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Abstract 

A new image test set of synthetically generated, full-spectrum 
images with pixelwise ground truth has been developed to aid 
in the evaluation of illumination estimation methods for colour 
constancy. The performance of 9 illumination methods is 
reported for this dataset along and compared to the optimal 
single-illuminant estimate. None of the methods specifically 
designed to handle multi-illuminant scenes is found to perform 
any better than the optimal single-illuminant case based on 
completely uniform illumination. 

Introduction  
Until relatively recently, the majority of work on colour 

constancy has been based on the assumption that the scene is lit 
by a single illuminant. Everyone is aware that this assumption is 
very often violated, but there are only very limited image 
datasets, such as those created by Beigpour et al. [1] [2],  with 
ground truth data for multi-illuminant scenes. However, these 
data sets are both small and mainly consist of images of quite 
constrained single-object scenes. We introduce a new dataset of 
1,000 full-spectrum images of complex scenes and test the 
publicly available implementations of colour constancy methods 
on them, including both those specifically designed for 
multi-illuminant scenes. 

The goal of colour constancy is often defined as the 
recovery of the ‘true’ or ‘intrinsic’ colour of each surface in an 
image. However, as Logvinenko et al [3] point out, the problems 
of metamer mismatching make this formulation fundamentally 
incorrect. Surface reflectance is an inherent, intrinsic property of 
a surface, but colour—despite its use to that effect in everyday 
language—is not an intrinsic property of a surface.  We can avoid 
this issue, however, since most colour constancy methods are 
based on a two-step process: (1) estimate the chromaticity of the 
illumination; (2) adjust the image colours relative to the chosen 
canonical ‘white’ illuminant using von Kries scaling. Recovering 
the chromaticity of the illumination is a well-posed problem, 
even though recovering the intrinsic surface colour is not. 
Fortunately, the difference between the majority of colour 
constancy methods lies in the illumination estimation (IE) step 
and so performance measures are based on evaluating the 
accuracy of the estimated chromaticity of the illuminant. Our 
focus here is on evaluating the IE performance of existing 
methods on multi-illuminant scenes having spatially-varying 
chromaticity of the lighting due both to the mixture of the light 
from various light sources, plus the lighting effects created by 
interreflections. 

This paper’s contributions are as follows.  
1. We compare and analyse some representative IE methods 

on MIST. This is the first time these methods are evaluated with 
accurate, pixel-wise ground truth.  

2. We provide detailed, in-depth evaluation results, 
including the output of each algorithm, a pixel-wise 

angular/distance error heatmap for each algorithm, and the 
optimal single-illuminant estimate.  

3. We make a benchmarking system in Python that provides 
a uniform way to evaluate different IE methods. This system is 
designed to support any dataset in any image format, and 
similarly any algorithm implemented in any programming 
language. This generality is accomplished by allowing the user 
to write brief segments of wrapper code in Python that are then 
called by the benchmarking system itself. It is fully open-sourced 
and free for research use.  It is available for download from:  
https://github.com/XiangpengHao/ColorConstancy. 

 

Background 
Beigpour et al. [2] provide a dataset of 600 

multi-illuminant images photographed in a laboratory setting 
with ground truth data in terms of the surface colours under a 
specific white light. They built the dataset by very careful 
construction of each scene and camera setup. After capturing 
images of a scene under 20 different lighting conditions, the 
scene is spray painted grey and photographed again under the 
same 20 lighting conditions. This provides the necessary 
information for computing the ground truth. The scenes are 
quite limited in their complexity, usually of a single object. The 
final 600 images in the dataset are of 5 scenes under 20 
different illumination conditions, photographed using 6 
cameras. In other words, for a given camera there are only 100 
images of 5 scenes/objects. Figure 1 shows two examples from 
that dataset. 

Beigpour et al. [1] also generated a set of synthetic images 
of multi-illuminant scenes. The rendering was done with 
Photon mapping using 6 bands. The dataset is quite small, 
containing only 36 low resolution (480x270) images of 9 
scenes under 4 different illumination conditions, 2 of which are 
more or less uniform in spectral power distribution. Hence, 
only 18 of these are truly multi-illuminant. Figure 1 (bottom) 
shows an example of a scene under two different illumination 
conditions along with the ground truth (middle). 

Figure 1. Example images from the real image (top) and synthetic image 
(bottom) data sets of Beigpour et al. [2] [1] 
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The New MIST Multi-Illuminant Dataset 
MIST [4] is a dataset containing 1,000 full-spectrum images 
created via ray-traced computer graphics rendering using a 
modified version of Blender [5]. The image data is stored in 
OpenEXR format using 16-bit floats.   Figure 2 shows an 
example of an image from MIST. MIST is fully described 
elsewhere [4] and is available for download from: 
https://www2.cs.sfu.ca/~colour/data/ 
 
In summary, the image database has the following features. 

 
(1) Full Spectrum Image Data  
Every image is MIST is represented by full-spectrum pixel data 
ranging from 400nm to 695nm, sampled every 5nm. It also 
includes per-pixel depth information, although we do not make 
use of depth information here. For the evaluation of IE methods 
that work on standard linear sRGB data, we assume a 
colorimetrically accurate sRGB ideal camera (no noise, lens flare 
or blurring) model. In particular, we convert each spectrum to 
linear sRGB using the CIE 2° standard colorimetric observer 
colour matching functions to obtain the corresponding XYZ 
under CIE D65, and then convert XYZ to linear sRGB using the 
transformation matrix (Eq. 1) from the sRGB standard [6]. 
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(2) Pixel-By-Pixel Ground Truth  

Most existing datasets provide only a single illuminant 
chromaticity as the ground truth value under the assumption that 
the scene is lit by only one illuminant. However, Xu et al. [7] 
found that almost half the images in the widely-used Gehler-Shi 
[8] [9] set, were, in fact, of multi-illuminant scenes. In other 
words, a single ground truth value must be incorrect for many 
locations in each such image. By using photo-realistic, 
multi-bounce ray-traced rendering, MIST is able to provide 
pixel-by-pixel ground truth data regarding both the percent 
spectral reflectance and the spectrum of the incident light. In 
terms of a ground truth represented in terms of sRGB, a 
canonical ‘white’ illuminant is chosen—usually either the equal-
energy illuminant or CIE D65—to ‘light’ the spectral 
reflectances. Similarly, for the incident light the illuminant 
chromaticity is computed based on the light being reflected from 
an ideal reflector. Using this dataset, we can evaluate IE 
algorithms on scenes that include multiple illuminants, 
interreflections and transparency.  
 

 
Figure 2. (top) Example of a full-spectrum image in which each pixel is 
represented by the spectral power distribution of the light reflected from the 
corresponding surface location. (bottom) Plots the spectral power distributions of 
the reflected light from the four points indicated in the image. 

 
(3) Physically Accurate Color Computation 
  MIST is a ray-tracing-based, synthetic dataset. Images are 
rendered one wavelength sample at a time in order to provide a 
physically accurate result. Standard RGB renderers model 
reflectances and illuminants as 3-tuples. For reflectances, 

𝜌AB = ∫ 𝑆(𝜆)𝑅A(𝜆)𝑑𝑥I (2)  

For illuminants, 

𝜌AK = L  𝐸(𝜆) 𝑅A(𝜆) 𝑑𝑥
I

(3) 

Light reflected off a matte surface is then approximated as: 

𝜌A
K,B	 = 𝜌AK𝜌AB (4) 

However, Eq. (4) only approximates the physics of matte 
reflection. The correct model is: 

𝜌A
K,B	 = L 𝐸(𝜆)𝑆(𝜆)𝑅A(𝜆)𝑑𝑥

I
(5) 

Eq. (4) usually produces pleasing results, but not ones that 
are physically correct. As a result, standard photo-realistic 
renderings are not sufficient for evaluating IE methods. By 
rendering an ‘image’ of each wavelength separately, we can 
then compute the resulting color using Eq. 5 (discretized), 
rather than Eq. 4. 
 
  In Blender, specular reflection (gloss) is modeled with an 
additive component of the same spectral power distribution as 
of the incident illuminant. In other words, the interface 
reflection is the same for all wavelengths. 
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Illumination Estimation Error Analysis 
 

We report IE errors based on the following measures.  
 
rgb-Angular Error [10] per pixel 3-tuple 𝜌 

𝑒𝑟𝑟UVWXYVUZ = cos^_ `
(𝜌K ⋅ ρKcd)
|ρK | |fKcd |

g (6) 

Reproduction Angular Error [10] per pixel 

𝑒𝑟𝑟UViUXjkWdlXm = 	 cos^_n𝑤Kcd ⋅ 𝑤p (7) 

where  𝑤Kcd =
rs/rsuv

|fs/fsuv|
  and  𝑤 =

rs/rs

√x
   

rg-Distance Error per pixel 

𝑒 = {(𝑟K − 𝑟Kcd)z + (𝑔K − 𝑔Kcd)z}_/z (8)	

where 𝑟 = 𝑅/(𝑅 + 𝐺 + 𝐵) and 𝑔 = 𝐺/(𝑅 + 𝐺 + 𝐵). 

The mean and medians of these error measures taken over all 
image pixels are also reported. 

Illumination Estimation Methods 
IE methods are often divided into two categories; namely, 

static versus learning, as suggested by Gijsenij et al. [11]. The 
first type can be applied to any image without prior knowledge 
of the image’s origin. In other words, no training is required. The 
second type of algorithm requires that the model be trained on a 
dataset of images from the same camera or cameras as the test 
image.  

In our experiments, the following IE methods are evaluated 
over the whole MIST dataset.  Many other methods have been 
described in the literature, but these are the ones that are either 
simple to implement or have implementations publicly available 
for download that actually worked when we tried to run them.  
 
Max-RGB estimates the illuminant chromaticity as  
[max(R), max(G)]/[max(R)+max(G)+max(B)], 
where the maximum is across all pixels.   
 
Greyworld estimates the illuminant chromaticity as 
[mean(R), mean(G)]/[mean(R)+mean(G)+mean(B)],  
where the mean is across all pixels.    
 
Shades of Grey [12] method combines the above two methods 
by replacing the norm with the Minkowski p-norm and estimates 
the illuminant chromaticity as  
[pnorm(R), pnorm(G)] / [pnorm(R)+pnorm(G)+pnorm(B)]. 
 
Mixed K-Means [13] aims to solve the IE problem for multi-
illuminant environments. It applies K-means to segment the 
image based on there being differing illuminants and then uses 
Max-RGB for IE within each segment.  
 
Conditional GANs [14] [15] applies the pix2pix algorithm [16] 
to estimate the multiple illuminants in a non-uniform 
illumination environment. 
 
Color by Colorization [17] is based on deep convolutional 
neural networks and applies a modification of the standard 

colorization of grayscale images to colored ones as a way to infer 
what the surface colors are likely to be under the canonical 
illuminant without explicitly estimating the illumination incident 
at each pixel.  
 
 
FC4 [18] This method uses a fully convolutional network 
architecture in which patches throughout an image are assigned 
different confidence weights according to the value they provide 
for IE estimation. These weights are learned and applied within 
a pooling layer to merge them into a single global estimate.  
 
Grey Edge [19] assumes that the average of the reflectance 
differences across a scene is achromatic.  
 
Weighted Grey Edge [20] exploits distinct edge types to 
improve the performance of the original Grey Edge method. A 
variable weighting schema alternatingly estimates the 
chromaticity of the light source and updates the computed edge 
weights. 
 

Experimental Setup and Evaluation 

Preprocessing to PNG format 
While most IE methods can be applied directly to 

OpenEXR 16-bit images, some learning-based methods only 
accept images in the same format as they are trained. For these 
methods, we converted the original OpenEXR MIST images to 
8-bit PNG images. However, the mapping from OpenEXR to 
PNG is non-trivial because of the resulting reduction in dynamic 
range. Since this mapping is not the focus of this paper, we 
choose simply to perform a linear mapping between images in 
these two formats. However, to avoid the resulting images from 
being too dark, up to 5% of the pixels are clipped to 255. For 
image display, such a mapping would usually include a 
non-linear gamma correction component, but generally IE 
methods are tested on linear image data so a linear mapping 
between the two formats is required. 

Oracle Method: Best Single-Illuminant Estimate 
To provide a baseline with which to compare the results of 

IE methods applied to multi-illuminant images, we introduce the 
“Oracle” method. Given the corresponding ground truth image, 
Oracle finds the best single-illuminant chromaticity minimizing 
the rg-distance error in chromaticities averaged over the entire 
multi-illuminant input image. In other words, the Oracle 
provides the best possible single-illuminant estimate. 
Calculating the Oracle estimate is formulated using the following 
error metric: 

𝐸𝑟𝑟 = ��⃗�𝜆 − 𝜏� (9) 

where 𝛾 is the vectorized image of the illumination chromaticity 
field and 𝜏  is the vectorized ground truth illumination 
chromaticity field, and 𝜆 is the best single illuminant estimate. 
The goal is to find the best 𝜆 minimizing 𝐸𝑟𝑟. Although it would 
seem that this might require an iterative optimization, the 𝜆 
minimizing the error in Eq. (9) can be found, in fact, by direct 
computation [4]  

λA =
𝜌A ⋅ 𝛾A
𝜌A ⋅ 𝜌A

(10) 
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Error Heatmap 
Traditional IE test datasets typically provide only the 
chromaticity of a single illuminant as the ground truth. MIST 
instead provides pixel-wise ground truth, which allows us to plot 
a pixel-wise heatmap of the error in the illuminant estimate.  
 

Results 
Figure 3 shows the illumination estimates and error heat 

maps for the methods tested. Table 1 reports the mean, median 
and standard deviation of the three error measures for the 
methods tested.  Clearly, none of the methods performs very 
well. In particular, the multi-illuminant methods are no better 
than the single-illuminant methods.  The performance of Mixed 
k-means, the best multi-illuminant method, is not as good as the 
standard Grey Edge method, and neither is very close to the 
single-illuminant Oracle.  

 

 
 
 
Conclusion 
 

MIST, a new multi-illuminant, full-spectrum, fully ray-
traced, synthetic image dataset has been presented and the 
performance of ten different illumination methods has been 
evaluated on it. Surprisingly, none of the methods specifically 
designed for spatially varying, multi-illuminant images results in 
a lower error than the ideal single-illuminant estimate method. 
The MIST dataset is freely available for download in order to 
encourage further research and testing in this area. 
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 Figure 3. Sample colour correction results for the different IE algorithms. The first row shows five different input images; the second row shows the corresponding ground 
truth reflectances imaged under D65; the third row shows colour correction based on the Oracle (best single-illuminant) result; and the subsequent rows present the 
results of nine different algorithms. Note that the GAN method only works with 512x512 square images, so it has been applied to a 512x512 subwindow of the 
corresponding input image.  For display purposes, the images have been converted to standard non-linear sRGB.   
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