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Abstract 

Color constancy can be achieved by analyzing the chromatic aberration in an image. Chromatic 
aberration spatially separates light of different wavelengths and this allows the spectral power distribu- 
tion of the light to be extracted. This is more information about the light than is registered by the cones of 
the human visual system or by a color television camera; and, using it, we show how color constancy, the 
separation of reflectance from illumination, can be achieved. As examples, we consider grey-level images 
of(a) a colored dot under unknown illumination, and (b) an edge between two differently colored regions 
under unknown illumination. Our first result is that in principle we can determine completely the spec- 
tral power distribution of the reflected light from the dot or, in the case of the color edge, the difference in 
the spectral power distributions of the light from the two regions. By employing a finite-dimensional 
linear model of illumination and surface reflectance, we obtain our second result, which is that the spec- 
trum of the reflected light can be uniquely decomposed into a component due to the illuminant and 
another component due to the surface reflectance. This decomposition provides the complete spectral 
reflectance function, and hence color, of the surface as well as the spectral power distribution of the il- 
luminant. Up to the limit of the accuracy of the finite-dimensional model, this effectively solves the color 
constancy problem. 

1. Introduction 

A central problem with Maloney and Wandell's 
recent color constancy algorithm is that it re- 
quires more than three sensor classes for ade- 
quate recovery of surface spectral reflectance [14, 
18]. Since it is generally agreed that the human 
visual system has only three types of receptors ac- 
tive at photopic light levels, some other mecha- 
nism for obtaining information about the spec- 
trum of the incoming light must be present if the 
theory is to hold. In this paper, we show how 
chromatic aberration can be used to obtain the 
necessary extra information about the input spec- 
trum, and furthermore, how this information can 
be applied to the color constancy problem. 

Chromatic aberration arises from the fact that 
the refractive index of a medium depends on 
wavelength. The focal length of a lens therefore 
also varies with wavelength, with the result that a 
single-element lens can only truly be in focus for 

one wavelength at a time. Other, out-of-focus 
wavelengths are almost always present and lead 
to distortion. In images with serious chromatic 
aberration, the distortion appears as color bands 
around the sharp edges between differently 
colored regions. Usually, chromatic aberration is 
viewed as a negative feature of an optical system 
and much effort has been expended on the design 
of lenses corrected to minimize its effect. 

For the human eye, the amount of chromatic 
aberration has been measured to be approx- 
imately 1.82 diopters [9] and so, from a negative 
standpoint, we can say that the human visual sys- 
tem suffers substantially from its distorting effect. 
But is this negative view appropriate? Could 
chromatic aberration, because of its prismatic ac- 
tion that separates light on the basis of wave- 
length, perhaps in fact benefit the visual system in 
some way'? While we have as yet no evidence to 
support such a conjecture for human vision, we 
can at least explore what interesting information 
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might possibly be extracted from chromatic 
aberration for use in a visual system, whether 
human or machine. 

Because chromatic aberration is a wavelength- 
dependent phenomenon, we expect it to yield in- 
formation concerning the spectrum of the incom- 
ing light. This, it turns out, is exactly the kind of 
information needed to successfully address the 
color constancy problem. Color constancy gen- 
erally refers to the ability of humans to make con- 
sistent judgements of surface color under a large 
variation in the spectral character of the incident 
illumination. For our purposes, the color con- 
stancy problem is that of determining from an 
image of not more than three bands a surface's 
spectral reflectance function (percentage reflec- 
tance as a function of wavelength) to within a 
multiplicative constant when the spectral energy 
distribution of the illuminant is unknown. 

The main aim of this paper, therefore, is to 
show how color constancy can be achieved by 
using spectral information derived from the dis- 
tortion caused by chromatic aberration. As an ex- 
ample of how this can work, we first examine the 
problem of determining the spectral reflectance 
function of a colored spot against a black back- 
ground under unknown illumination from a 
single-band, greyscale image. We then generalize 
to the case of chromatic aberration at the edge be- 
tween two regions of different color. 

2. Extracting the SPD of the Reflected Light 

The fact that chromatic aberration can yield in- 
formation about the spectral power distribution 
(SPD) of light can be understood intuitively by 
analogy to regular spectroscopy in which a prism 
is used to bend different wavelengths of light 
through different angles. By measuring the inten- 
sity of light exiting the prism as a function of 
angle (or position, if the light is cast onto film), we 
obtain the complete spectral power distribution 
function of the light. Both chromatic aberration 
and prismatic spectral separation arise as a result 
of the fact that the refractive index of a medium 
(in this case glass) varies as a function of 
wavelength. The "image" formed by a prism is 
just an extreme case of chromatic aberration. 

While the situation created by chromatic 

aberration is similar to that of the prism, it is by 
no means as simple. The focused image of a point 
of monochromatic light is a point; however, only 
one wavelength can be in focus at once--all other 
wavelengths will be out of focus. The "focused" 
image of a point of mixed wavelengths is an 
amalgam of many, slightly out-of-focus points. 

The out-of-focus image of a point is a disk 
whose diameter varies with the amount the point 
is out of focus. Because the different wavelengths 
of the light from the point will each be out of focus 
to a different degree, the image of a colored point 
formed under chromatic aberration can be un- 
derstood as the superposition of a (possibly in- 
finite) set of disk images. Each disk is the out-of- 
focus image of the point for one particular 
wavelength of the incoming light. Even though 
the information from different wavelengths over- 
laps in the chromatic-aberration image of a point, 
the regularity of the superposition means the 
SPD of the incoming light can be extracted 
nonetheless. 

We will first consider the image formation 
process in detail, deriving an expression for the 
point-spread function of the optical system 
possessing chromatic aberration as a function of 
the SPD of the incoming light. This will enable us 
to invert the image formation process to obtain 
the incoming light's SPD. 

For monochromatic light, the point-spread 
function can be calculated as a function of 
wavelength when the imaging parameters are 
known. To do so, we employ two well-known, 
thin-lens results from optics [11, 16]: 

1/S  + 1 / S ' =  1 / f  (1) 

1 / f  = ( n ' / n  - 1)(l/R1 - l /R2) (2) 

where 

f = focal length of the lens 
S = distance from the imaged object to the 

lens 
S' - distance from the lens to the object's 

image 
n = refractive index of external medium 
n' = refractive index of lens medium 
R1, R2 = radii of curvature of  the first (the inci- 

dent) and second lens surfaces 



We first derive the radius d(~) of the disk image of 
a point as a function of wavelength, ignoring dif- 
fraction. Figure I shows the situation in which the 
image of a point at O is formed on an image plane 
positioned at distance S(km~n) from the lens, where 
S(~.min) is given by: 

S(Xmi.) = S~(Xr~,.)/ISo - f(Xm,.)[ (3) 

f(ik.min) is the focal length for the shortest visible 
wavelength. By equation (1), wavelength )~"min will 
be in focus, but all other wavelengths will not. 

Now consider X > Lmi, for which the image will 
focus at distance S(X). A ray passing through A 
and C intersects the image plane at D. By similar 
triangles ABC and DEC, DE/AB = EC/BC or 

d(X) = r [S(L) - S(~min)]/S(~,) (4) 

Again in the absence of diffraction, a spatially 
uniform, parallel, incoming intensity distribution 
at the lens of wavelength k creates a uniform dis- 
tribution on the image plane of radius d(L). This is 
easily seen from figure 2 by the similarity of 
triangles ABO and A'B'O as well as BCO and 
B'C'O. We have AB/A'B' = BO/B'O = CO/C'O. 
Since CO/C'O is constant and thex andy dimen- 
sions are similar, a unit area on the lens always 
projects its entire incident flux onto a region of 
proportional area on the image plane. The 
assumption of uniform, parallel incident light 
will hold sufficiently whenever So >> r. By the cir- 
cular symmetry of the system, the geometrical 
out-of-focus image of a point will be a uniform 
disk of  radius d(k). Diffraction, however, com- 
plicates the situation. 

The effect of diffraction on the point-spread 
function of an out-of-focus optical system with 
circtflar aperture has been analyzed in detail [8, 
17, 1]. While there is no simple, closed-form ex- 
pression describing how the point-spread func- 
tion varies with the degree of defocus, a few 
general statements can be made. 

First, for low spatial frequencies and large 
defocusings, the geometrical (no diffraction) 
point-spread function approximates the true 
(with diffraction) point-spread function. Second, 
the point-spread function is circularly symmetric. 
Third, although the point-spread function ex- 
tends indefinitely, it drops offquickly and most of 
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Fig. 1. The image of a point 0 is spread out by distance d(k) 
when the image plane is set so that light of wavelength kin is 
in focus. 

its energy occurs within the radius of the corre- 
sponding geometrical point-spread function. 
Fourth, the area over which the energy spreads 
monotonically increases with the degree of 
defocus. 

Let D(L) be the radius at which the point-spread 
function energy is small enough that we can safe- 
ly truncate it. In this case, the image intensity at 
distance x off the optic axis will be affected by all 
wavelengths such thatx < D(L). The contribution 

Lens Image 
A ~ . .  plane 

V in focus 

C 
r 

B' 

A' 

Fig. 2 The distance between any two points on the image 
plane is always proportional to the distance between their cor- 
responding points on the lens. Uniform parallel mon- 
ochromatic incident flux will result in uniform flux on the 
image plane within the image disk in the absence of diffrac- 
tion effects. 
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of wavelength ?~ to the image intensity distribu- 
tion, 9(x), is simply I(~.)R(x, L). R (x, L) is the one- 
dimensional linespread function of the isotropic 
point-spread function, with its wavelength de- 
pendence made explicit. Integrating over all 
wavelengths in the visible spectrum [Lmi,,Lmax] we 
obtain the intensity at x: 

f ]S5 x p(x)  = I(~.)R(x.~.) dX (5) 

Since (5) is an integral equation in which R(x. L) is 
known and p(x) can be measured, we can solve for 
I(L), the SPD of the incoming light. First we note 
that D(~.) increases monotonically with X. For a 
sequence of decreasing wavelengths, ~'max = ~0 > 
L~ > . . .  > L, = ~mi,, the corresponding sequence 
of disk diameters decreases, D(~) > D(k~) > . . .  
> D(~). With this subdivision, the integral in (5) 
becomes a summation which can be written 
recursively in terms of I(~.) as 

p ( D ( ~ ) )  = I(L0)R(D(~.0),~) (~,0 - Z.,) (6) 
k 

p(D(Lk)) = ~. I(~.,)g(D(~.k),~.i) (~.i - ~.,+1) 
i=0 

The initial condition holds because R(D(L~),?~b) = 
0 for all ~ > ~.  Rearranging for I(~. we obtain 

I(~.o) = p(D(Xo))/{R(D(Z.o), Lo) (Xo - ~.,)} 
(7) 

I(Lk) = {p(D(~.k) ) 
k-1 

- ~. I(~.,)R(D(~.k), X,)(~., - ~., +,)} 
i =o  

+ {R(D()~k), ~,k)l~.k -- ~'k + ,]} 

This equation can be solved numerically given 
the image intensity distribution p(x). Hence, 
when light is reflected from a colored dot su- 
perimposed on a black background, we can 
recover the complete SPD, I0.), of the light reflect- 
ed from it by analyzing the grey-level image in- 
tensity distribution, p(x), in terms of chromatic 
aberration. 

3. Extracting the SPD Difference Across 
a Color Edge 

Chromatic aberration at a color edge causes the 
colors to bleed into one another. The mixture of 
the light from different locations and of different 
wavelengths is more complex than in the dot case. 
For brevity, we analyze the case of one-dimen- 

sional, thin-line regions, which illustrates all the 
relevant issues, and will present the two-dimen- 
sional case elsewhere [7]. The situation is as 
shown in figure 3. 

Let points above the axis be positive and points 
below negative. The intensity at a point on the 
image plane depends on the light emitted from a 
range of points in the scene. The effect of a scene 
point in the image is limited by the size of the 
point-spread function (we assume a spatially in- 
variant psf) for the longest wavelength, D(~max). 
Therefore, points in region 1 can at the furthest af- 
fect points on the image plane for x < D(~.max). 

Bear in mind that the lens inverts the image. 
Similarly, region 2 only contributes to image 
points for x ~> -D(Jkmax). 

Let the SPD of the light reflected from region 1 
be It(k) and that from region 2 be I2(L). Let Dmax -- 
D(k~max). Analogous to the point source case, the 
following equations describe the image irradi- 
ance p(x). 

For x > Dmax, 
~kmax /" Dmax 

[:)(X) : )kmi n J_Dmaxl2(~)R(s,~,) ds dL (8)  

For  x < -Dmax, 
fkmax/" Dma x 

p(x) = J~min J-Dmax I1(L)R(s' 'L) ds d7. (9) 

For - D m a  x < x < Dmax, 
/'kma x/" Dma x 

p(x) = J~mi. J-" I2(Z')R(s' '~) ds dX 

fkma x f -x 
+ J, J. I,(~.)R(s,,~.) as dL (10) 

~min -Dmax 

Region 1 

Region 2 

Short wavelength Long wavelength 

0 

Lens Image 
plane 

Fig. 3. Image formation for an off-axis point near a color 
edge. 



Equation (8) simply states that for a point 
above the optical axis and at a distance from the 
axis greater than Dm,x, the intensity is due solely to 
light from region 2. Similarly with (9), for a pointx 
< -Dmax the intensity at that point is due solely to 
light from region 1. For image points within the 
range [-Dmax~Omax], both regions contribute so the 
integration is broken into two parts. The first in- 
tegral in (10) represents the light coming from 
region 2 and the second represents the light com- 
ing from region 1. 

Let us now consider the simplest case, in which 
the spread function, R (x,L), is uniform. Since it 
becomes zero at distance D(L) from its center, its 
width at wavelength L is 2D(L). Letting L(D) be the 
inverse function of D(K), the following expression 
describes the spread function: 

R(x,L) = { 10/(2D(K))' X > L(x) 
X < X(x) 

Let U(X) = 1/(2D(K)) and assume that I(L)R(x, X) is 
such that the order of integration can be changed, 
in which case (10) can be rewritten as follows. 

For - D m a  x • x < D . . . .  

fOmax f ~'max 
p(X) = J-x JXmi n I2(K)R(s 'K)  d X d s  

f_ -x ,xf XT[xI'(X)R(s'K) + | dKds (11) 
Dmax 

= f Omax f Zmaxl2(X)U(K)dKds 
J-x aZ.(s) 

fx,[7"X/l + (L)U(L) dK ds 
Dmax 

Since k(s) = k(-s), the first derivative yields 

= ~m]xI2(k)U(~, ) dk 9'(x) 

- dX (12) 

Taking the second derivative we have 

p " (x ) = - I2( X(x ) )U(  X(x ) )X' (x ) 

+ z , (X (x ) )U (X (x ) )X ' ( x )  
or 

-12(K(x)) + 11 (X (x ) )  = 

p"(x)/IU(X(x))X'(x)l (13) 
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Substitution of D(L) for x yields 

I | (Z)  -- 12(Z) = 

p"(D(K))/[U(X)L'(D(L))] 

= 2p"(D(L))D(AJ/L'(D(k)) 

(14) 

Chromatic aberration at a color edge, therefore, 
spatially separates the light in such a way that (14) 
can be used to determine the difference between 
the spectral power distributions of the light re- 
flected from two regions that meet at the edge. We 
can also obtain the difference of the spectral 
power distributions when the spread function is 
not uniform; however, in that case there is no 
longer a closed-form solution and the equations 
must be solved numerically. 

As an aside, we note that the properties of the 
derivatives of an edge's intensity profile as pre- 
dicted by the chromatic aberration equations 
provide some further justification for the Marr- 
Hildreth (15) edge-detection operator. Both the 
first and second derivatives are symmetric about 
the edge: 

p'(x) = p'(-x) 
and 

p"(x) = - p " ( - x )  (x in [-Dm~,Dmax] ) 

Therefore, p"(0) = 0, which is consistent with the 
use of zero-crossings of the second derivative for 
edge detection. 

4. Chromatic Aberration Experiments 

A C program was written which numerically 
solves the chromatic aberration integral equa- 
tions. As long as the edge intensity profiles are as 
expected, the calculation of the SPD difference 
will be correct. 

We use the case of a black-to-white edge to il- 
lustrate the intensity profiles because then the 
SPD difference is simply the SPD of the light 
reflected from the white side. The predicted and 
experimentally measured intensity profiles for a 
black-to-white edge under different illuminants 
are plotted in figures 4 and 5. The three il- 
luminants are tungsten light of 2805 ° K passed 
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Expected Green / / / ' /  
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0.0 

Distance from the center of the edge in mm 

Fig. 4. The expected intensity profiles for a black-to-white 
edge illuminated with 2805 ° K light through Kodak filters #25 
(red), #58 (green), and #47B (blue). 

through red, green, and blue Kodak filters (num- 
bers 25, 58, and 47B). 

The experimental curves were obtained by 
photographing the edge with ILFORD PAN F 
black and white film and then measuring the film 
density with a microdensitometer. Generally 
speaking the predicted and measured curves are 
quite similar. The slight differences most likely 
are due to unaccounted for nonlinearities in the 
film response, error in image-plane distance 
measurement and imperfections in the lens. 

-- - -  Actual Red .,~/,~// 

- - -  Actual G,een / / / / /  

- -  Actual Blue / / / /  / 

/ / /  

I 

-1.92 0.0 Distance from the center of the edge in mm 

Fig. 5. The actual black-to-white edge profiles of  2805 ° K l igh t  
through Kodak filters #25 (red), #58 (green), and #47B 
(blue). 

Clearly, the chromatic aberration effect is present 
and significant enough to be measured using a 
good, calibrated camera rather than a microden- 
sitometer since it extends over a distance of 
almost 2 mm. 

5. Extracting Illuminant and Surface Colors 

Having shown how spectral information can be 
obtained from chromatic aberration effects, we 
must now consider how that information can be 
used to solve the color constancy problem. Essen- 
tially, this means separating the SPD of the il- 
luminant from the surface spectral reflectances. 
These two components are multiplicatively com- 
bined in the light reflected from a surface, but 
from chromatic aberration we now at least have 
more information about that light's spectrum 
than a simple trichromatic signal. We employ 
finite-dimensional linear models of light and 
reflectance in the solution. 

Maloney [14], following on the work of Cohen 
[3], showed that the surface spectral reflectances 
of the large set of natural objects measured by 
Krinov [12] can be adequately modeled by a 
finite-dimensional linear model using a set of 
three basis functions. Similarly, Judd's analysis 
[10] shows that three to five basis functions suffice 
in modeling most natural illuminants. Such mod- 
els work adequately because the spectral power 
distributions and spectral reflectance functions 
of natural lights and objects are relatively smooth 
over the visible spectrum. 

Given the SPD of light reflected from a surface 
where a finite-dimensional linear model ade- 
quately characterizes the surface reflectance and 
the spectrum of the light illuminating it, we show 
how it can be separated into reflectance and il- 
luminant components. The decomposition is 
unique up to a multiplicative scale factor. 

For the finite-dimensional linear model  we 
have n basis functions S,(L)  . . . .  ,Sn(L) for reflec- 
tance and m basis functions E~(~.) . . . .  ,Era(L) lor il- 
lumination. The surface spectral reflectance at a 
point is expressed as 

S(L) = ~ ~ ( L )  (15) 
j=l  
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Similarly, the spectral power distribution of  the il- 
luminat ion is: 

E(L) = ~ ~,iEi(X) (16) 
i = 1  

For the case of  a dot or a black-to-white edge, 
chromatic aberration provides the SPD, I(k) of  
the incoming light. Since we are assuming that 
the light has been reflected from a surface, I (k) = 
E(X)S(X). In terms of  the finite-dimensional linear 
model, 

m n 

I(L) = [~--: e,E,(X)l [Y. ojsj(x)l (17) 
i = 1  j = l  

I(~,) is known, so (17) can be used to generate as 
many  equations for the e and o variables as 
necessary simply by substituting specific values 
for L. The actual number  of  these that will be in- 
dependent, however, depends on the dimension 
of the set of functions E,()~)S~(L). 

In the optimal situation, all the functions 
E,(L)S~(X) are linearly independent.  While it might 
seem surprising, the first three of  Cohen's re- 
flectance-basis functions [3] combined with the 
first three of  Judd's i l luminant  basis functions 
[10] form just such an independent  set. In this 
case, rn = n = 3 and (17) yields 9 independent  
linear equations in 9 e,oj product-pair unknowns.  

Since the ei and  oj unknowns appear in pro- 
ducts, we can solve for them only up to a mul- 
tiplicative constant. To do so, we constrain one 
component  of  the e vector to unit  length. In other 
words, the colors of  the surface and the illumi- 
nant  will be uniquely determined, but not their 
relative brightness. Letting c~i - sioj, we have s, = 
(cJct3 el, for i > 1. Adding the i l lumination bright- 
ness constraint, e I = 1, yields the e~'s and hence 
also the aj's. 

Errors can arise when the finite-dimensional 
model does not model the i l lumination and 
reflectance well. In this case, a minimum-error  
solution can be obtained. The details of  this 
method will be described elsewhere [6], but 
figures 6, 7, and 8 show an example of  the decom- 
position obtained when the incoming light is a 
combinat ion of  the S PD of  daylight and the spec- 
tral reflectance of heather  (dense growth before 
flowering) as measured by Krinov [12]. The spec- 
trum in figure 6 was generated by multiplying the 

c 

400 650 
Wavelength in nm 

Fig. 6. Spectral power distribution of light reflected from 
heather illuminated by 10000 ° K daylight. 

12.5% 

O 
t -  

u 
O 

Q 
cr- 

Expected 

Actual 

I ~" i i I 

400 650 
Wavelength nm 

Fig. 7. Krinov's actual surface spectral reflectance for heather 
and the estimated reflectance found by decomposing the 
reflected light into reflectance and illumination compo- 
nents. 
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Fig. 8. Judd's actual 10000 ° K daylight spectrum and that es- 
timated by separating the reflected light into reflectance and 
illumination components. 

actual spectral reflectance of heather given in 
figure 7 by the actual SPD of daylight given in 8. It 
is the only input to the program that separates the 
light into illumination and reflectance compo- 
nents. 

6. Conclusion 

We have shown that spectral information can be 
extracted from chromatic aberration effects. This 
information can be used to address the most 
serious issue in color constancy, what might be 
called the "white-patch problem." This is the 
problem of determining either the illumination 
or reflectance properties of the scene for at least 
one image point. Land's [13] "retinex" theory, for 
example, simply assumes that the whitest point is 
in fact white, which dictates our choice of a name, 
but this heuristic is often violated [2]. Maloney 
[14] and Gershon [5] propose more sophisticated 
solutions. Once the color of one scene point is es- 
tablished, the colors of all other points can be 
calibrated in terms of it {4]. 

For the case of a colored spot under unknown 
illumination or a scene in which there is one 

black-to-color edge, we have shown that the 
white-patch problem can be solved completely, 
since the illumination and reflectance can be 
separated out given the SPD of the reflected light 
and this in turn can be extracted using chromatic 
aberration. Surprisingly, the method relies only 
on broad-band intensity data and does not re- 
quire a multiband color image. For the case in 
which two regions of different color (neither 
being black) meet at an edge, a generalization of 
the above method [7] that uses multiband data in 
addition to the chromatic aberration information 
provides color constancy for both regions. 
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