
Rehabilitating the ColorChecker Dataset for
Illuminant Estimation
Ghalia Hemrit1, Graham D. Finlayson1, Arjan Gijsenij2, Peter Gehler3, Simone Bianco4, Brian Funt5, Mark Drew5 and Lilong Shi6
1School of Computing Sciences, University of East Anglia; Norwich, United Kingdom
2AkzoNobel; Amsterdam, The Netherlands
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Abstract
In a previous work, it was shown that there is a curious

problem with the benchmark ColorChecker dataset for illuminant
estimation. To wit, this dataset has at least 3 different sets of
ground-truths. Typically, for a single algorithm a single ground-
truth is used. But then different algorithms, whose performance
is measured with respect to different ground-truths, are compared
against each other and then ranked. This makes no sense. We
show in this paper that there are also errors in how each ground-
truth set was calculated. As a result, all performance rankings
based on the ColorChecker dataset – and there are scores of these
– are inaccurate.

In this paper, we re-generate a new ‘recommended’ ground-
truth set based on the calculation methodology described by Shi
and Funt. We then review the performance evaluation of a range
of illuminant estimation algorithms. Compared with the legacy
ground-truths, we find that the difference in how algorithms per-
form can be large, with many local rankings of algorithms being
reversed.

Finally, we draw the readers attention to our new ‘open’ data
repository which, we hope, will allow the ColorChecker set to
be rehabilitated and once again become a useful benchmark for
illuminant estimation algorithms.

1.Introduction
The ColorChecker dataset was introduced by Gehler et al. in

2008 [1]. It has 568 images of various daily and ordinary tourist
scenes (see Figure 1) mainly taken in Cambridge with two popular
cameras, the Canon 1D and the Canon 5D. The ColorChecker
dataset is probably the most widely used dataset in evaluating the
performance of algorithms for illuminant estimation.

The goal of most illuminant estimation algorithms is to infer
the chromaticity of the light. The reader will notice that each im-
age in Figure 1 has a Macbeth ColorChecker placed in the scene.
The RGB from the brightest non-saturated achromatic patch (see
last row of color chart) is the correct answer – or ground-truth –
for illuminant estimation, according to the calculation methodol-
ogy described by Shi and Funt [2]. In fact, most of the recent
work in illuminant estimation uses a linear version of the dataset,
with linear images reprocessed by Shi and Funt [2] from Gehler’s
original raw images [1].

Naturally, the performance of illuminant estimation algo-
rithms – which adopt a range of strategies to infer the RGB of the
illuminant – is determined by how well they predict the ground-
truth illuminant color. Because we cannot distinguish between

a bright scene dimly lit and the converse (because the intensity
of the illuminant is not recovered), the measure which is used to
quantify the accuracy of the estimation is the angular error. Given
a set of angular errors, various statistical summaries are used to
summarise performance. These include the mean, median or 95%
quantile angular error. Given a set of algorithms and their sum-
mary performance statistics, it is natural to rank all the algorithms
(according to the statistic), and then to conclude that algorithm
A is better than B which is better than C (e.g. if their respective
means are in an ascending order).

While there are many image sets (with respect to which, al-
gorithms might be evaluated in performance and ranked), the Col-
orChecker dataset is the most widely used. Indeed, perhaps the
most comprehensive survey of algorithms performance was car-
ried out by Gijsenij et al. [3]. The results reported there are of-
ten quoted in more recent papers with the paper now cited ∼400
times (April 13, 2018). The algorithms considered in this survey
also form the basis of the color constancy evaluation site (color-
constancy.com).

Figure 1: Images from the Macbeth ColorChecker dataset; here the im-
ages are the camera pipeline outputs.

Of course, this evaluation process makes perfect sense, in
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principle. In practice, we observed in [4] a surprising flaw
in the methodology. Namely, we discovered that there are 3
different sets of ground-truths, one ground-truth – SFU – on
www.cs.sfu.ca/∼colour/data/shi gehler/ [2] and two ground-truths
– Gt1 and Gt2 – on colorconstancy.com. Unfortunately, these 3
ground-truths are used in a haphazard way. Specifically, an au-
thor will adopt one of the three ground-truths, then will evalu-
ate the algorithm and, say, calculate the median angular error. In
the next step, this median is compared against other algorithms’
median errors. But, the medians for these competitor algorithms
have been calculated with respect to all 3 ground-truth correct an-
swers. This makes no sense, especially since [4] demonstrated
that using different sets of ground-truths would drastically affect
the ranking of algorithms. At the time of writing this paper, there
is no definitive ranking of illuminant estimation algorithms (for
the ColorChecker dataset).

Here, we seek to explain why we find ourselves in this mul-
tiple ground-truth world. We then go on to make a new ‘rec-
ommended’ ground-truth (REC) for the community. Then, we
present the results evaluating algorithms using this recommended
ground-truth and compare our results to the benchmark evalua-
tion and rankings. The rankings relative to the new recommended
ground-truth reveal for the first time the actual pecking order in
illuminant estimation for the ColorChecker dataset.

In Section 2, we discuss how we compute the new REC
ground-truth and explain why this ground-truth differs from the
other 3 in the literature. In section 3, we present some analysis of
the relative performance of different algorithms using REC com-
pared to the legacy data. The paper ends with a short conclusion.

2. Derivation of the RECommended Ground-
truth

We adopt directly the methodology introduced by Shi and
Funt [2] to re-process the raw images and re-calculate the ground-
truth set of illuminants of the ColorChecker dataset. However, we
have used our own code and in the interests of transparency, we
will make our code accessible online [5].

Figure 2: REC ground-truth chromaticities are plotted as black crosses.
The green circles and red dots respectively denote the SFU and Gt1
ground-truths.

Readers who ‘click through’ to this code and the data will

find some additional information. Specifically, we explain that
our data repository is ‘open’. We set forth a mechanism for
the community to provide further suggested modifications to this
ground-truth dataset (if necessary). In the short term, we will
monitor any suggestions that the community makes and incorpo-
rate these suggestions – if they are significant – into the data. This
would lead to a new recommended ground-truth. This said, we
have been quite careful in our calculations so it is our hope that
our new REC ground-truth will stand the test of time. If a modi-
fication is suggested, then both the current REC and the updated
version will be retained and labelled with clear time stamps.

Let us outline the REC ground-truth calculation. We re-
processed Gehler’s raw images to obtain linear demosaiced im-
ages using dcraw [6]. Every image has a ColorChecker in the
scene. This color chart provides a reference for measuring the
ground-truth illuminant. In each image, the ColorChecker chart
is selected and the median RGB from the brightest achromatic
patch (ranked by average of the selected squares with no digital
count>3300 [each image is in 12 bits]) defines a ground-truth illu-
minant. The main steps of the color chart processing are presented
in Figure 3.

One point to highlight is the importance of using the same
patch or patches when defining the R, G and B of the light color.
We found that this property was not properly enforced in the cal-
culation of the SFU ground-truth. In fact, we found 3 images
where saturated color channels/patches were not correctly identi-
fied which resulted in having the ground-truth R, G and B values
not taken from the same patch, in these three cases.

Figure 3: The 4 main steps of the color chart processing. A) we select
roughly the chart area in the image. B) we select the 4 corners of the
chart. C) the chart image is geometrically transformed to be in front of the
camera, then we select more precisely its contour. D) we select the centers
of the 4 corners patches as well as one square of interest in one patch, this
square selection is then automatically replicated over all patches. The
medians per channel of the achromatic red-square regions are calculated.

An important detail about the ColorChecker dataset is the
‘black level’. This is zero for Canon 1D images but is 129 for the
Canon 5D. One important contribution of the Shi-Funt calculation
methodology is the subtraction of the camera black level from
the ground-truth. The offsets were estimated from the minimum
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pixels across the whole dataset [2].
Let us discuss the ground-truths. The ground-truth set we

call SFU has the 568 estimates of the RGB lights colors and it
appears currently on the SFU site. On colorconstancy.com, there
are two additional ground-truths, Gt1 and Gt2. Gt1 was calcu-
lated and put online by Gijsenij in 2011. It refers to the same
data as SFU but without the black level being subtracted. Gt1
was calculated based on the color chart patches RGB data which
is available on the SFU site [2] but without subtracting the offset.
A little investigation on our part led us to the following explana-
tion: on the current site [2], it is stated that the black level needs
to be subtracted before using the data: “Note that for most appli-
cations . . . the black level offset will still need to be subtracted
from the original images”. When looking at the same web-page
using the waybackmachine.org site – that allows recovering web-
pages from many years ago – the previous statement is not present
and instead we can read ”[the processing] also takes into account
that the Canon 5D has a black level of 129, which we subtract.”
We spoke to a number of researchers in the field and asked them
to read the current and past web-pages. Everyone agreed that on
reading the past instructions they could easily have made the same
‘mistake’ (and not subtracted the black level). Gijsenij believes
the web-page instructions are a plausible explanation of why he
did not subtract the black point.

Researchers who have been in the field a long time have been
using Gt1 but more recent workers are using SFU. Potentially, all
of these researchers think that they are using the same ground-
truth. But in fact, the data are very different.

The third legacy ground-truth dataset we call Gt2. It is very
similar to Gt1 (and so, also, different from SFU). The reason for
the difference between Gt1 and Gt2 is explained by Bianco [22]:

Table 1: Ranking of 23 algorithms in terms of median recovery error for
REC vs SFU vs Gt1; the Minkowski norm p and the smoothing value σ

are the optimal parameters.

 

 

\cite{Barron2017, vandeweijer2007, Gijsenij2010, vandeweijer2007, Gehler2008, Rosenberg2003, Bianco2015, 

Joze2012, Gijsenij2010, Barnard2000, Schmid2007, Schmid2007, Gijsenij2007, Chakrabarti2012, Schmid2007, 

Bianco2010, Bianco2015, Bianco2010, Gijsenij2007, Land1977, Finlayson2004, Xiong2004, Buchsbaum1980, 

Nishino2003} 

 [9, 10, 11, 10, 1, 12, 
13, 14, 11, 15, 16, 16, 17, 18, 16, 19, 13, 19, 17, 20, 21, 22, 23, 24] 

 

 

Algorithm 
REC SFU Gt1 

median rank median rank median rank 

Fast Fourier Color Constancy (model Q) [7] 1.14° 1 1.13° 1 3.82° 15 

1st order Grey-Edge (p=1, =6) [8] 3.09° 2 3.08° 2 4.52° 18 

Edge-based Gamut (=4) [9] 3.27° 3 3.26° 3 5.04° 19 

2nd order Grey-Edge (p=1, =1) [8] 3.57° 4 3.59° 4 4.44° 17 

Bayesian [1][10] 3.85° 5 3.87° 5 3.46° 14 

Deep Color Constancy using CNNs [11] 3.94° 6 3.93° 6 1.99° 1 

Exemplar-based Colour Constancy [12] 4.36° 7 4.37° 7 2.27° 2 

Pixel-based Gamut (=4) [9] 4.41° 8 4.44° 8 2.33° 3 

Intersection-based Gamut (=4) [9] 4.41° 9 4.44° 9 2.34° 4 

Bottom-up + Top-down [13] 4.54° 10 4.56° 10 2.47° 5 

Top-Down [13] 4.60° 11 4.63° 11 2.63° 7 

Using Natural Image Statistics [14] 4.70° 12 4.72° 12 3.13° 11 

Heavy Tailed-based Spatial Correlations [15] 4.76° 13 4.81° 13 2.96° 9 

Bottom-Up [13] 4.90° 14 4.90° 14 2.56° 6 

CART-based Selection [16] 5.09° 15 5.09° 15 3.35° 12 

Alex-Net + SVR using CNNs [11] 5.30° 16 5.30° 16 3.11° 10 

CART-based Combination [16] 5.52° 17 5.52° 17 2.91° 8 

General Grey-World (p=9, =9) [8] 5.95° 18 5.95° 18 3.46° 13 

White-Patch [17] 6.74° 19 6.74° 19 5.68° 20 

Shades-of-Grey (p=4) [18] 6.83° 20 6.85° 20 4.01° 16 

Regression (SVR) [19] 9.60° 21 9.62° 21 6.73° 22 

Grey-World [20] 9.97° 22 9.99° 22 6.29° 21 

Inverse-Intensity Chromaticity Space [21] 11.61° 23 11.58° 23 11.52° 23 

Fast Fourier Color Constancy (model P) [9] 0.85° 1 0.86° 1 3.53° 15 

“we noticed that for some images the Macbeth ColorChecker co-
ordinates (both the bounding box and the corners of each patch)
were wrong and thus the illuminant ground-truth was wrong.” In
Figure 2, for a subset of the 568 images, we compare the chro-
maticity distributions of our new REC ground-truth, SFU and
Gt1 (Gt2 is not shown as it is almost the same as Gt1). The
reader will notice that the current SFU ground-truth is close to
our newly calculated RECommended ground-truth except for a
few points. These look to be set apart from the rest of the data i.e.
they appear to be outliers, in some sense (note that, in Figure 2,
the 3 green circles to the left of the plot that do not overlap with
the black crosses). These are data points in SFU that are different
from REC.

We posit that the outliers are due to the problems in calcu-
lating correctly the bounding boxes (Bianco’s observation) and to
our own discovery that the white point was on occasion drawn
from different achromatic patches (for R versus G versus B). De-
spite this, the preponderance of the data is in, more or less, precise
alignment. In contrast, the points in Gt1 are far from REC.
Table 2: Ranking of 23 algorithms in terms of median reproduction error
[23] for REC vs SFU vs Gt1; the Minkowski norm p and the smoothing
value σ are the optimal parameters.

 

 

  

Algorithm 
REC SFU Gt1 

median rank median rank median rank 

Fast Fourier Color Constancy (model Q) [7] 1.43° 1 1.45° 1 4.75° 16 

1st order Grey-Edge (p=1, =9) [8] 3.74° 2 3.77° 2 4.90° 18 

2nd order Grey-Edge (p=1, =1) [8] 4.54° 3 4.59° 4 4.76° 17 

Edge-based Gamut (=3) [9] 4.56° 4 4.54° 3 5.88° 19 

Bayesian [1][10] 4.60° 5 4.62° 5 3.92° 13 

Deep Color Constancy using CNNs [11] 4.72° 6 4.75° 6 2.24° 1 

Exemplar-based Colour Constancy [12] 5.17° 7 5.22° 9 2.64° 2 

Pixel-based Gamut (=4) [9] 5.20° 8 5.21° 7 2.73° 3 

Intersection-based Gamut (=4) [9] 5.20° 9 5.21° 8 2.74° 4 

Bottom-up + Top-down [13] 5.36° 10 5.35° 10 2.75° 5 

Top-Down [13] 5.41° 11 5.43° 11 3.11° 7 

Using Natural Image Statistics [14] 5.46° 12 5.47° 12 3.55° 10 

Heavy Tailed-based Spatial Correlations [15] 5.83° 13 5.88° 13 3.48° 8 

Bottom-Up [13] 5.85° 14 5.89° 14 2.98° 6 

CART-based Selection [16] 6.08° 15 6.03° 15 3.90° 12 

Alex-Net + SVR using CNNs [11] 6.34° 16 6.38° 16 3.66° 11 

CART-based Combination [16] 6.56° 17 6.55° 17 3.48° 9 

General Grey-World (p=9, =9) [8] 6.66° 18 6.65° 18 3.98° 14 

Shades-of-Grey (p=4) [18] 7.55° 19 7.56° 19 4.43° 15 

White-Patch [17] 8.04° 20 8.03° 20 6.48° 20 

Regression (SVR) [19] 10.31° 21 10.39° 21 7.42° 22 

Grey-World [20] 10.63° 22 10.68° 22 6.81° 21 

Inverse-Intensity Chromaticity Space [21] 12.81° 23 12.77° 23 12.77° 23 

3. Evaluating the Performance of Illuminant
Estimation Algorithms

In what follows, we provide performance evaluation and
ranking of 23 illuminant estimations for the RECommended and
the legacy SFU and Gt1 ground-truths. In Table 1, the 23 algo-
rithms are ranked according to the median recovery angular error
(i.e. the conventional error measure, which gives the angle be-
tween the estimated illuminant RGB vector and the ground-truth
illuminant RGB). The ranking is the same for REC and SFU, al-
though the median errors are slightly different. This is expected
as (recall Figure 2) the number of differences between REC and
SFU is small (due to errors in the calculation). However, the rank-

352 Society for Imaging Science and Technology



ing of algorithms according to the Gt1 dataset is markedly differ-
ent (due as opposed to a different methodology of calculation).

The five best algorithms with Gt1 are not in the top 5 ac-
cording to REC. Vice versa, the 5 best algorithms according to
REC are among the worst-performing algorithms with Gt1. The
algoithms Edge-based Gamut Mapping [9], 2nd order Grey-Edge
[8] and Bayesian [1][10] are, for example, in reverse order. Fast
Fourier Color Constancy [7] – which is in significant part built
on top of a machine learning algorithm – is best according to the
RECommended ground-truth but is the 15th best on Gt1. This
may not be surprising as this algorithm was trained on SFU. Deep
Color Constancy using CNNs [11] is 6th based on REC and top
ranked based on Gt1. Again, this is not surprising since this algo-
rithm was trained on Gt2 (which, we recall, is very similar to Gt1
but very different from SFU and REC).

In Table 2, we consider the ranking of the 23 illuminant esti-
mation algorithms in terms of median reproduction angular error
[23]. Reproduction error is an angle-type error that evaluates how
well a white surface is reproduced. Since image reproduction is
the goal of most illuminant estimation algorithms, reproduction
error provides a more useful measure of algorithm performance.
This time, results with REC and SFU locally differ. Once again,
the results with Gt1 are significantly different. Finally notice that
the ranks for the same ground-truth but recovery vs reproduction
angular error results in different rankings.

In Tables 1 and 2, we do not include the results for Gt2
because they are very comparable to Gt1, however we invite the
reader to consult our previous work on this topic [4]. A more
complete survey is accessible on colorconstancy.com.

Conclusion
Illuminant estimation algorithms have been evaluated and

compared on the benchmark ColorChecker dataset with at least
three different ground-truths, with one of the three being very dif-
ferent to the other two. In addition, we found that all three of
these sets of ground-truths were inaccurately or incorrectly calcu-
lated in the sense that small errors were made. The problem of
multiple ground-truths and calculation errors has led to mislead-
ing results in the performance evaluation of illuminant estimation
algorithms.

In this paper we have introduced a new RECommended
ground-truth for this dataset which we hope rehabilitates the Col-
orChecker dataset. Broadly, we followed the methodology set
forth by Shi and Funt but using our own code and we corrected a
few errors made (e.g. those reported in [22]). We re-evaluated all
the algorithms on the widely used comparison site for illuminant
estimation algorithms, colorconstancy.com. We invite the com-
munity to refer to what we hope is a more definitive comparison
in future research.
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