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Abstract: For a digital color camera to represent the col-
ors in the environment accurately, it is necessary to cali-
brate the camera RGB outputs in terms of a colorimetric
space such as the CIEXYZ or sRGB. Assuming that the
camera response is a linear function of scene luminance,
the main step in the calibration is to determine a trans-
formation matrix M mapping data from linear camera
RGB to XYZ. Determining M is usually done by photo-
graphing a calibrated target, often a color checker, and
then performing a least-squares regression on the differ-
ence between the camera’s RGB digital counts from each
color checker patch and their corresponding true XYZ

values. To measure accurately the XYZ coordinates for
each patch, either a completely uniform lighting field is
required, which can be hard to accomplish, or a mea-
surement of the illuminant irradiance at each patch is
needed. In this article, two computational methods are
presented for camera color calibration that require only
that the relative spectral power distribution of the illumi-
nation be constant across the color checker, while its
irradiance may vary, and yet resolve for a color correc-
tion matrix that remains unaffected by any irradiance
variation that may be present. VC 2013 Wiley Periodicals, Inc.

Col Res Appl, 39, 540–548, 2014; Published Online 30 October 2013 in

Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/col.21849
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INTRODUCTION

As a general rule, color cameras need to be calibrated to pro-

duce outputs that are consistent with a standard color space,

such as the CIEXYZ or sRGB.1 This article focuses on color

calibration using a color correction matrix, as opposed to a

look-up table. There are two standard methods of obtaining

the training data needed for determining a color correction

matrix. In the first approach, given the camera sensitivity

curves, the training data can be synthesized. However, deriv-

ing the camera sensitivity functions is often time consuming

and requires the use of expensive equipment such as a mono-

chromater. The second approach is to use the actual camera

outputs instead of relying on the camera’s spectral sensitivity

curves. A standard target, often a color checker, is photo-

graphed, and the camera output is linearized if necessary.

Using the camera’s linearized RGB values and the

corresponding measured XYZ coordinates of each color

checker patch, a color correction matrix, a mapping

M : RGB 7!XYZ, is computed that maps the camera’s

response from RGB space to XYZ. The literature on camera

calibration describes many methods for obtaining such a

mapping. Among these are look-up tables,2 neural net-

works,3,4 white-point preserving color correction,5 color dif-

ference minimization,6 least-squares polynomial regression,2

and recently root-polynomial regression.7 All these techni-

ques, however, assume a priori knowledge of the XYZ coor-

dinates of the reference color patches, data that can be

difficult to obtain accurately, even in laboratory settings.

One source of error in computing the ground-truth color

coordinates is the assumption that the irradiance across all

the color patches is uniform, when in reality it is often not

uniform.

To understand the nature of errors that can arise in this

process, we first note that computing the CIEXYZ coordi-

nates of each color checker patch under a given illumi-

nant requires knowing the reflectance spectrum of each

color patch, which if unknown can be measured. In gen-

eral, it is desirable to have a large number of reference

patches, as this is likely to lead to a more representative

final calibration. The cost of doing this is measuring the

spectrum of the light reflected from each reference patch,

which can be a time-consuming task (the X-Rite Digital

ColorChecker SG, for instance, has 140 patches).
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On the other hand, it is often the case that the reflec-

tance spectra of the patches are known, for instance, from

a previous measurement. In these situations, the task of

measuring the spectrum of the light reflected from each

patch can be simplified to just one measurement of the

spectral power distribution (SPD) of the incident illumi-

nant, as the spectrum of the light reflected from each sur-

face and entering the camera can be obtained by

multiplying the illuminant SPD by the surface reflectance.

Thus, by measuring the incident illuminant once, the nec-

essary tristimulus coordinates can be computed easily.

However, using a single measure of the illuminant

implicitly assumes uniform illumination across the cali-

bration target. Such a uniform lighting environment is

very hard to create in practice, even in a controlled envi-

ronment such as a light booth. Moreover, in certain situa-

tions, such as in some robotic missions, dynamic camera

calibration may be essential, and yet it may not always

be safe to assume that the illumination across the robot’s

onboard calibration target is uniform.

In many situations where a single illuminant is present,

the relative SPD of incident light often remains constant,

whereas its irradiance may vary across the calibration tar-

get. If the amount of variation in the irradiance is

unknown, then the true XYZ values will not correctly

model the scene as captured by the camera, resulting in

an incorrect color correction mapping and in turn leading

to inaccurate color imaging.

To understand how nonuniform illumination affects the

computation, note that a difference in irradiance on a

patch results in a scaling of the associated RGB digital

counts. In other words, treating RGB as a vector, its

length changes but not its direction. Conventional meth-

ods of color correction, such as least-squares regression,

seek to minimize the difference between transformed

RGBs and XYZs, taking into account both the direction

and magnitude of RGB vectors. In this way, such techni-

ques rely on accurate knowledge of the illuminant at each

patch, for otherwise an irradiance-induced scaling in each

of the RGB vectors results in an inaccurate mapping of

RGBs to XYZs.

Other more sophisticated approaches have been used in

the past for performing color correction, such as that

recently suggested by Finlayson et al.,7 in which root-

polynomial regression is used to reduce the effect of

changes in overall illuminant power or camera exposure.

Although this method, unlike other higher-order regres-

sions, is successful in compensating for changes in cam-

era exposure, or equivalently, the illuminant power, it

lacks the ability to handle any variation in irradiance

across the scene.

It is thus desirable to have a color correction algorithm

that relies on one measurement of the illuminant SPD,

but which can reduce the effect of illuminant irradiance

variation across the scene. In this article, we have pre-

sented several techniques that achieve just this goal and

facilitate camera color correction that is unaffected by

any nonuniformity in the irradiance.

The first method is based on minimizing the overall

angular difference between camera RGB vectors and their

associated XYZ vectors. This technique leads to a nonlin-

ear optimization, which can be solved numerically to

obtain the color correction transform. By considering only

the angular difference between vectors, the calibration

process remains unaffected by the irradiance.

The second approach to calibration discussed below is

a variation on the above method that, instead of minimiz-

ing angles between target and camera RGB vectors, mini-

mizes normalized color differences. The advantage of this

technique is that, as well as accommodating nonuniform

irradiance, it can easily be generalized to incorporate dif-

ferent measures of color difference.

As shown by Funt et al.6 in the context of display cali-

bration, minimizing CIE DE differences will yield better

calibration results. In the context of camera calibration,

minimizing the CIE DE color differences between target

and camera color vectors offers an advantage over cali-

bration in CEIXYZ space in that it leads to a mapping

that minimizes the error in camera output directly in a

perceptually uniform space. Our second approach to

irradiance-independent camera calibration can also be

extended to incorporate calibrations based on minimizing

the error in a perceptual space. As a result, we obtained a

calibration technique that, as well as minimizing the map-

ping error in a perceptually uniform color space, can

accommodate nonuniformities in scene irradiance.

In addition, we applied our proposed calibration tech-

nique to develop a higher-order regression using root-

polynomial color correction7 that is independent of varia-

tion in irradiance across the target as well as being inde-

pendent of overall illuminant power.

Lastly, we combined the benefits of DE minimization,

root-polynomial regression, and irradiance-independent

calibration to form a higher-order regression scheme that

minimizes the mean CIE DE error among calibration tar-

gets, while being independent of illuminant irradiance

variation across the scene being photographed. Experi-

ments showed that this combined technique provided the

mapping with least average error as measured by

CIEDE2000 color difference formula even under nonuni-

formly lit calibration scenes.

We performed experiments calibrating a camera using

both captured images and ones synthesized using the

camera spectral sensitivity curves. Our results show

the significant degree to which irradiance variation across

the target can negatively affect a traditional calibration.

They also demonstrate the effectiveness of the proposed

calibration technique in avoiding the problems created by

nonuniform irradiance.

BACKGROUND

As mentioned above, the process of camera color calibra-

tion involves imaging a color calibration target with a

camera. Formally, let fpign
i51 be the set of camera RGB
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response vectors for n different color patches. Similarly,

let fqign
i51 represent the set of corresponding CIEXYZ

vectors computed using the measured SPD of the incident

illuminant, IðkÞ, the spectral reflectance function of each

patch, RiðkÞ, and the CIE color matching functions,

f ðkÞ5½xðkÞ; yðkÞ; zðkÞ�T:

qi5

ðkmax

kmin

RiðkÞIðkÞf ðkÞ dk; (1)

where kmin and kmax are taken to be 380 and 780 nm,

respectively. Conventional calibration methods find the

color correction matrix, M, using least-squares regression

that minimizes*:

ELSQðMÞ5
Xn

i51

jjMpi2qijj2: (2)

It is well known that the best mapping minimizing Eq.

(2) is given by the Moore-Penrose pseudo-inverse

expression:

M5QPTðPPTÞ21; (3)

where P and Q are the matrices whose column vectors

consist of pi and qi, respectively, for i51;…; n. As is

clear from Eq. (2), both the direction and magnitude of

the RGB vectors affect the regression results. Conse-

quently, any variation in the irradiance across the calibra-

tion target that results in a corresponding scaling in the

RGBs introduces error into the calibration, as the XYZ
coordinates of the patches were computed assuming uni-

form irradiance.

We next proposed an irradiance-independent regression

technique that is especially useful for camera calibration

in circumstances where the scene irradiance is

nonuniform.

IRRADIANCE-INDEPENDENT CALIBRATION

As scaling of the RGB color vectors affects ELSQðMÞ, as

defined in Eq. (2), we instead seek to find a color correc-

tion matrix M by minimizing a functional that does not

depend on the magnitude of the color vectors. The first

proposal for irradiance-independent camera calibration,

which we shall refer to as angle minimization, seeks to

minimize EAMðMÞ, the sum of angle differences, hi,

between RGB and XYZ color vectors:

EAMðMÞ5
Xn

i51

hi5
Xn

i51

cos 21 Mpi

jjMpijj
� qi

jjqijj

� �
: (4)

A second method, which we refer to as normalized

least-distance, minimizes the sum of distances, di,

between vectors projected onto the unit sphere as defined

by ENLDðMÞ:

ENLDðMÞ5
Xn

i51

di5
Xn

i51

���� Mpi

jjMpijj
2

qi

jjqijj

����: (5)

As can be seen, both these measures do not depend on

the vector magnitudes. In fact, the relationship between

EAMðMÞ and ENLDðMÞ can be seen through the relation-

ship between di and hi. Consider the length, d, of the

chord in a unit circle spanned by angle h. For small

angles, h� 1, using the second-degree Taylor approxi-

mation of cos h, the relationship between them can be

expressed as follows:

d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð12cos hÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
12 12

h2

2

� ��s
5h:

Thus, minimizing this angular difference between RGB
and XYZ vectors is equivalent, to first-degree approxima-

tion in the angle, to minimizing the magnitude of the dif-

ference between the normalized vectors. Equation (4)

measures the sum of angular differences between pro-

jected and target vectors, whereas Eq. (5) measures the

sum of distances in L2 norm between unit vectors.

Both these functionals lead to a nonlinear minimization

problem that is solved numerically using the Nelder–

Mead8,9 optimization method as implemented in the

fminsearch function of MATLAB. The minimization is ini-

tialized using the least-squares solution given by Eq. (3).

Note that as the minimization is performed without

regard to the overall vector magnitudes, the resulting

transformation matrix M is of arbitrary magnitude. In

other words, an overall scaling of the transform will not

alter the value of EAMðMÞ or ENLDðMÞ. To define the

overall magnitude of M, it is rescaled by dividing it by

the sum of the entries in its second row multiplied by

100. In this way, the maximum Y that can be obtained

from the RGB 7!XYZ mapping is 100. Note that this scale

factor is independent of any irradiance gradient across the

calibration target as M is unaffected by any irradiance

variation, and thus the sum of the entries in its second

row is unaffected as well. The resulting scaled color cor-

rection matrix, therefore, is unaffected by any variation in

scene irradiance and is also scaled so that the maximum

Y for any possible reflectance under the illuminant is 100.

NORMALIZED CIE DE MINIMIZATION

Although the above regression schemes remain unaffected

by variations in irradiance across the calibration target,

the minimization is performed in CIEXYZ space, which

is not a perceptually uniform color space. Thus, the map-

ping M obtained by minimizing EAMðMÞ or ENLDðMÞ
does not necessarily lead to the perceptually most accu-

rate mapping.

In the context of display calibration, Funt et al.6

showed that calibrating directly in a perceptually more

uniform color space, such as CIELAB, reduces the cali-

bration error as measured in terms of perceptual differen-

ces. In other words, if a calibration result is to be

*Unless otherwise stated, the L2 norm is assumed here. For brevity, jj � jj
will be used to denote L2 norm jj � jj2.
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evaluated in terms of a perceptual difference measure,

such as CIELAB DE, then it is best to minimize the color

difference directly in CIELAB in the first place. We shall

refer to this calibration scheme as DE minimization.

To apply this technique to camera calibration (as

opposed to display calibration), we need to revisit the

issue of irradiance nonuniformity. Clearly, in the case of

display calibration, the issue of irradiance nonuniformity

does not arise. To modify the DE minimization approach

for use in camera calibration independent of the irradi-

ance, we first note that Eq. (4) cannot meaningfully be

used to perform calibration in CIELAB space as a scaling

of the XYZ vectors affects the angles between the corre-

sponding CIELAB L�a�b� vectors. Nevertheless, the strat-

egy of minimizing the normalized vector differences as in

Eq. (5) can be modified to incorporate the CIELAB color

difference measure:

EDEðMÞ5
Xn

i51

����L�ab

�
Mpi

jjMpijj

	
2L�ab

�
qi

jjqijj

	����
5
Xn

i51

DE�ab

Mpi

jjMpijj
;

qi

jjqijj

� �
;

(6)

where L�ab denotes the mapping from CIEXYZ to CIE-

LAB space, and DE�ab denotes the CIELAB color differ-

ence measure between two colors given in CIEXYZ

space. Thus, Eq. (6) minimizes the DE�ab between the cali-

brated camera data, Mpi, and the ground-truth data, qi,

after they both have been normalized to be unit vectors.

In other words, the vectors Mpi and qi are normalized in

CIEXYZ space first and then mapped to CIELAB. The

reference white point ðXn; Yn; ZnÞ used for the conversion

to CIELAB is set to be the XYZ coordinates of the illumi-

nant. For the D65 simulator illuminant that we used, this

white point was measured to be (95.5, 100.0, 99.8).

When represented in the form given by Eq. (6), it is

easy to see how EDEðMÞ can be generalized to any other

color difference measure, DE:

EðMÞ5
Xn

i51

DE
Mpi

jjMpijj
;

qi

jjqijj

� �
: (7)

As above, the color vectors are normalized in CIEXYZ

space prior to them being converted to the color space in

which the DE error is defined. We shall refer to this

method as the normalized DE minimization. In particular,

for the purpose of our experiments, we used the

CIEDE2000 measure, DE00, wherever DE is used.

NORMALIZED ROOT-POLYNOMIAL REGRESSION

Although one common method of mapping RGB values

to CIEXYZ space is the 333 linear transform, to provide

better mappings, higher-order polynomial regressions are

sometimes used instead. However, as Finlayson et al.7

pointed out, using higher-order terms, such as

R2;G2;B2;RG;GB; and RB, in addition to the linear terms

(R, G, and B) leads to the regression result becoming

dependent on any scaling of the RGBs brought about, for

example, by a change in exposure. They suggested

instead the idea of root-polynomial regression, where for

instance, the nine terms R, G, B, R2;G2;B2;RG;GB; and

RB are replaced with the six terms R, G, B,
ffiffiffiffiffiffiffi
RG
p

;
ffiffiffiffiffiffiffi
GB
p

,

and
ffiffiffiffiffiffi
RB
p

(note that terms such as
ffiffiffiffiffi
R2
p

become redundant

and are dropped out). In this way, higher-order regres-

sions can still be used without being affected by a scaling

of the image RGBs.

Although the root-polynomial method successfully

accounts for any overall scaling of the image RGBs, it

does not account for the local scalings caused by nonuni-

form irradiance. This shortcoming can be resolved by

combining the irradiance-independent calibration method

with the root-polynomial method. Equation (5) can be

adjusted to incorporate such higher-order regressions:

ENRPðMÞ5
Xn

i51

���� Mp0i
jjMp0ijj

2
qi

jjqijj

����; (8)

where the p0i denote camera ðR;G;BÞ vectors extended

to include the higher-order terms of root-polynomial

calibration. We shall refer to this method as the nor-

malized root-polynomial regression. We used Eq. (3) to

obtain the initial guess to the numerical minimization

of (8), with P representing the matrix with column vec-

tors given by pi
0.

NORMALIZED ROOT-POLYNOMIAL

DE MINIMIZATION

As the root-polynomial calibration method finds a map-

ping by minimizing the squared differences in CIEXYZ

space, the result may not be optimal with respect to a

perceptual metric such as CIELAB DE. The technique,

however, can easily be extended to cases where the

regression error is measured in a space other than that in

which the regression is being performed. In particular, by

using the CIEDE2000 color difference metric, we can

obtain higher-order calibration methods that are not only

invariant with respect to the overall intensity scaling in

the image but also minimize the difference between cam-

era and target color using a perceptual error metric. We

shall refer to this calibration scheme as root-polynomial

DE minimization.

In addition, to remove the effects of relative variation

in the illuminant irradiance across the scene, we proposed

combining the root-polynomial DE minimization tech-

nique with the normalized DE minimization using Eq. (7)

as a way of obtaining a calibration that has the benefits

of root-polynomial regression, is invariant to irradiance

variations, and is optimal in terms of a perceptual error

metric. This calibration method minimizes:

EðMÞ5
Xn

i51

DE
Ma0i
jjMa0ijj

;
qi

jjqijj

� �
: (9)

We shall refer to this technique as normalized root-

polynomial DE minimization.

Volume 39, Number 6, December 2014 543



EXPERIMENTS USING CAPTURED IMAGES

To evaluate the effectiveness of the proposed irradiance-

independent calibration, we calibrated a Point Grey

Research, Inc., Grasshopper GRAS-20S4C model camera

using the X-Rite Digital ColorChecker SG. An image of

the color checker is taken inside the Macbeth Judge II

light booth under the D65 light source simulator. Several

RAW-format linear images of the color checker are cap-

tured and averaged to minimize noise. The achromatic

patches around the border are excluded, leaving 96 inte-

rior patches. The RGB values across each patch are aver-

aged to reduce noise, resulting in the set of colors shown

in Fig. 1. As the signal-to-noise ratio is low for the dark

patches, dark patches for which X1Y1Z < 25 were

removed from this set (see below for calculation of XYZ
coordinates). Ten patches were removed leaving n586

color vectors f~pign
i51 to be used in the calibration

process.

As the light source is located at the top of the light

booth, there is unavoidably some variation in the illumi-

nant irradiance across the color checker that was placed

against the back wall of the light booth. Although this

nonuniformity is barely visible in the RAW image of the

color checker, it can be measured by taking a picture of

the gray back wall with the color checker removed. Sam-

pling the RGB values at the same locations as the patches

of the color checker yields the background irradiance var-

iation map† (Fig. 2). The ratio of maximum to minimum

R1G1B across the color checker was 1.5.

Based on the measured background irradiance map, we

scaled the ðR;G;BÞ values of each patch from the image

of the color checker to simulate uniform illumination.

Thus, we have an original image captured under nonuni-

form lighting and one that is corrected for the irradiance

variation and therefore represents the image that would

have been captured under uniform lighting. The set of

these colors, represented by vectors fpign
i51, will be used

as the ground-truth data.

We used Eq. (1) to compute the set of “true” tristimu-

lus values of the color patches, fqign
i51. The SPD of the

light booth illuminant, IðkÞ, is measured using a PR-650

SpectraScan Colorimeter. The reflectance spectrum of

each patch, fRiðkÞgn
i51, was measured in a previous

experiment. Note that in using the same SPD, IðkÞ, to

obtain the XYZ coordinates of the patches, we are implic-

itly assuming that the illuminant irradiance is constant

across the calibration target. When the reflectance spectra

of the color patches are known, this simplifying assump-

tion eliminates the need to measure the spectrum reflected

from each patch. However, in the presence of irradiance

nonuniformity across the color checker being photo-

graphed, as in Fig. 2, the camera calibration could be

affected by the irradiance nonuniformity depending on

the method used.

We performed two sets of tests to compare the per-

formance under nonuniform lighting of the various cali-

bration methods mentioned in this article. The four

techniques that are susceptible to variation in illuminant

irradiance are as follows:

1. Least-squares minimization

2. DE00 minimization

3. Root-polynomial minimization

4. Root-polynomial DE00 minimization

We compared the results from the above techniques to

the following irradiance-independent calibration methods:

5. Angle minimization

6. Normalized least-distance minimization

7. Normalized DE00 minimization

8. Normalized root-polynomial minimization

9. Normalized root-polynomial DE00 minimization

To evaluate the extent to which an irradiance variation

across the color checker affects the calibration results, we

first calibrated the camera using the raw camera RGBs of

the color checker, f~pign
i51, to obtain the color correction

FIG. 1. Plot of the colors of the interior patches of the X-
Rite Digital ColorChecker SG captured in the light booth
by the camera.

FIG. 2. Plot illustrating the illuminant irradiance variation
across the color checker, obtained by photographing the
back wall.

†The image displayed is gamma adjusted in order to make visible the varia-

tion in intensity, which would otherwise be hard to see. The original data is

linear.
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matrix ~M . This calibration is affected by any irradiance

nonuniformity across the color checker. For each method,

we also used the irradiance-adjusted camera RGBs from

the ground-truth image, fpign
i51, to obtain a corresponding

ground-truth transform M. For methods 1, 2, 5, 6, and 7,

the color correction matrices ~M and M are 333 matrices,

whereas for the remaining cases involving root-

polynomial regression, they are 336 matrices mapping

ðR;G;B;
ffiffiffiffiffiffiffi
RG
p

;
ffiffiffiffiffiffiffi
GB
p

;
ffiffiffiffiffiffi
RB
p

Þ to ðX; Y; ZÞ.
One method of evaluating the effect of illuminant irra-

diance variation on the camera calibration result is to

compute the relative difference between color correction

matrices ~M and M, for which the Frobenius matrix norm‡

jj � jjF provides one measure as follows:

relative difference5
jjM2 ~MjjF
jjMjjF

: (10)

In other words, the relative difference between M and
~M is a measure of the degree to which the irradiance var-

iation affects the calibration. As shown in Table I, the rel-

ative error in the transform obtained using the

nonuniformly lit image can be quite significant for the

calibration methods requiring uniform lighting. On the

other hand, the zeros in the last five rows of the table

indicate that the irradiance-independent calibration meth-

ods are completely unaffected by any nonuniformity in

the scene irradiance. That they are unaffected by the irra-

diance follows from the fact that for any arbitrary non-

zero scaling, ai, of the RGB pi of the ith color patch, that

is, if ~pi5aipi, we have

M~pi

jjM~pijj
5

MðaipiÞ
jjMðaipiÞjj

5
aiMpi

jjaiMpijj
5

aiMpi

aijjMpijj
5

Mpi

jjMpijj
:

(11)

As a result, the generalized minimization problems for

M and ~M as given by Eq. (7) become equivalent:

Eð ~MÞ5
Xn

i51

DE
M~pi

jjM~pijj
;

qi

jjqijj

� �

5
Xn

i51

DE
Mpi

jjMpijj
;

qi

jjqijj

� �
5EðMÞ;

(12)

where, as stated earlier, all color vectors, Mpi;M~pi, and

qi, are first normalized and then converted to the color

space required for the color difference metric DE. Thus,

with or without a nonuniformity of the irradiance, the

irradiance-independent methods determine the same color

correction matrix, that is, M5 ~M or jjM2 ~MjjF=jjMjjF 50.

The results in Table I measure the differences in the

color correction matrices when the calibration assumes

uniform irradiance, but the irradiance is in fact nonuni-

form. It is also important to determine how much these

differences affect the mapping of colors from camera

RGB to CIEXYZ space. Hence, we compute the residual

error in the calibration. As the XYZ coordinates of the

patches were computed assuming uniform irradiance, to

compute the residual error, we need to use the ground-

truth image (i.e., having any irradiance gradient removed)

as input as well. For each method, we apply both M and
~M to the ground-truth image to obtain two sets of

mapped XYZs, fMpign
i51 and f ~Mpign

i51. We then compute

the DE00 color difference between the tristimulus values,

fqign
i51, of the ground-truth image and the result of apply-

ing the two matrices to the ground-truth image, fMpign
i51

and f ~Mpign
i51. In other words, we map the RGBs, pi

(without any further adjustment of their magnitudes) from

the ground-truth image to CIEXYZ using both M and ~M
and then determine the distance to the target XYZs, qi, in

CIELAB space using the following formulae:

DiðMÞ5DE00ðMpi; qiÞ and Dið ~MÞ5DE00ð ~Mpi; qiÞ; (13)

where i is the index of the ith patch.

Table II shows the mean, median, and maximum of

fDið ~MÞgn
i51 computed across all patches for each calibra-

tion method. Similarly, Table III shows the mean,

median, and maximum of fDiðMÞgn
i51 when the camera

is calibrated on the ground-truth (no gradient) image and

TABLE I. Relative difference in terms of Frobenius
matrix norm between color correction matrices ~M
and M.

jjM2 ~M jjF=jjMjjF

Least squares 0.1400
DE00 minimization 0.0799
Root-polynomial 0.4357
Root-polynomial DE00 minimization 0.4378
Angle minimization 0.0000
Normalized least distance 0.0000
Normalized DE00 minimization 0.0000
Normalized root-polynomial 0.0000
Normalized root-polynomial DE00 minimization 0.0000

Zero indicates that M5 ~M , as is expected for irradiance-
independent calibration.

TABLE II. DE00 statistics for multiple calibration
methods.

Mean
DE00

Median
DE00

Maximum
DE00

Least squares 3.46 2.70 16.77
DE00 minimization 2.88 2.54 9.44
Root-polynomial 2.47 2.05 8.78
Root-polynomial

DE00 minimization
2.55 2.28 8.12

Angle minimization 2.80 2.29 9.44
Normalized least distance 2.78 2.31 9.45
Normalized DE00 minimization 2.90 2.42 8.89
Normalized root-polynomial 3.42 3.05 12.43
Normalized root-polynomial

DE00 minimization
3.36 3.03 10.16

Errors were obtained when the color correction matrices are
calculated using the raw image (with irradiance gradient) as input.

‡The Frobenius norm of a matrix is given by the square root of the sum of

the squares of the matrix elements.
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the resulting transform is applied to the same image. The

errors for the proposed methods are the same in both

cases; however, errors increase for the traditional methods

when the irradiance gradient is present. The tables also

show that when the irradiance gradient is small or non-

existent, the irradiance-dependent methods can result in a

more accurate calibration.

Overall, the above results demonstrate the effectiveness

of our proposed calibration techniques in accommodating

any irradiance variation across the calibration target.

Moreover, the methods offer accurate mapping of camera

RGB to CIEXYZ space.

EXPERIMENTS USING SYNTHESIZED IMAGES

To evaluate the performance of the various calibration

methods under more controlled conditions, we performed

additional tests using synthetic image data. Having meas-

ured the SPD of light booth’s simulated D65 source and

obtained the camera’s spectral sensitivity curves, we syn-

thesized the RGB values of the 96 interior patches of the

X-Rite Digital ColorChecker SG under uniform lighting

(Fig. 3). For consistency with the real-image experiments,

we excluded the same 10 dark patches as before. The

remaining set of n586 color vectors, fpign
i51, form the

ground-truth RGB values without irradiance variation.

The XYZ coordinates of the patches, fqign
i51, are the same

as before. In the previous experiments, we reduced the

effect of irradiance variation to obtain the ground-truth

image, whereas in these experiments, we deliberately

introduced some variations in the original synthesized

camera output by scaling the RGB values of the ith patch

by ai to obtain ~pi5aipi. The synthesized background irra-

diance variation is shown in Fig. 4. The ratio of the larg-

est intensity value (top-right corner) to the smallest

(bottom-left corner) is 2.5 5 max faig. The set of “true”

tristimulus values of the color patches, fqign
i51, is the

same as in the previous section.

As in the case of the real-image experiments, the color

correction matrices M and ~M are computed using synthe-

sized camera RGBs, fpign
i51 and f~pign

i51, respectively.

The degree to which the calibration is affected by the

synthesized irradiance variation is measured, as before,

by computing the relative error in ~M using Eq. (9). The

results in Table IV demonstrate that the error in the color

FIG. 3. Plot of the colors of the interior patches of the X-
Rite Digital ColorChecker SG, synthesized under uniform
lighting using the camera’s sensitivity curves.

FIG. 4. Synthesized image of the irradiance variation. The
grayscale value represented by each square is multiplied
by the synthesized RGB of the corresponding patch.

TABLE IV. Relative difference in terms of Frobenius
matrix norm between color correction matrices
M and ~M, computed using the unadjusted and
adjusted synthetic images, respectively.

jjM2 ~M jjF=jjMjjF

Least squares 0.2611
DE00 minimization 0.3494
Root-polynomial 0.7813
Root-polynomial DE00 minimization 0.7463
Angle minimization 0.0000
Normalized least distance 0.0000
Normalized DE00 minimization 0.0000
Normalized root-polynomial 0.0000
Normalized root-polynomial DE00 minimization 0.0000

Zero indicates that M5 ~M , as is expected for irradiance-
independent calibration.

TABLE III. DE00 statistics for multiple calibration
methods.

Mean
DE00

Median
DE00

Maximum
DE00

Least squares 3.03 2.45 11.43
DE00 minimization 2.69 2.18 9.33
Root-polynomial 2.24 1.78 7.85
Root-polynomial DE00

minimization
2.10 1.53 8.06

Angle minimization 2.80 2.29 9.44
Normalized least distance 2.78 2.31 9.45
Normalized DE00 minimization 2.90 2.42 8.89
Normalized root-polynomial 3.42 3.05 12.43
Normalized root-polynomial

DE00 minimization
3.36 3.03 10.16

The color correction matrix is obtained by calibrating on the
ground-truth (irradiance-adjusted) image and is tested on the
same image.
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correction matrix can be large if the irradiance variation

is not accounted for, especially for the methods involving

root-polynomial regression.

To evaluate the effect of the irradiance variation on the

calibration result, we measured the residual error in the

calibration in the same way as described above for the

captured images. In particular, we computed DiðMÞ and

Dið ~MÞ using Eq. (13). Table V shows the mean, median,

and maximum of the CIEDE2000 differences fDið ~MÞgn
i51

between ~Mpi and qi, when the calibration is performed

using f~pign
i51 and then tested using the ground-truth val-

ues, fpign
i51. Table VI shows the same quantities for

fDiðMÞgn
i51, taken between Mpi and qi when the camera

is calibrated using the ground-truth (no gradient) synthe-

sized RGBs, fpign
i51 and then tested on them as well.

Note that as discussed previously, for the irradiance-

independent methods, DiðMÞ5Dið ~MÞ for all i. This is the

reason that the numbers in the last five rows of Tables V

and VI are precisely the same, irrespective of the magni-

tude of the irradiance gradient. In comparison, for the

irradiance-dependent calibration methods, the errors

increase when the calibration target is not lit uniformly.

However, as Table VI shows, if the illuminant irradiance

is perfectly uniform, the irradiance-dependent methods

can lead to slightly more accurate calibration. When there

is no gradient present, the irradiance-independent methods

are at a slight disadvantage because they implicitly

assume that all patches have the same overall intensity

and so discard all relative irradiance information.

The synthetic calibrations further demonstrate the inac-

curacies that can result when calibrating a camera on a non-

uniformly lit image of a color checker. In addition, they

show that the irradiance-independent calibration techniques

completely account for variations in irradiance so that the

resulting color correction matrix is unaffected by it.

DISCUSSION AND CONCLUSION

We propose a color calibration technique that does not

require uniform irradiance across the calibration target.

Although conventional methods, such as least-squares

regression, take into account both the magnitude and

direction of color vectors in mapping uncalibrated camera

RGB output to XYZ coordinates, our method eliminates

the dependence on the scene irradiance and the resulting

image color intensities by considering only vector

directions.

Two methods of accounting for variations in irradiance

were suggested: angle minimization and normalized least-

distance. Although these two methods are very similar,

the second method is more easily combined with other

calibration techniques, such as root-polynomial regression

and DE minimization. Such combined methods exhibit

the irradiance independence of our formulation while

maintaining the other methods’ original advantages. Spe-

cifically, root-polynomial regression solves the exposure

problem plaguing polynomial regression, and normalized

root-polynomial regression makes the root-polynomial

regression independent of irradiance variations as well.

Furthermore, combining normalized root-polynomial

regression with DE minimization results in calibration

based on a perceptual metric.

Testing using both real and synthetic data shows the

effectiveness of the proposed irradiance-independent class

of methods. In addition, the tests show that unaccounted-

for irradiance variation can significantly affect the result-

ing color correction matrix as derived by traditional meth-

ods, with a concomitant reduction in the accuracy of the

resulting colors. The proposed irradiance-independent cal-

ibration methods were found to be only slightly less accu-

rate than traditional methods in situations where the

irradiance can be controlled to be perfectly spatially con-

stant. If the irradiance is easily controlled then it may be

preferable to use traditional methods. However, there are

many circumstances where this may not be possible as,

for example, when a photographer includes a color

checker in an image as a way of ensuring accurate color.

The proposed methods offer the advantage of being com-

pletely unaffected by any irradiance gradient, and thus

these methods deliver precisely the same calibration accu-

racy whether or not the irradiance varies.

TABLE V. DE00 statistics for the methods when cali-
bration is based on the synthesized image of the
color checker under nonuniform lighting and is
tested on the ground-truth image.

Mean
DE00

Median
DE00

Maximum
DE00

Least squares 4.93 5.06 9.87
DE00 minimization 6.50 6.92 10.15
Root-polynomial 5.11 5.44 7.95
Root-polynomial DE00 minimization 6.85 7.69 11.22
Angle minimization 3.22 2.90 7.58
Normalized least distance 3.22 2.90 7.58
Normalized DE00 minimization 3.14 2.76 8.17
Normalized root-polynomial 3.36 3.05 8.78
Normalized root-polynomial

DE00 minimization
2.93 2.61 7.53

TABLE VI. DE00 statistics for the methods when cali-
bration is based on the synthesized image of the
color checker under uniform lighting and is tested on
the same ground-truth image.

Mean
DE00

Median
DE00

Maximum
DE00

Least squares 2.98 2.62 7.20
DE00 minimization 2.65 2.10 7.18
Root-polynomial 2.37 1.99 6.22
Root-polynomial DE00 minimization 2.17 1.63 6.20
Angle minimization 3.22 2.90 7.58
Normalized least distance 3.22 2.90 7.58
Normalized DE00 minimization 3.14 2.76 8.17
Normalized root-polynomial 3.36 3.05 8.78
Normalized root-polynomial

DE00 minimization
2.93 2.61 7.53

Volume 39, Number 6, December 2014 547



ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their help-

ful comments.

1. Wyszecki G, Stiles W. Color Science: Concepts and Methods, Quanti-

tative Data and Formula, 2nd edition. New York: Wiley; 1982.

2. Hung P. Colorimetric calibration in electronic imaging devices using a

look-up-table model and interpolations. J Electron Imaging 1993;2:53–61.

3. Hong G, Luo MR, Rhodes PA. A study of digital camera colorimetric

characterization based on polynomial modeling. Color Res Appl 2001;

26:76–84.

4. Cheung T, Westland S. Color camera characterization using artificial

neural networks. Color Res Appl 2001;26:76–84.

5. Finlayson G, Drew M. White-Point Preserving Color Correction. In

Proceedings of the IS&T Fifth Color Imaging Conference. Society for

Imaging Science and Technology, Springfield VA: IS&T, 1997. p 258–

261.

6. Funt B, Ghaffari R, Bastani B. Optimal linear RGB-to-XYZ mapping

for color display calibration. In Proceedings of the 12th Color Imaging

Color Science, Systems and Applications, Scottsdale, AZ, November:

Color Science, Systems and Applications, Society for Imaging Science

and Technology, Springfield VA: IS&T, 2004. p. 223–227.

7. Finlayson G, Mackiewicz M, Hurlbert A. Root polynomial color cor-

rection. In Proceedings of the IS&T/SID 19th Color Imaging Confer-

ence. Society for Imaging Science and Technology, Springfield VA:

IS&T, 2011. p 115–119.

8. Nelder JA, Mead R. A simplex method for function minimization.

Comput J 1965;7:308–313.

9. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence proper-

ties of the Nelder–Mead simplex method in low dimensions. SIAM J

Optimization 1998;9:112–147.

I will leave the evaluation of D�ab as a correlate of per-

ceived depth of shade to others. Perhaps I will be pre-

scient rather than na€ıve?

ROY S. BERNS
*

Munsell Color Science Laboratory

Program of Color Science

Rochester Institute of Technology

54 Lomb Memorial Drive, Rochester, NY 14623-5604

Published Online 30 August 2014 in Wiley Online

Library (wileyonlinelibrary.com). DOI 10.1002/col.21918

COMMUNICATIONS AND COMMENTS
(Continued from page 636)

*Correspondence to: Roy S. Berns

(e-mail: berns@cis.rit.edu)

548 COLOR research and application


	l
	l
	l

