
 

Rank-Based Illumination Estimation 

Lilong Shi
a
 and Brian Funt

b
; 

 a
Advanced Image Research Lab; Pasadena, CA/USA; 

b
School of Computing Science, Simon Fraser 

University; Vancouver, BC/CANADA 

Abstract  
A new two-stage illumination estimation method based on the 

concept of rank is presented. The method first estimates the 

illuminant locally in subwindows using a ranking of digital counts 

in each color channel and then combines local subwindow 

estimates again based on a ranking of the local estimates. The 

proposed method unifies the MaxRGB and Grayworld methods. 

Despite its simplicity, the performance of the method is found to be 

competitive with other state-of-the art methods for estimating the 

chromaticity of the overall scene illumination. 

Introduction 
The first step in automatic white balancing an image is 

generally to estimate the ‘color’ or chromaticity of the light 

illuminating the scene.  In the camera’s RGB coordinate system 

this is equivalent to determining the triple of (R,G,B) digital counts 

(up to an overall scale factor) that the camera would register from 

an ideal-white reflecting surface placed in the scene. Considered as 

a vector, it is only the direction of the (R,G,B) that matters, not its 

magnitude, since the magnitude is affected by the camera’s 

exposure settings and other factors. As a result, most illumination 

estimation methods return the rg-chromaticity of the illuminant 

(r,g) where r=R/(R+G+B) and g=G/(R+G+B).  Given a measured 

‘true’ illuminant chromaticity (rt,gt) and an estimated chromaticity 

(re,ge), the error in the estimate is frequently reported as the angle 

in degrees between the vectors (rt,gt,1-rt-gt) and (re,ge,1-re-ge).  

There are many illumination estimation methods reported in 

the literature [1-12].  In this paper, we describe a new rank-based 

method that unifies the Grayworld and MaxRGB approaches in a 

manner that is analogous to, but different from, the Shades of Grey 

method and compare its performance to several of the better 

known methods for estimating the overall scene illumination.  

Although simple, the rank-based method performs as well or better 

than many of the more complicated methods. 

Rank-based Method 
The proposed method consists of two steps: (i) within local 

subwindows the R, G, and B digital counts within each channel are 

ranked separately and then the triple of digital counts of rank kL 

from each channel is returned as the illuminant color for the 

subwindow; and (ii) global ranking of the subwindow estimates 

from (i) returning the R, G, and B having rank kG. The first step 

estimates the illuminant locally within many different M-by-

M subwindows.  The RGB estimate for the central pixel of the 

subwindow is its kL
th smallest R, kL

th smallest G, and kL
th smallest 

B. Expressed in terms of the largest instead of the smallest, the 

kL
th smallest digital count is the (M2- kL ) largest digital count.  

When kL is normalized by the size of the subwindow, the 

ranking operation is equivalent to a non-linear percentile filter 

(e.g., Matlab’s prctile or quantile functions). For example, if 

the kL
th rank corresponds to the 50th percentile then this non-linear 

filter becomes the standard median filter. For kL
 = M2 (100th 

percentile) the filter is equivalent to choosing the maximum. 

Hence, as kL is varied from the 50th to the 100th percentile, the 

method of estimating the illumination varies from using the 

median, which is similar to the mean used in Grayworld 

estimation, to the maximum, which is equivalent to MaxRGB 

without pre-processing [1, 2]. 

The second step combines the results of the subwindow 

estimates into a single estimate of the illumination for the image as 

a whole. For a given global rank, kG, the RGB estimate for the 

entire image is its kG
th smallest R,  kG

th smallest G, and 

kG
th smallest B found across all the subwindow estimates.  The 

rank kG
 can be normalized by the total number of subwindows to 

yield a percentile rank. In the remainder of the paper, kL and kG will 

always refer to normalized, percentile ranks. 

Our Rank-based algorithm can also be represented as two 

mathematical formulas. The first formula computes the local 

estimates in the image, as 

 

IL = PercentileMxM(I, kL)                                                                (1) 

 
where the input image I is of one of the R, G or B color channels, 

and IL contains the local illumination estimates, where each pixel 

is replaced by the kL local percentile. The function 

PercentileMxM(x, k) returns the kth smallest value of a vector x 

containing MxM elements. The second formula computes the 

global estimates based on the local estimates as 

 

e =  PercentileN(IL,kG)                                                                   (2) 

 

Here e is the estimated global illumination of one of the R, G and 

B color channels. The function PercentileN(x, k) computes the kth 

smallest value of a 1xN vector x (given N is the number of pixels 

in the image). So the scene illumination, (eR,eG,eB), is the final 

output of our algorithm. 

Rank Computation 
Generally, to find the kth smallest (or largest) element in a 

subwindow of M2 elements by brute-force based on first sorting 

them would have complexity O(M2logM). However, a much more 

efficient algorithm developed by Huang [13] based on using an 

incremental histogram has computational complexity 

O(M).  Recently, Weiss [14] further reduced median filtering to 

sub-linear complexity O(logM) and a modified version performs 

general rank-order filtering. Therefore, for N M-by-M subwindows 

the computational complexity of the local rank step is O(NlogM).  

For the second step, the global ranking is based on N samples 

so its complexity is O(logN). The combined complexity for the two 

steps is O(NlogM) +O(logN), however, since O(NlogM) >> 
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O(logN) for large N the overall complexity of the method is 

O(NlogM). 

Comparison to other illumination estimation 
methods 

The rank-based approach is also closely related to 

illumination estimation by Grayworld [3] and MaxRGB [2] and its 

variants [1].  MaxRGB with simple pre-processing has been shown 

[1] to perform at roughly the same level as the Edge-Based method 

[4] and significantly better than the computationally intensive 

Bayesian method [7] when tested on the Grayball and the 

Colorchecker image datasets. The proposed rank-based method 

unifies Grayworld and MaxRGB within a common framework in 

that varying the choice of 3 parameters—subwindow size M, local 

rank kL, and global rank kG—defines a family of illumination 

estimation methods. For instance, setting kL = 50%, kG = 100%, 

and M = 3, the rank-based method is equivalent to MaxRGB with 

pre-processing by a 3x3 median filter. Setting kG = 50% and M = 1 

approximates the Grayworld method with mean replaced by 

median.  

The way that the ranked-based framework defines a family of 

methods is similar to the Shades-of-Gray [6] framework in that it 

also defines a family of methods from Grayworld through to 

MaxRGB; however, the two frameworks generate different 

families. The rank-based method also has a lot in common with the 

bright pixel approach of Vaezi Joze et al. [10] and Tominaga et al. 

[11] in that for high percentile ranks estimates are primarily based 

on ‘bright’ pixels. Table 1 summarizes the existing methods that 

can be implemented or approximated within the rank-based 

framework. 

Table 1. Summary of the connection between the rank-based 

approach and other color constancy methods. 

Parameters of Rank 
CC Methods 

  M kL kG 

1 -- 50% 
Grayworld (approximated) [3] 

∞ 50% -- 

1 -- 100% 
MaxRGB without pre-processing [2] 

∞ 100% -- 

5 >>1 100% 
MaxRGB with uniform averaging (Barnard et 

al.) (approximated) [15] 

5 50% 100% MaxRGB w. median filter (MaxM) [1] 

>5 50% 100% 
MaxRGB clipped removal + median filter 

(MaxCM) (approximated) [1] 

Tests and Discussion 
In this section, the performance of the rank-based approach is 

evaluated and compared with other methods on four benchmark 

image datasets. The first dataset is the Barnard et al. [16] collection 

of 321 indoor images taken under 11 different illuminants. The 

second is the Ciurea et al. [17] SFU dataset of 11,346 images 

derived from digital video sequences. The third dataset is Shi’s[1] 

re-processed version of the Gehler et al. [9] Colorchecker dataset 

containing 568 images. The fourth dataset contains HDR images of 

105 scenes captured using a Nikon D700 digital still camera [1]. 

The images in the Barnard, Gehler and HDR datasets are linear 

(gamma =1). The Ciurea set is non-linear and of unknown gamma. 

Tests of the rank-based method were conducted using various 

parameter settings: (1) three subwindow sizes are defined as a 

fraction of the image size—approximately 0.01%, 0.1%, 1%—plus 

a window of size 1x1 as the limiting case; (2) local rank kL is 

varied from 50% ~ 100% (i.e., from median to maximum); and (3) 

the global rank kG is varied from 50%~100%, in steps of 5% down 

to 2% for both  kL and kG . 

The choice of parameter settings will clearly affect the 

method’s performance as measured in terms of the angular 

difference between the estimated versus true chromaticity of the 

illumination. Fig. 1 shows the effect when tested on the 11,346 

SFU Grayball image set in which the colored map in kL-kG 

coordinates indicates the magnitude of the median angular error, 

with blue indicating low error and red indicating high error. The 

black arrows indicate the direction of decreasing error (i.e., the 

negative of the error’s gradient). The white lines are iso-error 

contours indicating (kL, kG) pairs leading to identical average error. 

For Fig 1(a) the subwindow size is 1x1 so the local ranking step 

has no effect since there is only a single value to rank. The (kL, kG) 

values corresponding to the lowest error form a vertical “valley” 

(dark blue) around kG = 95% between the two iso-error contours 

defined by the average error rates of MaxRGB (kG = 100%) and 

Grayworld (approximately kG = 80%).  

For the case of 3x3 subwindows shown in Fig 1(b), the 

“valley” (kL = kG = 95%) shrinks to a “dimple” and is shifted 

upwards. The error also drops to 5.3 from 5.6. The “hill” on the 

right side of the “valley” is at kG = kL = 100%, which corresponds 

to MaxRGB without preprocessing. Increasing the subwindow size 

to 9x9, the “dimple” (Fig 1(c)) pivots to the left and stretches out 

to a “valley” again, but now a horizontal one. The minimum error 

now lies around kL = 92%, kG = 100%. Finally, for subwindows of 

size 21x21 the “valley” (Fig 1(d)) stretches further horizontally, 

and the minimum error is found at kL = 80%,  kG = 98%.  

 Plots of the same kind as in Fig. 1 but based on the 568, 321 

and HDR datasets instead of the 11,346 set consistently show a 

similar trend so they are not included here. Using grid search, the 

minimum error for each setting is determined. Fig. 2 plots the 

locations of the smallest median angular error obtained for each 

dataset as a function of kL, kG, and subwindow size.    

Fig. 1 shows a remarkable “hill-valley-hill” pattern, 

regardless of subwindow size. It is particularly interesting that the 

valley is always located between the Grayworld and MaxRGB iso-

error contours.  This implies that there is an opportunity to improve 

upon the Grayworld and MaxRGB methods using the rank-based 

framework. For relatively large values of kL and kG, (e.g., 

90%~99%) the resulting error is always less than both MaxRGB 

and Grayworld. In this sense, the rank-based method is again 

analogous to Shades-of-Gray [6] in that it also outperforms both 

Grayworld and MaxRGB for a Minkowski norm between 1 and 

infinity.  For large values of kL and kG the rank method chooses 

high values and in this sense begins to select ‘bright’ pixels as 

suggested by Vaezi Joze et al. [10], although in that work the 

‘bright’ values are based on R+G+B, not R, G, B separately. Also 

the bright pixel method uses all pixels above a certain percentile, 

while the rank method uses only the single pixel value at the given 

percentile. 

The curve-shaped locus of minima in Fig. 2 indicates that the 

minimum angular error decreases with increasing subwindow size.  
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Table 2. Performance comparison on the SFU 321, grayball 11346, HDR 105 and re-processed colorchecker 568 datasets. The 

methods compared are Do-Nothing, Grayworld [3], Shades-of-Gray [6], Edge-Based [4] (first and second order), MaxRGB [2], 

MaxRGB+[1], TPS Thin-Plate Spline [8], CbyC as reported in [18], Gamut Mapping [19], N-jet [18], Bayes-GT[9], and Rank-based. 

 

Angular Error on Test Datasets 

Barnard 321 HDR 105 Ciurea 11346 Gehler 568 

Median Trimean Max(25%) Median Trimean Max(25%) Median Trimean Max(25%) Median Trimean Max(25%) 

Do-nothing 15 16 31 4.3 4.9 16 6.7 7.6 19 4.8 7.8 24 

MaxRGB 6.4 7.8 21 4.2 5.3 15 6.0 6.8 17 9.1 9.5 21 

MaxRGB+ 3.0 4.4 15 3.8 5.1 15 5.3 6.0 15 4.2 6.2 18 

Grayworld 7.0 7.7 23 7.3 7.7 15 6.3 6.7 14 3.7 4.1 11 

SoG (p=6) 4.0 4.9 16 4.3 4.1 14 5.8 6.1 13 4.5 5.5 15 

Edge-Based 

(1st order) 
3.6 4.6 15 3.7 4.6 14 5.5 6.1 15 3.8 5.4 16 

Edge-Based 

(2nd order) 
4.5 5.6 15 4.0 4.9 14 5.4 6.2 16 4.4 5.9 17 

TPS (3-fold) 1.2 0.9 3.5 -- -- -- -- -- -- 2.4 2.6 6.8 

CbyC  

(Gijsenij et al.) 
6.8 [18] -- -- 5.9 -- -- 6.5 7.4 17 -- -- -- 

Gamut 

Mapping 
3.1 [18] -- -- -- -- -- 4.8 5.2 12 4.3 5.3 15 

N-jet  

(complete 1-jet) 
2.1 [18] -- -- -- -- -- 5.5 5.8 13 4.2 5.1 14 

Bayes-GT - -- -- 5.9 7.0 18 - - - 5.8 6.2 15 

Rank-based  

(3-fold) 
2.7 3.7 14 3.7 4.5 14 5.1 5.7 13 2.5 3.0 8.8 

 

For instance, the minimum error for subwindows that cover 0.01% 

of the image is always larger than for subwindows that cover 1%. 

Based on these observations, a rule-of-thumb guideline for the 

choice of parameters is that the subwindow size should be 

relatively large (~1%) and the kL and kG percentile ranks should be 

high. The large subwindow size and high kL together mean that the 

effect of the first step of the rank-based method performs a dilation 

that spreads out each high value to its surrounding area. 

Table 1 shows that in comparison to several other 

illumination estimation methods the rank-based method is very 

competitive based on the reported median, trimean, and maximum 

(average of top 25%) angular errors. Since the choice of 

parameters is affected by the characteristics of the imaging system, 

the median error reported in Table 2 for the rank-based method is 

based on 3-fold cross validation. The comparison on the 321 set is 

complicated by the fact that three of the other methods are tested 

on a reduced set of 290 of the 321 images (namely, CbyC, Gamut 

Mapping and N-jet in [18]). 

Conclusion 
The proposed rank-based illumination estimation method is 

conceptually simple and testing shows it to be very effective. It 

uses the ranking of the RGB digital counts channel-by-channel 

within subwindows to produce estimates of the illumination 

locally. By adjusting the ranking percentile, the method varies 

from a median-based variant of Grayworld to MaxRGB. The 

analysis shows that the optimal choice of parameters lies between 

these two extremes. The global estimate is computed based on the 

rankings of the subwindow estimates. When the ranking percentile 

is chosen as a high number, the method tends to favour ‘bright’ 

pixels, which has been shown by Vaezi Joze et al. [10] and by by  

 

Tominaga et al. [11] to be a good strategy. Despite the rank-based 

method’s simplicity, its performance is found to be competitive 

with other state-of-the art methods for estimating the chromaticity 

of the overall scene illumination. 
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indicates high error, and cooler color (blue) indicates low error. The thin light-coloured lines indicate iso-error contours. The arrows indicate the 

direction of decreasing error. The x-axis is the global ranking parameter kG, and the y-axis is the local ranking parameter kL.  
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