
 
 

 
 

Spectral Compression: Weighted Principal Component Analysis 
versus Weighted Least Squares 

 
Farnaz Agahiana*,  Brian Funta, Seyed Hossein Amirshahib 

aSimon Fraser University, 8888 University Dr. V5A 1S6, B.C., Canada; bAmirkabir University of 
Technology, 424 Hafez Ave, Tehran, Iran  

ABSTRACT   

Two weighted compression schemes, Weighted Least Squares (wLS) and Weighted Principal Component Analysis 
(wPCA), are compared by considering their performance in minimizing both spectral and colorimetric errors of 
reconstructed reflectance spectra. A comparison is also made among seven different weighting functions incorporated 
into ordinary PCA/LS to give selectively more importance to the wavelengths that correspond to higher sensitivity in the 
human visual system. Weighted compression is performed on reflectance spectra of 3219 colored samples (including 
Munsell and NCS data) and spectral and colorimetric errors are calculated in terms of CIEDE2000 and root mean square 
errors. The results obtained indicate that wLS outperforms wPCA in weighted compression with more than three basis 
vectors. Weighting functions based on the diagonal of Cohen’s R matrix lead to the best reproduction of color 
information under both A and D65 illuminants particularly when using a low number of basis vectors. 
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1. INTRODUCTION  
Principal Component Analysis (PCA) is one of the most widely used techniques in compression of large spectral images 
and guarantees the best possible representation of the high-dimensional spectra in a low-dimensional eigenvector sub-
space. This compression method gives an equal treatment to all wavelengths throughout the spectrum and tries to 
minimize the squared reconstruction errors between the actual and reconstructed spectra:  
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where λR is the actual and λR̂ is the reconstructed reflectance spectrum.  

On the other hand, in many applications such as digital image archives, electronic commerce, art conservation science, 
and telemedicine, it is necessary to compress the spectral data to preserve as much color information as possible. Indeed, 
to be able to accurately reproduce color under either one or multiple lighting and viewing conditions, the reconstructed 
spectra must be recovered in some parts of the spectrum more precisely than the others. In the other words, the 
compression technique should be modified so as to consider individual wavelengths differently depending on their 
relative importance to the human visual system. 

During the last decade, this observation has been developed by extending standard PCA into a weighted version by 
introducing weights into Eq (1) and minimizing the weighted squared reconstruction error instead1,2: 
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where λw  is determined based on the importance of one wavelength relative to the others in visual color perception. 
More precisely, if a part of the spectrum is not very important to the visual system, its influence can be reduced by 
decreasing the corresponding weight.  

The idea of using wPCA on spectral color data was first recommended by Maloney3 who employed the weighted least 
squares technique to fit a linear model to 462 surface reflectances. He used )(λv , a measure of the sensitivity of the 
photopic visual system at each wavelength, as the weighting function. Yu et al.2 proposed multispectral image 
compression via a weighted Karhunen Loeve Transform (wKLT) for spectral accuracy preservation and resulting high 
fidelity color reproduction. Later, in 2008, Lammanen et al.1 presented a PCA-based method for the weighted 
compression of spectral color data and examined the feasibility of two different weight functions. 

In this paper, the idea of weighted spectral compression is examined by making a comparison between the two 
mentioned weighting strategies, i.e., Weighted Least Squares (wLS) versus Weighted Principal Component Analysis 
(wPCA). The common goal of both methods is to minimize the weighted errors: in the former a series of weighted linear 
equations is solved to calculate the principal component coefficients; in the later this goal is achieved by applying an 
appropriate weighting function on spectral data before forming the correlation matrix and extracting the principal 
eigenvectors. In the other words, in the case of wLS, the spectral sub-space is formed by unweighted ordinary 
eigenvectors calculated from the unweighted spectral dataset and weighting is performed in the process of fitting a linear 
model to the spectral data.  

 

2. EXPERIMENTAL PROCEDURE 
A dataset including the reflectance data of 1269 Munsell matte4 and 1950 NCS standard color samples5 was used to 
evaluate the performance of wPCA versus wLS. The wavelength sampling of the spectrum for all samples was in 5nm 
steps from 380-780nm.  

In order to assess the influence of different weighting functions on the spectral and colorimetric errors of the 
reconstructed spectra, we examined 7 different weighting functions. 

WF1 and WF2 – Weighting functions proposed by Laamanen et al.1, 

WF3, WF4, and WF5 – Weighting functions based on the principal diagonal of Cohen’s R matrix6, 

WF6 – Weighting function based on the Gaussian function, 

WF7- Weighting function based on )(λv  as recommended by Maloney.3 

Two weighting functions WF1 and WF2 are illustrated in Fig (1-a). WF1 is a linear combination of the CIE 1931 color-
matching functions and defined as: 
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Scaling by the constant 3.1607 is done to make the maximum of the function equal to 1. Due to small values of the 
CMFs at some wavelengths, a constant is added to the functions to avoid computational instability. For simplicity, we 
drop λ  and call this function WF1 throughout the remainder of the paper. 

WF2 is another weighting function proposed by Laamanen et al.1 To calculate this function, two identical constant 
spectral curves were considered and then the value of one wavelength was raised by adding a parameter w until the color 
difference between two spectra overcame a predefined threshold. This procedure was repeated for all wavelengths and 
the resulting w at each wavelength formed the corresponding element in the weighting vector WF2.   

Fig (1-b) shows three weighting functions WF3, WF4, and WF5 based on the square root of the principal diagonal of 
matrix R for three different illuminants. Matrix R is an orthogonal projector developed by Cohen and Kappauf for 
decomposing the color stimulus into its fundamental and metameric black.6 This matrix is calculated from matrix A 
defined as the product of a set of color matching functions (in this study, CIE 2 ! -1931) and a given illuminant: 
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where prime indicates matrix transpose.  

If matrix A is defined such that its columns are formed using just three color matching functions, then the diagonal of R 
will represent the squared magnitude of spectral lights in color space.6,7 Worthey indicates that the square root of the 
diagonal shows the comparative strength of the colors of the spectrum for the CIE 2° (1931) observer.7 Imai et al. also 
used the diagonal of matrix R in order to calculate weighted mean square error of spectral matches. 8 
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Figure 1. Illustration of the different weight functions: (a) weighting functions WF1 and WF2; (b) weighting functions 
calculated from matrix R for the 2 degree observer and three different illuminants (see text);  (c) WF6 calculated from three 
Gaussian functions; and  (d) weighting function based on )(λv . 

 

As matrix R is a function of the illuminant, we can make different matrices and subsequently find different sets of 
weighting functions for each combination of illuminant and observer. In this study, we use two different weighting 
functions WF3 and WF4 corresponding to illuminants D65 and A, respectively. WF5 is a synthetic illuminant defined as 



 
 

 
 

the arithmetic mean of D65 and A. In this way, the properties of both illuminants are incorporated in a single synthetic 
one. 9 

The weighting function WF6 calculated from three Gaussian functions is shown in Fig (1-c). The full width at half height 
of the Gaussian functions is 125nm and they are centered at 440, 540 and 603 nm. WF6 is the sum of these 3 Gaussians 
normalized so the maximum is 1. 

The last weighting function examined in this study is based on the luminosity function )(λv . This function shown in Fig 
(1-d) was also used by Maloney in a weighted least squares manner to fit a linear model to a set of spectral reflectances. 

 

3. RESULTS AND DISCUSSION 
The error of the spectral reconstruction of the reflectances of the 3219 colored samples (including Munsell and NCS 
data) compressed using wPCA and wLS based on the seven different weighting functions discussed above are given in 
Table 1. For comparison, the non-weighted (NW) PCA and LS are included in the first row. The color differences are 
evaluated for the CIE 1931 standard observer and the CIE standard illuminants D65 and A. The error in the 
reconstruction is reported in Table 1 in terms of the mean of the Root Mean Square (RMS). The first row of the table 
represents the results of the non-weighted ordinary PCA/LS compression method. To simplify the comparison, the 
results of recovery using just three basis vectors are shown in this table. 

To examine further how different weighting functions influence the performance of wPCA and wLS, the compression is 
compared for 3 to 10 basis vectors. In addition, the colorimetric errors for the reconstructed spectra versus the input 
spectra are calculated for two illuminants, A and D65. For each method, Fig. 2 shows for each illuminant the percentage 
of the reconstructed spectra having 5.0E <Δ  as a function of the number of basis vectors used. The comparison is limited 
to the three weighting functions WF2, WF3 and WF5 since they produced the best results according to Table 1.  

 
3.1 Non-weighted versus Weighted Compression – Colorimetric Accuracy 

As Table 1 shows, the weighted methods outperform the non-weighted method in terms of colorimetric error under both 
D65 and A. The amount of improvement depends on the choice of weighting function. In comparison, the spectral 
dissimilarity (calculated in terms of RMS) between the input and reconstructed spectra is smallest for the non-weighted 
method. This is to be expected since applying the weights means that the true RMS distance between the two spectra is 
no longer being minimized. The weightings help reduce colorimetric error at the expense of increasing the spectral error.   

Fig. 2 shows that when using a small number of basis vectors non-weighted compression has the lowest percentage of 
reconstructed spectra having 5.0E <Δ . However, as the number of basis vectors increases the percentage of spectra with 

5.0E <Δ  also increases sharply until at 10 basis vectors the non-weighted method works as well as the weighted 
methods.  

 
3.2 wLS versus wPCA 

A comparison between weighted compression via wPCA versus wLS using three basis vectors indicates that in all cases 
wPCA leads to smaller colorimetric errors under D65. However, for illuminant A reconstructing the spectra using wLS 
with weightings WF2, WF3, WF4, and WF5 leads to a smaller color difference than using wPCA. It appears that wLS 
more successfully recovers the long wavelength portion of the reflectance spectrum, which is more important under 
illuminant A. In the other words, applying the weights on the equations corresponding to long wavelengths (wLS) is 
likely more effective than weighting the data beforehand (wPCA).  

Fig. 2 reveals that weighted compression via wLS with more than three basis vectors leads to higher colorimetric 
accuracy than wPCA under both A and D65. Regardless of the weighting function, the color difference for 100% of the 
reconstructed spectra under A and D65 is less than 0.5 when the compression is carried out using 10 basis vectors. 

 



 
 

 
 

Table 1. Spectral and colorimetric accuracy of the spectral reconstruction of 3219 surface reflectances including Munsell and NCS 
samples using three basis vectors. The reconstructions were performed using the wPCA and wLS techniques. Color differences are 

based on the color difference formula CIEDE2000 and CIE 2 ̊-1931. NW refers to the non-weighted method or, equivalently, 
weights of unity. 

 
EΔ  under D65  

EΔ  under A  
 RMS 

Mean Max Mean Max 
NW         

 PCA 3.45 22.27  2.85 23.73  0.0255  LS   
WF1         

 wPCA 2.33 17.37  1.53 18.65  0.0281 
 wLS 3.03 20.62  2.31 21.92  0.0262 

WF2         
 wPCA 0.7 4.1  0.87 6.40  0.0338 
 wLS 1.13 7.72  0.66 7.33  0.0333 

WF3         
 wPCA 0.68 5.40  0.66 6.17  0.0350 
 wLS 1.00 8.35  0.32 2.84  0.0361 

WF4         
 wPCA 1.29 8.19  0.37 5.14  0.0337 
 wLS 1.42 10.30  0.38 4.14  0.0346 

WF5         
 wPCA 0.94 6.06  0.45 5.73  0.0342 
 wLS 1.20 9.11  0.30 3.15  0.0352 

WF6         
 wPCA 1.35 11.14  0.82 6.12  0.0325 
 wLS 1.93 12.73  1.21 13.30  0.0302 

WF7         
 wPCA 3.32 19.73  2.43 20.93  0.0264 
 wLS 3.36 20.67  2.60 22.50  0.0257 

 

3.3 Comparison between Different Weighting Functions 

According to the results summarized in Table 1, of the seven candidate weighting functions, generally WF2, WF3, WF4, 
and WF5 lead to the smallest colorimetric errors.  For the weighting functions based on the principal diagonal of matrix 
R (WF3, WF4 and WF5) the color difference reduction under illuminant A is more significant. This reduction will 
become even greater when we use this illuminant in making the matrix R (WF4 and WF5) and therefore increase its 
influence on the corresponding weighting function. From the standpoint of colorimetric accuracy under D65, WF3 leads 
to the least mean color difference, whereas, WF2 leads to the least maximum color difference.  

As mentioned earlier, in order to produce more balanced color differences under multiple lighting conditions, both 
illuminants A and D65 contributed to weighting function WF5. The effect of this contribution is evident in both 
colorimetric as well as spectral errors. As the results show, WF5 leads to errors between those of WF3 and WF4. This 
method can be extended to more than two lights. In addition, in some circumstances where different lights have different 
importance, the contribution of various illuminants can be simply controlled by replacing the ordinary mean by a 
weighted one.9 

3.4 Effect of the Number of Basis Vectors 

wPCA Compression 
A comparison between three different weighted methods WF2, WF3 and WF5 which produced the best results indicates 
that WF2 and WF3 have the same performance under D65 when only three basis vectors are used. Nonetheless, by 
increasing the number of components the colorimetric errors drop more quickly when data is weighted by WF3 (2-a). 
For example in the case of using 5 components the color difference for 83.97% of samples reconstructed by WF2 is less 
than 0.5 while this percentage will be 96.36 if the recovery is done by WF3. As the graph shows, this trend continues up 



 
 

 
 

to 5 components and then levels off.   An almost similar trend is observed under illuminant A, with the exception that 
WF3 performs better than WF2 even when three components are used, and WF2 works better when the number of 
components reaches 10.   

The graphs reveal that the performance of spectral compression (in terms of 65DEΔ ) using WF5 is lower than two other 
methods when only three components are used. However, this method offers much better results when the number of 
basis components continues to be increased. Figure (2b) also shows that the colorimetric errors of reconstructed spectra 
weighted by WF5 are much less than the other methods when the recovery process is done using a small number of basis 
vectors (up to 7). This is due to the contribution of illuminant A in making matrix R upon which WF5 is based. As the 
graphs show, by increasing the number of components all methods eventually perform almost the same.  

wLS Compression 
As can be observed in Fig. 2(c), reconstruction via wLS using WF2 or WF5 shows the same amount of colorimetric error 
under D65 illuminant for the case of 3 or 4 basis vectors. However, increasing the number of basis vectors improves the 
performance of WF5 more significantly. Regardless of the number of basis vectors, weighting function WF3 
outperformed the others. In Fig. (2d), the superiority of the two weighting functions WF3 and WF5 over WF2 is evident. 
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Figure 2.  Percentage of spectra reconstructed with 5.0E <Δ  of the input spectra when observed under D65 (a,c) and A 
(b,d) versus the number of basis vectors. Reconstruction was performed using wPCA (a,b) and wLs (c,d) with three different 
weightings (WF2, WF3 and WF5). 



 
 

 
 

 

3.5 Non-weighted versus Weighted Compression – Spectral Accuracy 

To evaluate the spectral accuracy of the various recovery methods and illustrate the influence of the weighting factors on 
spectral errors, we compare the residue of differences between the actual and reconstructed spectra estimated by wPCA 
and wLS. The weighting function is WF5. The spectral difference as a function of wavelength is shown in Fig. 3.  

As can be seen from Fig. 3, the difference between the actual and reconstructed reflectance spectra at the middle of the 
spectrum—particularly at those wavelengths corresponding to the weighting function’s peak wavelengths—are 
significantly less than the corresponding errors in the non-weighted reconstruction. However, this accuracy is at the 
expense of increased error at the end of the spectrum where the human visual system is less sensitive. Therefore, 
incorporating the weighting function into the compression method selectively alters the relative importance of different 
wavelengths leading to poorer overall spectral reconstruction, while yielding lower colorimetric error. 

 

4. CONCLUSION 
Weighted spectral compression is compared for wPCA and wLS with seven different weighting functions. The results 
show that except when the compression involves a large number (>10) of basis vectors, non-weighted (NW) 
compression always leads to higher colorimetric errors, although its spectral accuracy is better. For spectral compression 
involving more than three basis vectors, wLS is more successful than wPCA in reproducing the color information under 
both A and D65.  A comparison of the different weighting functions indicates that, although all weighting functions 
perform similarly when the number of basis vectors goes beyond 8, incorporating weights based on the diagonal of 
matrix R reduces the colorimetric errors more than the other weighting functions whenever 5 or fewer basis vectors are 
used.  
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Figure 3.  Recovery errors ( λλ −RR ˆ ) versus wavelength for: (a) NW method; (b) wPCA with WF5; and (c) wLS with 
WF5. 
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