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Abstract. A current major challenge in systems biology is to compuagistics
on biomolecular network motifsince this can reveal significant systemic differ-
ences between organisms. We extend the “color coding” tgaokrto weighted
edge networks and apply it to PPI networks where edges aghteei by prob-
abilistic confidence scores, as provided by 8¥€RINGdatabase. This is a sub-
stantial improvement over the previously available stsidie, still heavily noisy,
binary-edge-weight data. Following up on such a study, wepgde the expected
number of occurrences of non-induced subtrees with 9 vertices. Beyond the
previously reported differences between unicellular amdticellular organisms,
we reveal major differences between prokaryotes and uniaekukaryotes. This
establishes, for the first time on a statistically sound datis, that evolutionary
distance can be monitored in terms of elevated systemiogeraents.

Keywords. Biomolecular Network Motifs, Color Coding, EvolutionarySems
Biology, Protein-Protein Interaction Networks,

1 Introduction

A current major issue in evolutionary systems biology isdlably quantify both or-
ganismic complexity and evolutionary diversity from a gysic point of view. While
currently available biomolecular networks provide a datai the assessment of net-
work similarity has remained both biologically and compigtaally challenging. Since
currently available network data is still incomplete, slenpdge statistics, for example,
do not apply. Moreover, recent research has revealed that tiamolecular networks
share global topological features which are robust redativmissing edges, which rules
out many more straightforward approaches to the topic (g£¢18] for a related study
on global features such as degree distributioinop reachability, betweenness and
closeness). On the more sophisticated end of the scale bfegyamroaches would be
attempts to perform and appropriately score alignmentse€ollection of all systemic
subunits of two organisms. However, the development of alolk scoring schemes in
combination with related algorithms comes with a varietypb¥ious, yet unresolved,
both biological and computational issues. Clearly, anhsaoring schemes would al-
ready establish some form of condensed, systemic evoardruth by themselves.
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This explains why recent approaches focused on monitoriffigrehces between
biomolecular networks in terms t¢dcal structures which likely reflect biological ar-
rangements such as functional subunits. A seminal studghmt@ported that statisti-
cally overrepresented graphlets, i.e. small subnetweanis|ikely to encode pathway
fragments and/or similar functional cellular building bks [17] sparked more general
interest in the topic. In the meantime, to discover and tantbiomolecular network
motifs has become a thriving area of research which poses somguiintgi algorith-
mic problems. As is summarized in the comprehensive revi@ysich approaches are
supported by various arguments.

In this paper, following up on a series of earlier studieswilefocus on physical
protein-protein interaction (PPI) network data. Relatedi®s focused on determining
the number of all possible “induced” subgraphs in a PPl nekywohich already is a
very challenging task. Przulj et al. [19] devised algorithwith which to countinduced
PPI subgraphs on up to = 5 vertices. Recently developed techniques improved on
this by counting induced subgraphs of size ugte 6 [13] andk = 7 [11]. However,
the running time of these techniques all increase expcalgntiith k. To count sub-
graphs of sizé: > 8 required novel algorithmic tools. A substantial advances wiab-
sequently provided in [1] which introduced the “color caglinechnique for counting
non-induced occurrences of subgraph topologies in the &ftmounded treewidth sub-
graphs, which includes trees as the most obvious special €asinting non-induced
occurrences of network motifs is not only challenging bsbadjuite desirable since
non-induced patterns are often correlated to induced oecces of denser patterns.
Trees in particular can be perceived as the backbones oféabddense and connected
subgraphs and there is abundant evidence that dense aretbtesh(induced) subgraphs
reflect functional cellular building blocks (e.g. [26]).&also [7] for a successful ap-
proach to count all patterns of density at le@st in several PPI networks as well as
in synthetic networks from popular generative random madgée also [7] for a suc-
cessful approach to count all patterns of density at l@&stin several PPI networks as
well as in synthetic networks from popular generative ranaoodels.

While these studies successfully revealed differencegd®t PP networks of uni-
and multicellular organisms, a binary edge has remainedt@rinasly noisy datum.
However, none of the studies considered PPI networks withhted edges where edge
weights reflect the confidence that the interactions are laflaerelevance instead of
being experimental artifacts. Weighted network data haeemtly become available
and have already been employed for other purposes (se€2]aarid the references
therein for a list of weighted network data sources). Onéefhain reasons for the lack
of network motif studies on such data might be that to exlalgtmine biomolecular
networks with probabilistic edge weights poses novel caiepanal challenges.

In this paper, we show how to apply the “color coding” techugidgo networks with
arbitrary edge weights and two different scoring schemewéighted subgraphs. Edge
weights are supposed to reflect our confidence in the intere;tas provided by the
STRINGdatabase, and we will apply a scoring scheme which reflectexqpectatioh
in entire subgraphs to be present or I®IRINGSs a major resource for assessments of

! Expectation is meant to be in the very sense of probabilipti by interpreting confidence
scores as probabilities
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protein interactions and/or associations predicted lyelacale experimental data (in
the broad sense, including e.qg. literature data) of varippss (see [15] for the latest
issue of STRING and the references therein for earlier 9as3i Here, we only employ
experimentally determined physical protein interactionserder to both follow up on
the recent discussions and to avoid inconsistencies inh&yaising several types of
protein interactions at once. Clearly, statistics on suwaiwvarks will establish substan-
tial improvements over studies on binary network data imseof statistical significance
and robustness.

We compute the expected number of non-induced occurreceal(es) of tree
motifs G’ (“treelets”) withk vertices in a network: with n vertices in time polynomial
in n, providedk = O(logn). Note that, in binary edge weight graphs, computation
of the number of expected occurrences and counting ocaeseis equivalent when
interpreting an edge to be an interaction occurring withbphality 1. This provides
the basis on which we can benchmark our results againstque\dtudies. We use
our algorithm to obtain normalized treelet distributiotigt is the sum of the weights
of non-induced occurrences of different tree topologiesinék = 8,92 normalized
by the total weight of all non-induced trees of s for weighted PPl networks.
We analyze the prokaryotic, unicellular organisfascoli, H.pylori), B. subtilisandT.
pallidum, which are all quite similar, the eukaryotic unicellulaganismS.cerevisiae
(Yeast), and a multicellular organisi@.gleganks Beyond the previously reported simi-
larities among the prokaryotic organisms, we were ablego @dveal strong differences
between Yeast and the prokaryotes. As before, statisti€s elegans are still different
from all other ones. As a last point, we demonstrate that aighted treelet distribu-
tions arerobustrelative to reasonable amounts of network sparsificatiosuggested
by [12].

To summarize, we have presented a novel randomized appatgimalgorithm to
count the weight of non-induced occurrences of a freeith % vertices in a weighted-
edge networkG with n vertices in time polynomial with, providedk = O(log n) for
a given error probability and an approximation ratio. Wewverthat resulting weighted
treelet distributions are robust and sensitive measurePbfietwork similarity. Our ex-
periments then confirm, for the first time on a statisticadlijable data basis, that uni-
and multicellular organisms are different on an elevatesdesyic cellular level. More-
over, for the first time, we report such differences also eetwpro- and eukaryotes.

Related Work

Flum and Grohe [10] showed that the problem of counting threlver of paths of length

k in a network is#W[1]-complete. Thus it is unlikely that one can count the number
of paths of lengtt efficiently even for smalk. The most recent approaches such as [5,
23] offer a running time of)(n*/2+°(1)), As mentioned before, [19, 11, 13] describe
practical approaches to counting all induced subgraphsmbatk = 5,6 andk = 7
vertices in a PPI network.

2 We recall that there are 23 resp. 47 different tree topokogies resp.9 nodes, see e.g. [18].
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Approximate counting techniques have been devised whiate yweedominantly
based on the color coding technique as introduced by Aloh §8]aColor coding is
based on assigning random colors to the vertices of an imapihgand, subsequently,
counting only “colorful” occurrences, that is, subgraphsene each vertex has a dif-
ferent color. This can usually be done in polynomial timerdting over different color
assignments sufficiently many, but still a polynomial numbktimes yields statisti-
cally reliable counts. In the seminal study [3], color caflimas used to detect (but not
to count) simple paths, trees and bounded treewidth subgiiapunlabelled graphs.

Scott et al. [20], Shlomi et al. [21] and Huffner et al. [14]stned algorithms for
querying paths within a PPI network. More recently, Dost €i9d have extended these
algorithms in the QNet software to allow searching for tragad bounded treewidth
graphs. Arvind and Raman [4] use the color coding approadotmt the number of
subgraphs in a given grapfl which are isomorphic to &ounded treewidth graph
H. The framework which they use is based on approximate aogintia sampling
[16]. However, even wheh = O(logn), the running time of this algorithm super-
polynomialwith n, and thus is not practical. Alon and Gutner [2] derandomibed
color coding technique by the construction of balanced liamof hash functions. Re-
cently, Alon et al. [1] presented a randomized approximmedilgorithm that, given an
additive errore and error probability, with success probability — §, outputs a num-
ber within e times the number of non-induced occurrences of aTfred k vertices in
a graphG of n vertices running in timeD(|E| - 20 . log(1/5) - % ). Note that if
k = O(logn) ande, § are fixed, this results in a polynomial time algorithm.

Note that all the previous works tried either to count exgitté total weight of non-
induced occurrences of a pattern in a given graph or to ajppeig the occurrences
where the weights of all edges areThe exact counting methods, due to parameter-
ized complexity as mentioned earlier, give exponentiahimg time even for paths of
k = O(logn) vertices. We will give approximate based counting methbds offer
polynomial running time given that patterns are trees ef O(logn) vertices, a fixed
approximation factor and an error probability.

2 Methods

In the following, letG = (V, E) be a graph om vertices andv : £ — R be an edge-
weight function. Letl" be a tree ork vertices where, in the following; = O(logn).
We defineS(G, T') to be the set of non-induced subgraphgofvhich are isomorphic
toT and letE(H) to be the edges of such a subgrdple S. We extendw to weight
functions on the members 6{G, T') by either defining

wH)= [ wle) or wH)= > wle) (1)

e€E(H) e€E(H)

Note that ifw(e) is interpreted as the probability thatis indeed present ig then,
assuming independence between the edgéH,) of the first case is just the proba-
bility that H is present inG. In the following, we will focus on the first case. Proofs
for the second choice ab(H) can be easily obtained, mutatis mutandis, after having
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replaced multiplication by addition in the definition @f{ /). Finally, letw(G,T) =
> nes(e,r) W) be the total weight of non-induced occurrence$'afi G. We would
like to provide reliable estimates(G, T') onw(G, T'). Note thatw(G, T) is the number
of expected occurrences @fin GG due to the linearity of expectation.

Consider Fig. 1. Herdl is a star-like tree on vertices. There are two subgraptis
andH’ in G which are isomorphic t@’; thereforew(G,T) = w(H) +w(H’). In the
case that the weight of a subgraplGris calculated as the product of the weights of its
edges, we have(G,T) = w(H)+w(H') =0.5x 0.4 x0.340.7 x 0.8 x 0.9. In the
other case, we havwe(G,T") = w(H)+w(H') = (0.5+0.440.3)+ (0.74+0.8+0.9).

T

Fig. 1. An example of counting the total weight of non-induced saps in a given networ&
which are isomorphic to a query trée

In the following, in order to estimate/(G, T') by color coding, we will randomly
assignk colors to the vertices off wherek is the size ofl". Therefore, we introduce
the notationgk] = {1, ..., k} for the set ofk colors andS(G, T, [k]) for the set of all
non-induced subgraphs 6fwhich arecolorful in terms of{k], that is occurrences af
where each vertex has been assigned to a different color.

The following algorithm APROXWEIGHTEDOCCUR, when given an approxima-
tion factore and an error probability, computes an estimate(G, T') of w(G, T) effi-
ciently inn andk, given thatt = O(logn) such that with probability — 24, @(G,T)
lies in the rangg(1 — ¢)w (G, T), (1 + ¢)w(G, T)].

Algorithm 1 APPROXWEIGHTEDOCCURR(G, T, €, )

G=V,E), k— |V(T)|,t —log(1/8), p — kI /k*, s — 4/(*p)
for i =1totdo
Yi <0
for j =1tosdo
Color each vertex ofr independently and uniformly at random with onekofolors
X — total weight of colorful subgraphs &f which are isomorphic t@
Vi<~V + X
end for
Y: —Yi/s
end for
Z «— median ofY; ... Y;
Return Z/p as the estimaté)(G, T') of w(G,T)
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The following lemmata give rise to a theorem that supporttaims from above.

Lemma 1. The algorithmAPPROXWEIGHTEDOCCURR (G, T, €, 0) returnsw (G, T)
such that with probability at least — 26 we have(l — ¢)w(G,T) < w(G,T) <
(1+e)w(G,T)

Proof. The proof proceeds quite similar to that of [1], after havieglacedr r there
by x here wherery; is the indicator random variable whose valueu§H) if H is
colorful in a random coloring off and0 otherwise. Similarly, we then defin¥ =
> mes(e,r) ©r Which is the random variable that counts the total weightalbdul
subgraphs off which are isomorphic t@'. The expected value of then evaluates as

EX)=E( > am)= Y  E@g) =Y wHp=wGTp (2

HEeS(G,T) HeS(G,T) HeS

wherep = k!/k* is the probability that the vertices of a subgrafihof size k are
assigned to different colors. To obtain a bound on the vaeafur(X) of X, one
observes thaVar(zy) = E(z%) — E*(zn) < E(z%) = [w(H)]*p. Moreover, the
probability that bothf and H' are colorful is at mosp which implies

Cov(xg,zy) = E(xgry) — E(ry)E(xy) < E(xgry) < w(H)w(H )p.

Therefore, in analogy to [1], the varianceXfsatisfies/ ar(X) = (3 o5 w(H))*p =
w?(G, T)p. SinceY; is the average of independent copies of random variatle we
haveE(Y) = E(X) = w(G,T)p andVar(YV;) = Var(X)/s < w*(G,T)p/s. Again
in analogy to [1], we obtaitP(|Y; — w(G,T)p| > ew(G,T)p) < 1.

Thus, with constant error probability; /p is ane-approximation ofw(G,T). To
obtain error probability — 26, we compute independent samples f (using the first
for loop) and replac&’;/p by Z/p whereZ is the median ot’;’s. The probability that
Z is less than1 — e)w(G, T)p is the probability that at least half of the copiesiGf
computed are less thaf, which is at mos(t;2)4*t < 27t Similarly we can estimate
the probability thatZ is bigger thar(1 + ¢)w(G, T')p. Therefore, ift = log(1/J) then
with probabilityl — 24 the value ob will lie in [(1 — e)w(G,T), (1 4+ e)w(G,T)]. ©

We still need to argue that given the gra@hwhere each vertex is colored with one
of k colors, we can compute the total weight of all non-inducddrfol occurrences
w(G, T, [k]) of T in G which refers to the variabl& in the second for loop efficiently.

Lemma 2. Given a graphG where each vertex has one lottolors, we can estimate
w(G, T, [k]) intimeO(|E| - 20(),

Proof. We pick a vertexp of 7" and considefl}, to be a rooted version of the query
treeT" with designated roop. We will computew(G, T, [k|) recursively in terms of
subtrees of ,; so letT), be any subtre” of 7" with designated rogt'. LetC' C [k] and
S(G, Tp’,,v, () be the set of all non-induced occurrencefgfin G which are rooted
atv and colorful with colors fronC' andw(v, T,,, v, C) = ZHE&G’TA”U’@ w(H) to
be the total weight of all such occurrences. We observe that

w(G’ T, [k]) = 1 Z w(G’ Tpvv7 [k]) (3

veG
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whereq is equal to one plus the number of vertiges 7" for which there is an auto-
morphism thap is mapped t@. For example, iff" in Figure 2 is rooted at”, ¢ is equal
to 3. The key observation is that we can computé, T, v, [k]) or the total weight of
colorful non-induced subtrees rootedvain G' which are isomorphic td’, in terms of
total weight of colorful non-induced occurrences of suesrefT), in G. LetT;, be an

Fig. 2. Counting the total weight of colorful non-induced occues ofT" in G by counting the
total weight of colorful non-induced occurrences of subE, and7, in G.

arbitrary rooted subtree df,. We decomposg7, into two smaller subtrees and count
total weight colorful non-induced occurrences of thesetregs inG as follows. We
choose a chilg” of p” and, by removing the edge betwegrandy” to decomposé?,
into two rooted subtre€k), that do not contaip” and7’;, that do not contaip’ for ex-
ample Figure 2. Analogously, for every neighbaof v in GG, we denote a colorful copy
of T}, atv by H' (v, ) and a colorful copy of 2, atu by H? (v, u). To obtain a copy?
of T/, in G by combiningH" (v, u) andH?(v,u), H' (v, u) and H? (v, u) must be col-
orful for color sets’ (v, u), Ca (v, w) such thaC (v, u) N Co(v,u) = 0,C1UCy, = C
where the cardinality of” is the number of vertices df;,. Finally, independent of the
choice ofu, we have

w(H) = w(H" (v, u)w(H? (v, u))w(vu) (4)

To initialize the base case of single-vertex tr@}f;s we setw(G, T;,, ,v,{i}) = lifthe
color of v is 7; otherwise 0. In general, we have

1
w(G, Ty ,v,0) = p Z Z Z w(H" (v, w))w(H? (v, u))w(vu)
uwEN (v) g1SC2=g HleS(G.T;,,v,Cl)

1UCy= 5 I
H ES(Gvaw“Cz)

1
=5 > > w@ T Couleww(G, T}, u,Cy).

ueN () S10EZe

(5)

Note thatw(H) will, as in the summands, appear exactlyimes across the different
suitable choices of color sef , Cs. For exampleH in Fig. 2, rooted ab, is a colorful
copy of a star-like rooted tre€ with three leaves. There are three different ways by
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which one can decompogé into a path of lengtt2, denoted byH; and a single node
H,, meaning thatl = 3 in this case. Now observe that the weighttdfw(H ) will ap-
pear three times as a summand in the above summation scherogjiag to the three
different decompositions dff . The proof for the case of additive weight schemes pro-
ceeds mutatis mutandis, after having replaced multiptioaby addition and adjusted
the base case G, T),, v, {i} = 0 regardless of the color af). Let N (v) be the set of

neighbors ofy, we have

(G, 750, 0)

Z Z now(G, T, pet Lov, C1) + ningw(vu) + niw(G, Tp,,,u, Cy) (6)
uEN (v) Clﬁgz g
2

wheren; = |S(G, p/,fu Cy)|,ny = |S(G,Tj/,u,02)| are the cardinalities of the
respective sets of colorful copies fﬂﬁ resp. T ., rooted atv resp.u which can be
computed efficiently [1] and parallely with(G, T p/,v Cy) andw(G, Tf,,,u, Cy).

Note that eachu(G, T, v, C) can be computed if)(deg(v) - 2°(*)) time where
deg(v) is the degree of. Thus, the computation of total weight of colorful non-irced

occurrences o’ in G is in O(|E|2°(%) time. o

Theorem 1. The algorithmAPPROXWEIGHTEDOCCURR (G, T, €, 0) estimates the
total weight of non-induced occurrences of a tiée G with additive errore and with
probability at leastl — 26 and runs in timeO(|E| - 20 - log(1/6) - &) where|E| is
the number of edges in the input network. '

Proof. Now we only need to consider its running time. Notice that wedto repeat
the color coding step and counting step times and each iteration runs in tirog| E| -
20(k)) where|E| is the number of edges in the input network. Thus, sineek” /k! =
O(e*) = 0(2°")), the asymptotic running time of our algorithm evaluates as

O(s-+-|B|-20) = O(||-2°0) 10g(1/5)- =) = O(1E1-2°" log(1/8) ). (7)

3 Results

3.1 Data and Implementation

Weighted PPI Networks We downloaded PPI networks with confidence scores from
theSTRINGdatabase, version 8.0 [15] for the prokaryotic, unicellolganismd.coli,
H.pylori, B.subtilis, T. pallidumthe eukaryotic, unicellular organisiicerevisia¢Yeast)
and the eukaryotic, multicellular organistelegansEdge weights exclusively reflect
confidence in experimentally determined physical intéoastto be functional cellular
entities and not only experimental artifacts (see [25, 2ddietailed information). See
Table 1 for some basic statistics about these networks.

Query Tree TopologiesThere are 23 and 47 possible tree topologies with 8 and
9 nodes respectively. We obtained the list of treelets froen@ombinatorial Object
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Table 1. Number of vertices, edges, in the studied PPI networks.

E.coli|H.pylori|B. subtiligT. pallidumS.cerevisiagC.elegans
Verticeg 2482| 1019 939 398 5913 5353
Edges|22476 9274 | 9184 4198 207075 | 43100

Server [18]. See our supplementary website [8] for diagramthe respective tree
topologies.

Implementation / Choice of Parameterd/e implemented our algorithm#EeRrOx
WEIGHTOCCUR with the multiplicative weight scheme such that the weigtd query
tree can be interpreted as its probability to be preseneimétwork, as aforementioned.
We sete = 0.01 as the approximation ratio ard= 0.001 as the error probability. Then
we computed expected numbers of occurrences of all quesg tEsize8 and9 for
each of the networks described above. By normalizing the&rmences of the differ-
ent query trees of sizeé resp9 over the23 resp.47 different query trees, we obtained
size8 resp. sizé) treelet distributions which we refer to asrmalized weighted treelet
distributions The idea behind normalizing expected occurrences is fopesing PPI
networks with different number of nodes and edges and t@as® robustness with re-
spect to missing data which still is a considerable issudPinnetwork studies. We will
demonstrate the robustness by an approved series of exqresifii 2] in the subsequent
subsection 3.3. Experiments were performed on a Sun Fir®@X&&rver with 64GB
RAM and 8 dual AMD Opteron CPUs with 2.6 Ghz speed each.

3.2 Comparison of PPI networks

In order to be able to appropriately benchmark our resulsnagyprevious findings we
considered the same organisms that were examined in [1]l80ecansidered the two
prokaryotic organismB.subtilis(a Gram-negative bacterium commonly found in soil)
andT.pallidum(a Gram-negative pathogen giving rise to congenital sig)hirhe cor-
responding weighted treelet distributions are displaydéig. 3. The upper row of fig-
ures shows that the treelet distributions of the prokacyarjanisms are all similar. This
is quite amazing since the weighted PPl networks have beemdi@ed in experiments
which were independent of one another and without the iategr of cross-species
associations [15]. As can be seen in the middle row of Figh& tteelet distributions
of the Yeast PPI network is quite different from the ones efghokaryotic organisms,
which had not been observed in the boolean networks usedl t[ll, there are obvious
differences between the unicellular organisms @nelegansthe multicellular model
organism under consideration. It might be interesting tteribat the greatest differ-
ences occur for the expected numbers of occurrences ofdpedogies23 resp.47,
which are the stars witk resp.9 nodes. As a last point, note that global features such
as degree and clustering coefficient distributions of thete/orks do not differ much
(see the supplementary materials [8] for respective r&sult
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Fig. 3. Normalized weighted treelet distributions of the prokaegt.pylori, E.coli, B.subtilis T.
pallidum PPI networks (top row) and of the prokaryotésylori, E.coli, B.subtilis T. pallidum
S.cervisiadYeast) andC.elegan?PI networks (middle row). and of five networks (a) size 8, (b)
size 9 generated from ti® cervisiaereast PPI network as outlined in ssec. 3.3 (bottom row).
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3.3 Robustness Analysis

In order to assess the reliability of the normalized weidttteelet distributions as a
measure of weighted PPI network similarity one needs torenthat they are robust
w.r.t. small alterations to the network. This is motivatgdthat there still might be
some insecurity about the amount and the quality of culyewvtilable PPI data. In this
section, we evaluate the robustness of normalized weigtgetet distributions mean-
ing that minor changes in the weighted PPI networks do noftresdrastic changes in
their normalized weighted treelet distributions.

Therefore, we used the random sparsification method whichpraposed in [12]
and was applied in earlier studies [1]. The method itertigparsifies networks by
removing vertices and edges in a sampling procedure andfispflg addresses the
pecularities of experimentally generating PPI networkis based on two parameters,
the bait sampling probability, and the edge sampling probability which refer to
sampling vertices and edges. As in [1], we agt= 0.7 anda,. = 0.7 and shrank the
weighted PPI network of Yeast to five smaller networks acioglgl. A comparison of
the normalized weighted treelet distributions of the skeimnetworks is displayed in
the bottom row of Fig. 3. As can be seen, the normalized weijtreelet distributions
are very similar to one another which confirms that normdlizeelet distributions are
robust w.r.t. experimentally induced noise and/or missiata.

4 Conclusions

To quantify organismic complexity and evolutionary divgrgrom a systemic point
of view poses challenging biological and computationabtgms. Here, we have in-
vestigatechormalized weighted treelet distributigrizased on exploration of PPI net-
work whose edges are assigned to confidence scores, whidkeaatrieved from the
STRING database as an appropriate measure. As a theomtioelty, we have ex-
tended the color coding technique to weighted networks. Aesalt, we were able to
reveal differences between uni- and multicellular as wslpeo- and eukaryotic or-
ganisms. Systemic differences based on local features lim&®orks between pro-
and eukaryotes had not been reported before. In sum, oyr studals novel systemic
differences and confirms previously reported ones on aantially more reliable data.
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