
signal z0 = Φ (x0) that lies in the interior4 of the object-colour
solid Φ(X ). Then ∂M (z0; Φ,Ψ)) in the object-colour solid
Ψ(X ) will be implicitly defined by the following equation with
respect to k and k′:

Φ (x (λ;k,k′)) = z0. (8)

3Perfect reflector (respectively absorber) takes the value 1 (respectively 0)
for every wavelength in [λmin, λmax].

4It has been shown that for the colour mechanisms with positive spectral
weighting functions the optimal reflectances have no metamers [2]. It follows
that there is no metamer mismatching for the boundary points of the object-
colour solid. In other words, the metamer mismatch volume for such points
degenerates to a point. As such a case is of no interest, we exclude the
boundary points from further consideration.

As z0 is an interior point, k′ cannot equal zero, since if k′ = 0
x (λ;k,k′) is an optimal spectral reflectance function with
respect to Φ, and thus Φ (x (λ;k,k′)) would be on the Φ-
object-colour-solid boundary.

Let us consider the particular situation when n = 3. In this
case, given z0 = (z1, z2, z3), Eq. 8 can be expanded as:

ϕ1 (x (λ;k,k′)) = z1, (9)
ϕ2 (x (λ;k,k′)) = z2,

ϕ3 (x (λ;k,k′)) = z3.

Denote the Ψ image of x0 as z′0 = (z′1, z
′
2, z
′
3), i.e.,

Ψ (x0) = z′0, and let us introduce a polar coordinate system
(ρ, β, γ) in the Ψ subspace with its origin at Ψ (x0). Let
x (λ;k,k′) satisfy Eq. 9. Then we have

ψ1 (x (λ;k,k′))− z′1 = ρ cosβ sin γ, (10)
ψ2 (x (λ;k,k′))− z′2 = ρ sinβ sin γ,

ψ3 (x (λ;k,k′))− z′3 = ρ sin γ.

Note that if Eq. 7 admits a solution given vectors k and
k′ it will admit the same solution given vectors σk and σk′,
where σ is an arbitrary non-zero real number. Hence, we need
only consider vectors k and k′ such that the resultant vector
(k,k′) lies on the unit sphere in R6, that is,

‖(k1, k2, k3 , k
′
1, k
′
2, k
′
3)‖2 = 1. (11)

Taken together, equations (9 - 11) define a two-dimensional
manifold. Indeed, for each choice of β and γ, equations (9 -
11) can be resolved with respect to k1, k2, k3 , k

′
1, k
′
2, k
′
3, and

ρ. Furthermore, equations (9 - 11) implicitly define a function
ρ (β, γ) that determines the boundary ∂M (z0; Φ,Ψ) induced
by the point Φ(x0). In other words, given β and γ, we have 7
equations in 7 unknowns. Resolving these equations one gets
the location of the metamer mismatch volume’s boundary in
the direction (β, γ). Figure 2 illustrates the situation for a
dichromatic sensor system.

Practical solution of equations (9 - 11) is complicated
by the fact that different sets of k1, k2, k3 , k

′
1, k
′
2, k
′
3 might

determine the same optimal reflectance. For example, for the
case of positive spectral weighting functions, Eq. 7 will have
no roots when k1, ..., kn , k

′
1, ..., k

′
n are either all positive, or

all negative. Since the human spectral sensitivity functions
are everywhere positive, all positive and all negative sets
of k1, k2, k3 , k

′
1, k
′
2, k
′
3 bring about the same two optimal

reflectances: the perfect reflector and absorber. As these belong
to the Φ-object-colour solid boundary ∂Φ(X ) (i.e., they are not
interior points in Φ(X )), they need not be considered further.
Hence, we see that parameterising the optimal reflectances in
terms of k1, ..., kn , k

′
1, ..., k

′
n is perhaps not the best approach.

We need a more convenient parameterisation of the optimal
reflectances. We begin with the fact that Eq. 7 has a rather
straightforward geometrical interpretation; namely, the roots
of Eq. 7 are those wavelengths at which the spectral curve5 in-
tersects the hyperplane in R2n passing through the origin and

5In the 2n-dimensional colour signal space determined by the colour
mechanisms (ϕ1, ..., ϕn, ψ1, ..., ψn), the curve
−→σ (λ) = (ϕ1 (δ (µ− λ)) , ϕ2 (δ (µ− λ)) , ϕ3 (δ (µ− λ)) , ψ1 (δ (µ− λ)) , ψ2 (δ (µ− λ)) , ψ3 (δ (µ− λ)))

(λ ∈ [λmin, λmax]) is called the spectral curve. Here δ (µ− λ) stands for
the Dirac delta function centered at wavelength λ.
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Figure 2. Illustration of the boundary of the metamer mismatch volume
described by ρ (β) relative to the origin xαδλ for the case of a dichro-
matic system. Given two sets of colour mechanisms Φ = (ϕ1, ϕ2) and
Ψ = (ψ1, ψ2), then Υ(x) = (ϕ1(x), ϕ2(x);ψ1(x), ψ2(x)). In the figure,
only 3 of the 4 dimensions of the object-colour solid, Υ(X ), are shown.
For a given Φ = (ϕ1, ϕ2), the boundary of its metamer mismatch volume
is determined by the intersection of the plane it defines and the boundary
Υ. To describe that boundary, an origin for the polar coordinate system is
situated at xαδλ from which the metamer mismatch volume is represented in
terms of polar angle β and distance ρ to points xopt = x3(λ;λ1, ..., λ3)
on the boundary of Υ. In this 4-dimensional case, the optimal functions
on the boundary of Υ now are 3-transition functions. For a given β, the
transition wavelengths of λ, ..., λ3 of xopt are found by optimization under
the constraint that the resulting reflectance must lie on the plane defined by
Φ.

determined by k1, ..., kn , k
′
1, ..., k

′
n. Indeed, any hyperplane in

Rm through the origin is of the form k1x1 + ...+ kmxm = 0
where x1, ..., xm are coordinates in Rm, and the vector of
the k1, ..., km coefficients uniquely defines the hyperplane.
Therefore, if some λ0 is a root of Eq. 7 it means that
the point (s1 (λ0) , ..., sn (λ0) , s′1 (λ0) , ..., s′n (λ0)) lies on the
hyperplane determined by k1, ..., kn , k

′
1, ..., k

′
n.

Any 2n−1 different wavelengths uniquely determine a hy-
perplane in R2n through the origin that intersects the spectral
curve at the points corresponding to these wavelengths (and
perhaps also at some other points). When n = 3 the hyperplane
in R6 is fully specified by 5 different wavelengths λ1, ..., λ5.
The coefficients k1, k2, k3 , k

′
1, k
′
2, k
′
3 of this hyperplane can

be expressed as functions of these wavelengths λ1, ..., λ5.
Thus, each set of wavelengths λ1, ..., λ5 defines a hy-

perplane in R6 that intersects the spectral curve at wave-
lengths λ1, ..., λ5 and possibly at some other m wavelengths
λ6, ..., λ5+m as well. Considered as transition wavelengths,
the set λ1, ..., λ5, λ6, ..., λ5+m specifies an optimal reflectance
(i.e., one that maps to the boundary ∂Υ(X ) of the object-
colour solid Υ(X )). Since the addtional m wavelengths are
uniquely determined by the first 5, the first 5 suffice as a
parameterization of the optimal reflectances. Let us denote

such an optimal reflectance as x(λ;λ1, ..., λ5). If it satisfies
Eq. 3 then it belongs to ∂M (z0; Φ,Ψ). In other words,
that optimal reflectance is on the boundary of the metamer
mismatch volume. Hence, we again have a system of 6
equations in 6 unknowns similar to the equations in (9) and
(10):

ϕ1 (x(λ;λ1, ..., λ5)) = z1, (12)
ϕ2 (x(λ;λ1, ..., λ5)) = z2,

ϕ3 (x(λ;λ1, ..., λ5)) = z3,

ψ1 (x(λ;λ1, ..., λ5))− z′1 = ρ cosβ sin γ,

ψ2 (x(λ;λ1, ..., λ5))− z′2 = ρ sinβ sin γ,

ψ3 (x(λ;λ1, ..., λ5))− z′3 = ρ sin γ.

Choosing β and γ defines a direction in the Φ subspace relative
to the point (z1, z2, z3). Solving equations (12) with respect
to λ1, ..., λ5 and ρ yields the location of the boundary in the
direction (β, γ).

Note that setting 2 of the 5 wavelengths λ1, ..., λ5 to be
λmin and λmax while varying the other 3, we obtain all
the optimal reflectances (if any) having 3 or 4 transition
wavelengths, rather than 5. Generally, there might also exist
optimal reflectances (for the object-colour solid Υ(X )) with
fewer than 3 wavelength transitions. However, most of them
map to the Φ-object-colour-solid boundary. As we consider
only internal points z0 in Φ(X ), only a small fraction of the
optimal reflectances with 1 and 2 transition wavelengths can be
potentially µ-optimal; and an even smaller fraction of those—
namely the ones satisfying the first 3 equations in (12)—will
indeed be µ-optimal. Therefore, solving equations (12) we will
obtain virtually all the points on ∂M (z0; Φ,Ψ). If one does
not want to risk missing even a small fraction of the points
on ∂M (z0; Φ,Ψ), then one has to resort to solving equations
(9 - 11) which guarantees, in theory, no loss of µ-optimal
reflectances at all.

III. CALCULATING METAMER MISMATCH VOLUMES

Let us apply this theory to the problem of evaluating the
metamer mismatch volumes induced for the CIE 1931 standard
observer when moving from CIE illuminant D65 to CIE
illuminant A. In this case, Equation 7 takes the form

(k1s1 (λ) + k2s2 (λ) + k3s3 (λ)) pD65 (λ)

+ (k′1s1 (λ) + k′2s2 (λ) + k′3s3 (λ)) pA (λ) = 0 (13)

where s1 (λ) , s2 (λ) and s3 (λ) are the CIE 1931 colour
matching functions, and pD65 (λ) and pA (λ) are the spectral
power distributions for CIE illuminants D65 and A.

For the CIE 1931 colour matching functions, the optimal
reflectances turn out to be elementary step functions of type
m < 3, in accord with Schrödinger’s conjecture [13], [16]. Yet,
the optimal stimuli for the 6-dimensional Υ-object-colour solid
are not necessarily elementary step functions of type m < 6.
In other words, random choices of the 5 transition wavelengths
might lead to solutions to equation (12) with more than 5 roots.

It follows that if one uses only the elementary step functions
of type m ≤ 5 (let us denote these O5) one will get only an
approximation to the full 6-dimensional object-colour solid
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Υ (X ). More formally, given a colour map z : X →Rn, and
the set of all the elementary step functions of type m < n
(written as On), let us call the volume confined by z (On)
an (n-1)-transition approximation to z (X ). The 2-transition
approximation to the 3-dimensional object-colour solid based
on the cone photopigment spectral sensitivities was found to
deviate by not more than 1% from the true object-colour solid
when measured along any direction from the object-colour
solid’s center [13]. In many computational tasks such devi-
ation can be neglected. Although we have not evaluated the
difference between Υ (X ) and its 5-transition approximation,
we decided to use the latter when computing the metamer mis-
match volumes since this made our computations much sim-
pler. Obviously, intersecting the 5-transition approximation to
Υ (X ) with the corresponding affine 3-dimensional subspace
through z0 will produce a volume (denoted M5 (z0; Φ,Ψ))
lying inside the metamer mismatch volumeM (z0; Φ,Ψ). Let
us call it the 5-transition approximation to M (z0; Φ,Ψ).

Given a point z0 = (z1, z2, z3) in the object-colour solid
Φ (X ), the boundary of the 5-transition approximation to
the metamer mismatch volume M (z0; Φ,Ψ) (denoted as
∂M5 (z0; Φ,Ψ)) in the object-colour solid Ψ(X) is implic-
itly defined by the following equations with respect to the
transition wavelengths λ1, ..., λ5:

ϕ1 (x5 (λ;λ1, ..., λ5)) = z1, (14)
ϕ2 (x5 (λ;λ1, ..., λ5)) = z2,

ϕ3 (x5 (λ;λ1, ..., λ5)) = z3,

ψ1 (x5 (λ;λ1, ..., λ5))− z′1 = ρ cosβ sin γ,

ψ2 (x5(λ;λ1, ..., λ5))− z′2 = ρ sinβ sin γ,

ψ3 (x5(λ;λ1, ..., λ5))− z′3 = ρ sin γ,

where x5 (λ;λ1, ..., λ5) is an elementary step function of type
m = 5. The difference between equations (14) and (12)
is that (14) involves an elementary step function with the
transition wavelengths λ1, ..., λ5, whereas (12) involves an
elementary step function that potentially has more than 5
transition wavelengths, but specifically including λ1, ..., λ5.
The additional transition wavelengths can be determined by
finding all the intersections of the spectral curve −→σ (λ) with
the hyperplane defined by the origin and the five points on the
spectral curve −→σ (λ1) , ...,−→σ (λ5) determined by λ1, ..., λ5.

IV. MATLAB IMPLEMENTATION DETAILS

The following describes one approach that has been imple-
mented in Matlab to calculate the metamer mismatch volumes.
In fact, any method of solving equations (14) will suffice. To
solve equations (14) for ρ (β, γ), we need to choose the origin
of the polar coordinate system so as to define β,γ, and ρ.
Although not strictly necesssary, it is preferable to choose an
origin that belongs to, or better still lies inside, the metamer
mismatch volume. When the point z0 is specified as the Φ
colour signal of some known reflectance, say, x0, then the
Ψ-image of x0 lends itself as a natural choice for the origin.
When the point z0 is given simply as some Φ colour signal
(without relating it to any reflectance), choosing a point inside
the metamer mismatch volume might appear to be somewhat

more problematic since we do not yet know what that volume
is. However, any reflectance that is metameric to z0 under Φ
will suffice.

To find a metamer to z0 we make use of a rectangular
metamer of the kind introduced by Logvinenko (2009) [13].
For any given point z0 = (z1, z2, z3) in the object-colour solid,
Φ (X ), its rectangular metamer is defined as a rectangular
reflectance spectrum that is a linear combination of an elemen-
tary step function of type m < 3 and x0.5(λ) = 0.5. As the
rectangular metamer is specified by three numbers—α, δ and
λ—it will be denoted as xαδλ (for more detail see Logvinenko,
2009). To find the rectangular metamer for z0 the code of Go-
dau et al. [17], [18] is used. The resulting rectangular metamer
xαδλ is by construction metameric to z0. Therefore, the point
Ψ(xαδλ) is guaranteed to be in the metamer mismatch volume.
Although highly unlikely, Ψ(xαδλ) could potentially belong
to the metamer mismatch volume boundary, and therefore not
lie strictly inside the mismatch volume. As such, it would be
an unsuitable choice for the origin (z′1, z

′
2, z
′
3) of the polar

coordinate system. To ensure that we have a point strictly
inside the metamer mismatch volume, we take an arbitrary
point on its boundary and then use the midpoint between it
and Ψ(xαδλ) as the origin.

Determining ρ (β, γ) proceeds in two steps. Given (β, γ)
the first step is the more difficult one and involves finding
the optimal 5-transition step function xopt = x5(λ;λ1, ..., λ5)
metameric to z0 such that Ψ(x5 (λ;λ1, ..., λ5)) lies in the
direction defined by (β, γ). The second step is then simply
to calculate ρ directly using xopt from the first step.

To accomplish the first step we minimized the following
objective function formed as the sum of two error measures,

E(xopt) = EΦ(xopt) + EΨβγ(xopt).

The first term corresponds to the constraints provided by
equations 14 and is

EΦ(xopt) = ‖Φ(xopt)− z0‖ .

The second term ensures that the 5-transition reflectance lies
in the desired direction under Ψ and is defined by

EΨβγ(xopt) = arccos

(
û · (Ψ(xopt)− z′0)

‖Ψ(xopt)− z′0‖

)
,

where û = (sin(β)cos(γ), sin(β)sin(γ), cos(β)) is the unit
vector in the direction given by (β, γ). Once xopt has been
found, ρ can be directly calculated as

ρ = ‖Ψ(xopt)−Ψ(x0)‖ .

The above method means that ∂M5 (z0; Φ,Ψ) (i.e., the
boundary of the 5-transition approximation to the metamer
mismatch volume M (z0; Φ,Ψ)) can be precisely computed
as the distance ρ (β, γ) from the chosen origin (z′1, z

′
2, z
′
3) to

the boundary in any given direction as specified by the angles
β and γ. To model the entire boundary, one possibility is to
step through values of β and γ and thereby obtain a regular
sampling of the boundary. However, such an approach is
rather time-consuming. In order to speed up computation when
preparing the data for the present report, we produced a large
number of random points over ∂Υ(O5) (i.e., the boundary
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Figure 3. Metamer mismatch volume arising at the centre of the object-colour
solid for the flat grey reflectance for a change of illumination from D65 to
A. The coordinate axes are the CIE XYZ.

of the 5-transition approximation to Υ (X )) by generating
random 5-transition reflectances xopt = x5(λ;λ1, ..., λ5) and
then selected only those that minimize ‖Φ(xopt)− z0)‖. This
eliminates the angular term involved in EΨβγ(xopt) and sig-
nificantly speeds up the calculation, but has the disadvantage
that the resulting points are not systematically distributed over
the boundary ∂M5 (z0; Φ,Ψ). It should be borne in mind
that such an approach differs from that of previous authors
in that we generated reflectances metameric to xopt that
belonged not just to the colour solid Φ(X ) but to the boundary
∂M5 (z0; Φ,Ψ). For this reason our selected reflectances are
restricted to belonging to the boundary of the 5-transition ap-
proximation to the metamer mismatch volume ∂M (z0; Φ,Ψ)
rather than belonging to the full metamer mismatch volume
(most likely inside it), as is the case for the methods described
in previous studies.

V. EXAMPLES

The Matlab implementation provides the opportunity to
explore the true potential extent of metamer mismatching
for the first time. Consider the simple case of a flat grey
reflectance under illuminant D65 versus A. Figure 3 shows
the 5-transition approximation to the metamer mismatch vol-
ume arising at the centre of the object-colour solid (i.e.,
for Φ(x0.5(λ)) where x0.5(λ) = 0.5, the flat grey re-
flectance) for the CIE 1931 2-degree standard observer when
the illumination changes from D65 to A. Interestingly, its
shape (Figure 4) roughly resembles that of the object-colour
solid. The 5-transition approximation M5 (Φ(x0.5(λ)); Φ,Ψ)
is clearly elongated. 6 Figure 5 depicts the same volume (i.e.,
M5 (Φ(x0.5(λ)); Φ,Ψ)) in colour opponent coordinates based
on the Smith & Pokorny cone fundamentals. From this figure
it is clear that M5 (Φ(x0.5(λ)); Φ,Ψ) is elongated along the
(S-(L+M)) axis which is believed to be associated with the

6The 5-transition reflectances used in this and all similar figures in the
paper are available for download from “http://www.cs.sfu.ca/∼colour/data/”.
Using the reflectances, the reader can generate similar figures from various
viewpoints, and also confirm that they are all metameric under the first
illuminant.

Figure 4. Expanded view of the metamer mismatch volume for the case of
the flat grey reflectance shown in Figure 3.

Figure 5. Metamer mismatch volume for the flat grey reflectance for a change
of illumination from D65 to A. The coordinate axes are the Smith-Pokorny
cone fundamentals transformed to opponent color axes.

yellow-blue mechanism [19], [20]. Therefore, the metamers
looking achromatic under illuminant D65 disperse mainly
along the yellow-blue axis under illuminant A. This agrees
with our intuition since illuminant A appears more yellowish
than D65.

Metamer mismatching can be surprisingly dramatic in that
it can disperse flat grey into a full hue circle of different
hues. For example, Figure 6 shows a circle of hues falling
on the boundary of the metamer mismatch volume of flat
grey for the case of the lighting changing from a green to a
neutral (“white”) illuminant (see reference [21] for the green
and neutral spectra). In other words, these are the hues of
20 reflectances as they would be seen under the neutral light.
Needless to say, the figure here reproduces the exact hues
only approximately. Despite the fact that these 20 reflectances
appear so varied in hue under the neutral light, they are, in
fact, all metameric to one another, as well as to flat grey, under
the green light. Not only does this example have implications
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for human colour perception, as discussed by Logvinenko et
al. [7], [8] it also has consequences for image processing and
machine vision since it shows that the ‘colour’ of an object is
not a stable, intrinsic feature since one colour can potentially
become many very different colours.

Each reflectance underlying the hue circle is a 5-transition
reflectance from the boundary of the metamer mismatch
volume for flat grey. The transition wavelengths for each
reflectance are listed in Table II. Each reflectance is 0 from
λmin = 380 nm to the first transition wavelength at which
point it becomes 1 until the second transition wavelength and
so on until λmax = 780. Table II also lists the XYZ values of
the 20 5-transition reflectances illuminated by the green light.
Clearly, they are metameric with high precision, which they
need to be since it would otherwise imply a flaw in the Matlab
implementation.

Figure 6. Hue circle of 5-transition reflectances shown illuminated by the
neutral light N. These reflectances are, in fact, all metameric to flat grey
under the green light.

VI. METAMER MISMATCH INDEX

To quantify the degree of metamer mismatching occur-
ring for a given point in the Φ colour space, we introduce
a metamer mismatch index. The metamer mismatch index
imm (z0; Φ,Ψ) of the metamer mismatching for a point z0 in
the Φ-object-colour solid induced by a change in the colour
mechanisms from Φ to Ψ is defined as a ratio of volumes:

imm (z0; Φ,Ψ) =
v (M (z0; Φ,Ψ))

v (Ψ (X ))
, (15)

where v (M (z0; Φ,Ψ)) is the volume of M (z0; Φ,Ψ), and
v (Ψ (X )) is the volume of the Ψ-object-colour solid. Note
that this index is invariant with respect to any non-singular
linear transformation of the colour mechanisms Ψ.

Figure 7 shows the metamer mismatch volumes for a num-
ber of points lying along the achromatic interval connecting
the black and white poles of the Φ-object-colour solid. The
volumes clearly become smaller the closer they are to the
poles. This is hardly surprising since there is known to be no
metamerism on the object-colour solid boundary [2]. Figure

T1 T2 T3 T4 T5
453.8 493.0 519.6 542.7 568.0
381.3 443.7 494.3 528.7 555.8
464.1 499.0 526.1 550.1 579.0
479.8 509.1 530.3 551.6 577.0
491.0 528.1 555.3 640.7 696.9
490.0 525.6 551.2 582.5 603.8
607.8 554.7 527.7 490.8 388.0
487.5 520.3 544.2 570.4 631.6
567.4 541.8 518.2 487.6 431.4
583.2 551.1 526.0 494.7 450.3
582.0 550.8 525.9 495.9 454.7
574.8 547.6 523.9 496.1 458.3
566.2 542.2 521.3 502.2 474.0
579.4 553.0 531.2 509.5 480.0
602.1 591.6 553.9 527.3 490.7
431.6 492.2 528.2 555.3 623.2
430.3 492.0 528.1 555.1 617.6
628.4 558.4 532.3 505.7 473.9
435.6 476.4 505.7 532.3 558.5
452.4 493.6 521.7 545.2 571.4

X Y Z
16.81584 50.0002 8.16469
16.81582 50.0001 8.16467
16.81574 49.9999 8.16467
16.81579 50.0000 8.16468
16.81582 50.0001 8.16467
16.81575 50.0000 8.16469
16.81577 50.0000 8.16468
16.81577 50.0000 8.16467
16.81577 50.0000 8.16467
16.81576 49.9999 8.16468
16.81575 50.0000 8.16470
16.81582 50.0000 8.16469
16.81577 50.0000 8.16468
16.81578 50.0000 8.16469
16.81578 50.0001 8.16469
16.81576 50.0000 8.16469
16.81576 50.0000 8.16470
16.81581 50.0001 8.16470
16.81579 50.0001 8.16470
16.81578 50.0001 8.16469

Table II
TRANSITION WAVELENGTHS OF THE 20 REFLECTANCES (ONE PER ROW),

WHICH WERE USED IN CONSTRUCTING FIGURE 6, AND THEIR
CORRESPONDING XYZ UNDER GREEN LIGHT. AS SHOWN IN FIGURE 6,

THEY FORM A HUE CIRCLE UNDER NEUTRAL ("WHITE") LIGHT;
NONETHELESS, THEY ARE ALL METAMERIC TO FLAT GREY UNDER THE

GREEN LIGHT. ALTHOUGH THE TRANSITION WAVELENGTHS HAVE BEEN
ROUNDED TO ONE DECIMAL PLACE, THE ENTRIES ARE BASED ON THE

ORIGINAL, FULL PRECISION WAVELENGTH DATA AVAILABLE FOR
DOWNLOAD FROM “HTTP://WWW.CS.SFU.CA/∼ COLOUR/DATA/”

(***TYPESETTER: ALL LOWERCASE IN URL***)

Figure 7. Metamer mismatch volumes for points lying along the achromatic
interval connecting the black pole (origin) and white pole (apex furthest from
origin) of the Ψ-object-colour solid. The maximum volume occurs at the cen-
ter (x0.5) and volumes decrease towards both poles. The metamer mismatch
indices obtained at a finer sampling of locations along the achromatic interval
are plotted in Figure 8.

8 plots the metamer mismatch index (15) as a function of
position along the achromatic axis from black to white.

VII. METAMER MISMATCH AREAS IN THE CHROMATICITY
DIAGRAM

Metamer mismatching can be split into two components:
chromaticity mismatching and luminance mismatching. The
chromaticity mismatching component can be represented by
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Figure 8. Metamer mismatch indices (Equation 15) plotted as a function of
relative position along the achromatic interval (see Figure 7) from the black
pole to the white pole.

projecting the metamer mismatch volume onto the chromatic-
ity plane. This results in two-dimensional areas in the chro-
maticity plane showing the spread of chromaticities induced
by a change of illuminant (or observer). Figure 9 presents
the projection of the metamer mismatch volumes from Figure
7 onto the CIE 1931 xy-chromaticity plane. In chromaticity
space, the smallest areas are near the white pole and the largest
near the black pole, although in three-dimensions the volumes
become small near both poles. One can see from Figure 7 that
the solid angle from the origin subtended by the volumes near
the black pole is clearly larger than that of the volumes further
along the achromatic axis towards the white pole.

Presenting metamer mismatching in two dimensions can
be advantageous in some situations. For example, if one is
interested only in the metamer mismatching occurring in some
plane in the Ψ-subspace, then there is no need to evaluate the
entire metamer mismatch volume. Evaluating the boundary
contours of the metamer mismatch areas in the given plane
will suffice. This can be done by the addition of one equation
to the method described above. In particular, given a polar
coordinate system (ρ, β, γ) in the Ψ-subspace with its origin
at Ψ(xαδλ), let

F (β, γ) = 0 (16)

be an equation of the desired plane through Ψ(xαδλ). Fixing
β (or γ) and solving equations (12) along with equation (16)
with respect to λ1, ..., λ5, and ρ and γ (respectively β) yields a
point on the metamer mismatch area boundary corresponding
to the value β (respectively γ).

VIII. CONCLUSION

Metamer mismatching is an important aspect colour,
whether in terms of digital colour imaging or human colour
perception. It arises when the lighting changes, and also when
the spectral sensitivity functions of one observer (or camera)
differ from those of another. The metamer mismatch volume
describes the set of colour signals that can arise under a

Figure 9. Projection into CIE 1931 xy-chromaticity space of the boundaries
of the mismatch volumes shown in Figure 7 that occur along the achromatic
axis. A portion of the spectral locus “horseshoe” is also shown. The largest
area corresponds to the volume that lies closest to the black pole, the smallest
one to the volume that lies closest to the white pole. This is in contrast to the
corresponding 3-dimensional volumes for which the maximum volume occurs
at the center (x0.5) with size decreasing towards both poles.

change of light or observer. Previous methods of describing
the metamer mismatch volume have all provided only approx-
imations to the true volume. These methods probably provide
good estimates of the true volume, but without knowing the
true volume there is no way of knowing for sure. The results
reported here provide a precise description of the true metamer
mismatch volume in terms of its boundary. The method is
general in that it applies for any reflectance lit by a strictly
positive illuminant. The method is demonstrated via a Matlab
program for computing metamer mismatch volumes. There
are many practical applications for metamer mismatching
theory and the associated code, which include better evaluation
of the colour rendering properties of light sources, better
evaluation of the colour accuracy of digital colour cameras,
better rendering of printed or displayed colours, and a better
understanding of what might or might not be possible in terms
of providing a stable representation of the colour of objects
under a change in illuminant.
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