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Abstract. A current major challenge in systems biology is to compute statistics
on biomolecular network motifs, since this can reveal significant systemic differ-
ences between organisms. We extend the “color coding” technique to weighted
edge networks and apply it to PPI networks where edges are weighted by prob-
abilistic confidence scores, as provided by theSTRINGdatabase. This is a sub-
stantial improvement over the previously available studies on, still heavily noisy,
binary-edge-weight data. Following up on such a study, we compute the expected
number of occurrences of non-induced subtrees withk ≤ 9 vertices. Beyond the
previously reported differences between unicellular and multicellular organisms,
we reveal major differences between prokaryotes and unicellular eukaryotes. This
establishes, for the first time on a statistically sound databasis, that evolutionary
distance can be monitored in terms of elevated systemic arrangements.
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1 Introduction

A current major issue in evolutionary systems biology is to reliably quantify both or-
ganismic complexity and evolutionary diversity from a systemic point of view. While
currently available biomolecular networks provide a data basis, the assessment of net-
work similarity has remained both biologically and computationally challenging. Since
currently available network data is still incomplete, simple edge statistics, for example,
do not apply. Moreover, recent research has revealed that many biomolecular networks
share global topological features which are robust relative to missing edges, which rules
out many more straightforward approaches to the topic (see e.g. [13] for a related study
on global features such as degree distribution,k-hop reachability, betweenness and
closeness). On the more sophisticated end of the scale of such approaches would be
attempts to perform and appropriately score alignments of the collection of all systemic
subunits of two organisms. However, the development of workable scoring schemes in
combination with related algorithms comes with a variety ofobvious, yet unresolved,
both biological and computational issues. Clearly, any such scoring schemes would al-
ready establish some form of condensed, systemic evolutionary truth by themselves.
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This explains why recent approaches focused on monitoring differences between
biomolecular networks in terms oflocal structures, which likely reflect biological ar-
rangements such as functional subunits. A seminal study which reported that statisti-
cally overrepresented graphlets, i.e. small subnetworks,are likely to encode pathway
fragments and/or similar functional cellular building blocks [17] sparked more general
interest in the topic. In the meantime, to discover and to count biomolecular network
motifshas become a thriving area of research which poses some intriguing algorith-
mic problems. As is summarized in the comprehensive review [6], such approaches are
supported by various arguments.

In this paper, following up on a series of earlier studies, wewill focus on physical
protein-protein interaction (PPI) network data. Related studies focused on determining
the number of all possible “induced” subgraphs in a PPI network, which already is a
very challenging task. Przulj et al. [19] devised algorithms with which to count induced
PPI subgraphs on up tok = 5 vertices. Recently developed techniques improved on
this by counting induced subgraphs of size up tok = 6 [13] andk = 7 [11]. However,
the running time of these techniques all increase exponentially with k. To count sub-
graphs of sizek ≥ 8 required novel algorithmic tools. A substantial advance was sub-
sequently provided in [1] which introduced the “color coding” technique for counting
non-induced occurrences of subgraph topologies in the formof bounded treewidth sub-
graphs, which includes trees as the most obvious special case. Counting non-induced
occurrences of network motifs is not only challenging but also quite desirable since
non-induced patterns are often correlated to induced occurrences of denser patterns.
Trees in particular can be perceived as the backbones of induced dense and connected
subgraphs and there is abundant evidence that dense and connected (induced) subgraphs
reflect functional cellular building blocks (e.g. [26]). See also [7] for a successful ap-
proach to count all patterns of density at least0.85 in several PPI networks as well as
in synthetic networks from popular generative random models. See also [7] for a suc-
cessful approach to count all patterns of density at least0.85 in several PPI networks as
well as in synthetic networks from popular generative random models.

While these studies successfully revealed differences between PPI networks of uni-
and multicellular organisms, a binary edge has remained a notoriously noisy datum.
However, none of the studies considered PPI networks with weighted edges where edge
weights reflect the confidence that the interactions are of cellular relevance instead of
being experimental artifacts. Weighted network data have recently become available
and have already been employed for other purposes (see e.g. [22] and the references
therein for a list of weighted network data sources). One of the main reasons for the lack
of network motif studies on such data might be that to exhaustively mine biomolecular
networks with probabilistic edge weights poses novel computational challenges.

In this paper, we show how to apply the “color coding” technique to networks with
arbitrary edge weights and two different scoring schemes for weighted subgraphs. Edge
weights are supposed to reflect our confidence in the interactions, as provided by the
STRINGdatabase, and we will apply a scoring scheme which reflects our expectation1

in entire subgraphs to be present or not.STRINGis a major resource for assessments of

1 Expectation is meant to be in the very sense of probability theory, by interpreting confidence
scores as probabilities
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protein interactions and/or associations predicted by large-scale experimental data (in
the broad sense, including e.g. literature data) of varioustypes (see [15] for the latest
issue of STRING and the references therein for earlier versions). Here, we only employ
experimentally determined physical protein interactionsin order to both follow up on
the recent discussions and to avoid inconsistencies inherent to using several types of
protein interactions at once. Clearly, statistics on such networks will establish substan-
tial improvements over studies on binary network data in terms of statistical significance
and robustness.

We compute the expected number of non-induced occurrences (E-values) of tree
motifsG′ (“treelets”) withk vertices in a networkG with n vertices in time polynomial
in n, providedk = O(log n). Note that, in binary edge weight graphs, computation
of the number of expected occurrences and counting occurrences is equivalent when
interpreting an edge to be an interaction occurring with probability 1. This provides
the basis on which we can benchmark our results against previous studies. We use
our algorithm to obtain normalized treelet distributions,that is the sum of the weights
of non-induced occurrences of different tree topologies ofsizek = 8, 92 normalized
by the total weight of all non-induced trees of size8, 9 for weighted PPI networks.
We analyze the prokaryotic, unicellular organisms (E.coli, H.pylori), B. subtilisandT.
pallidum, which are all quite similar, the eukaryotic unicellular organismS.cerevisiae
(Yeast), and a multicellular organism (C.elegans). Beyond the previously reported simi-
larities among the prokaryotic organisms, we were able to also reveal strong differences
between Yeast and the prokaryotes. As before, statistics onC.elegans are still different
from all other ones. As a last point, we demonstrate that our weighted treelet distribu-
tions arerobustrelative to reasonable amounts of network sparsification assuggested
by [12].

To summarize, we have presented a novel randomized approximation algorithm to
count the weight of non-induced occurrences of a treeT with k vertices in a weighted-
edge networkG with n vertices in time polynomial withn, providedk = O(log n) for
a given error probability and an approximation ratio. We prove that resulting weighted
treelet distributions are robust and sensitive measures ofPPI network similarity. Our ex-
periments then confirm, for the first time on a statistically reliable data basis, that uni-
and multicellular organisms are different on an elevated systemic cellular level. More-
over, for the first time, we report such differences also between pro- and eukaryotes.

Related Work

Flum and Grohe [10] showed that the problem of counting the number of paths of length
k in a network is#W [1]-complete. Thus it is unlikely that one can count the number
of paths of lengthk efficiently even for smallk. The most recent approaches such as [5,
23] offer a running time ofO(nk/2+O(1)). As mentioned before, [19, 11, 13] describe
practical approaches to counting all induced subgraphs of at mostk = 5, 6 andk = 7
vertices in a PPI network.

2 We recall that there are 23 resp. 47 different tree topologies on8 resp.9 nodes, see e.g. [18].
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Approximate counting techniques have been devised which were predominantly
based on the color coding technique as introduced by Alon et al. [3]. Color coding is
based on assigning random colors to the vertices of an input graph and, subsequently,
counting only “colorful” occurrences, that is, subgraphs where each vertex has a dif-
ferent color. This can usually be done in polynomial time. Iterating over different color
assignments sufficiently many, but still a polynomial number of times yields statisti-
cally reliable counts. In the seminal study [3], color coding was used to detect (but not
to count) simple paths, trees and bounded treewidth subgraphs in unlabelled graphs.

Scott et al. [20], Shlomi et al. [21] and Huffner et al. [14] designed algorithms for
querying paths within a PPI network. More recently, Dost et al. [9] have extended these
algorithms in the QNet software to allow searching for treesand bounded treewidth
graphs. Arvind and Raman [4] use the color coding approach tocount the number of
subgraphs in a given graphG which are isomorphic to abounded treewidth graph
H . The framework which they use is based on approximate counting via sampling
[16]. However, even whenk = O(log n), the running time of this algorithm issuper-
polynomialwith n, and thus is not practical. Alon and Gutner [2] derandomizedthe
color coding technique by the construction of balanced families of hash functions. Re-
cently, Alon et al. [1] presented a randomized approximation algorithm that, given an
additive errorǫ and error probabilityδ, with success probability1 − δ, outputs a num-
ber within ǫ times the number of non-induced occurrences of a treeT of k vertices in
a graphG of n vertices running in timeO(|E| · 2O(k) · log(1/δ) · 1

ǫ2 ). Note that if
k = O(log n) andǫ, δ are fixed, this results in a polynomial time algorithm.

Note that all the previous works tried either to count exactly the total weight of non-
induced occurrences of a pattern in a given graph or to approximate the occurrences
where the weights of all edges are1. The exact counting methods, due to parameter-
ized complexity as mentioned earlier, give exponential running time even for paths of
k = O(log n) vertices. We will give approximate based counting methods that offer
polynomial running time given that patterns are trees ofk = O(log n) vertices, a fixed
approximation factor and an error probability.

2 Methods

In the following, letG = (V, E) be a graph onn vertices andw : E → R be an edge-
weight function. LetT be a tree onk vertices where, in the following,k = O(log n).
We defineS(G, T ) to be the set of non-induced subgraphs ofG which are isomorphic
to T and letE(H) to be the edges of such a subgraphH ∈ S. We extendw to weight
functions on the members ofS(G, T ) by either defining

w(H) =
∏

e∈E(H)

w(e) or w(H) =
∑

e∈E(H)

w(e) (1)

Note that ifw(e) is interpreted as the probability thate is indeed present inG then,
assuming independence between the edges,w(H) of the first case is just the proba-
bility that H is present inG. In the following, we will focus on the first case. Proofs
for the second choice ofw(H) can be easily obtained, mutatis mutandis, after having
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replaced multiplication by addition in the definition ofw(H). Finally, letw(G, T ) =
∑

H∈S(G,T ) w(H) be the total weight of non-induced occurrences ofT in G. We would
like to provide reliable estimateŝw(G, T ) onw(G, T ). Note thatw(G, T ) is the number
of expected occurrences ofT in G due to the linearity of expectation.

Consider Fig. 1. Here,T is a star-like tree on4 vertices. There are two subgraphsH
andH ′ in G which are isomorphic toT ; therefore,w(G, T ) = w(H) + w(H ′). In the
case that the weight of a subgraph inG is calculated as the product of the weights of its
edges, we havew(G, T ) = w(H) + w(H ′) = 0.5× 0.4× 0.3+ 0.7× 0.8× 0.9. In the
other case, we havew(G, T ) = w(H)+w(H ′) = (0.5+0.4+0.3)+(0.7+0.8+0.9).

Fig. 1. An example of counting the total weight of non-induced subgraphs in a given networkG
which are isomorphic to a query treeT .

In the following, in order to estimatew(G, T ) by color coding, we will randomly
assignk colors to the vertices ofG wherek is the size ofT . Therefore, we introduce
the notations[k] = {1, ..., k} for the set ofk colors andS(G, T, [k]) for the set of all
non-induced subgraphs ofG which arecolorful in terms of[k], that is occurrences ofT
where each vertex has been assigned to a different color.

The following algorithm APPROXWEIGHTEDOCCUR, when given an approxima-
tion factorǫ and an error probabilityδ, computes an estimatêw(G, T ) of w(G, T ) effi-
ciently inn andk, given thatk = O(log n) such that with probability1 − 2δ, ŵ(G, T )
lies in the range[(1 − ǫ)w(G, T ), (1 + ǫ)w(G, T )].

Algorithm 1 APPROXWEIGHTEDOCCURR (G, T , ǫ, δ)

G = (V, E), k ← |V (T )|, t← log(1/δ), p← k!/kk, s← 4/(ǫ2p)
for i = 1 to t do

Yi ← 0
for j = 1 to s do

Color each vertex ofG independently and uniformly at random with one ofk colors
X ← total weight of colorful subgraphs ofG which are isomorphic toT
Yi ← Yi + X

end for
Yi ← Yi/s

end for
Z ←median ofY1 . . . Yt

Return Z/p as the estimatêw(G, T ) of w(G, T )
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The following lemmata give rise to a theorem that supports our claims from above.

Lemma 1. The algorithmAPPROXWEIGHTEDOCCURR (G, T , ǫ, δ) returnsŵ(G, T )
such that with probability at least1 − 2δ we have(1 − ǫ)w(G, T ) ≤ ŵ(G, T ) ≤
(1 + ǫ)w(G, T )

Proof. The proof proceeds quite similar to that of [1], after havingreplacedxF there
by xH here wherexH is the indicator random variable whose value isw(H) if H is
colorful in a random coloring ofG and0 otherwise. Similarly, we then defineX =
∑

H∈S(G,T ) xH which is the random variable that counts the total weight of colorful
subgraphs ofG which are isomorphic toT . The expected value ofX then evaluates as

E(X) = E(
∑

H∈S(G,T )

xH) =
∑

H∈S(G,T )

E(xH) =
∑

H∈S

w(H)p = w(G, T )p (2)

wherep = k!/kk is the probability that the vertices of a subgraphH of sizek are
assigned to different colors. To obtain a bound on the variance V ar(X) of X , one
observes thatV ar(xH) = E(x2

H) − E2(xH) ≤ E(x2
H) = [w(H)]2p. Moreover, the

probability that bothH andH ′ are colorful is at mostp which implies

Cov(xH , xH′) = E(xHxH′ ) − E(xH)E(xH′ ) ≤ E(xHxH′ ) ≤ w(H)w(H ′)p.

Therefore, in analogy to [1], the variance ofX satisfiesV ar(X) = (
∑

H∈S
w(H))2p =

w2(G, T )p. SinceYi is the average ofs independent copies of random variableX , we
haveE(Y ) = E(X) = w(G, T )p andV ar(Yi) = V ar(X)/s ≤ w2(G, T )p/s. Again
in analogy to [1], we obtainP (|Yi − w(G, T )p| ≥ ǫw(G, T )p) ≤ 1

4 .
Thus, with constant error probability,Yi/p is anǫ-approximation ofw(G, T ). To

obtain error probability1−2δ, we computet independent samples ofYi (using the first
for loop) and replaceYi/p by Z/p whereZ is the median ofYi’s. The probability that
Z is less than(1 − ǫ)w(G, T )p is the probability that at least half of the copies ofYi

computed are less thanZ, which is at most
(

t
t/2

)

4−t ≤ 2−t. Similarly we can estimate
the probability thatZ is bigger than(1 + ǫ)w(G, T )p. Therefore, ift = log(1/δ) then
with probability1 − 2δ the value of̂o will lie in [(1 − ǫ)w(G, T ), (1 + ǫ)w(G, T )]. ⋄

We still need to argue that given the graphG where each vertex is colored with one
of k colors, we can compute the total weight of all non-induced colorful occurrences
w(G, T, [k]) of T in G which refers to the variableX in the second for loop efficiently.

Lemma 2. Given a graphG where each vertex has one ofk colors, we can estimate
w(G, T, [k]) in timeO(|E| · 2O(k)).

Proof. We pick a vertexρ of T and considerTρ to be a rooted version of the query
treeT with designated rootρ. We will computew(G, Tρ, [k]) recursively in terms of
subtrees ofTρ; so letT ′

ρ′ be any subtreeT ′ of T with designated rootρ′. LetC ⊂ [k] and
S(G, T ′

ρ′ , v, C) be the set of all non-induced occurrences ofT ′
ρ′ in G which are rooted

at v and colorful with colors fromC andw(v, T ′
ρ′ , v, C) =

∑

H∈S(G,T ′

ρ′ ,v,C) w(H) to

be the total weight of all such occurrences. We observe that

w(G, T, [k]) =
1

q

∑

v∈G

w(G, Tρ, v, [k]) (3)
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whereq is equal to one plus the number of vertices̺ in T for which there is an auto-
morphism thatρ is mapped to̺ . For example, ifT in Figure 2 is rooted atρ′′, q is equal
to 3. The key observation is that we can computew(G, Tρ, v, [k]) or the total weight of
colorful non-induced subtrees rooted atv in G which are isomorphic toTρ in terms of
total weight of colorful non-induced occurrences of subtrees ofTρ in G. Let T ′

ρ′ be an

Fig. 2. Counting the total weight of colorful non-induced occurrences ofT in G by counting the
total weight of colorful non-induced occurrences of subtreesTρ′ andTρ′′ in G.

arbitrary rooted subtree ofTρ. We decomposeT ′
ρ′ into two smaller subtrees and count

total weight colorful non-induced occurrences of these subtrees inG as follows. We
choose a childρ′′ of ρ′ and, by removing the edge betweenρ′ andρ′′ to decomposeT ′

ρ′

into two rooted subtreesT 1
ρ′ that do not containρ′′ andT 2

ρ′′ that do not containρ′ for ex-
ample Figure 2. Analogously, for every neighboru of v in G, we denote a colorful copy
of T 1

ρ′ atv by H1(v, u) and a colorful copy ofT 2
ρ′′ atu by H2(v, u). To obtain a copyH

of T ′
ρ′ in G by combiningH1(v, u) andH2(v, u), H1(v, u) andH2(v, u) must be col-

orful for color setsC1(v, u), C2(v, u) such thatC1(v, u)∩C2(v, u) = ∅, C1 ∪C2 = C
where the cardinality ofC is the number of vertices ofT ′

ρ′ . Finally, independent of the
choice ofu, we have

w(H) = w(H1(v, u))w(H2(v, u))w(vu) (4)

To initialize the base case of single-vertex treesT ′
ρ′ , we setw(G, T ′

ρ′ , v, {i}) = 1 if the
color ofv is i; otherwise 0. In general, we have

w(G, T ′
ρ′ , v, C) =

1

d

∑

u∈N(v)

∑

C1∩C2=∅

C1∪C2=C

∑

H1∈S(G,T1
ρ′ ,v,C1)

H2∈S(G,T2
ρ′′ ,u,C2)

w(H1(v, u))w(H2(v, u))w(vu)

=
1

d

∑

u∈N(v)

∑

C1∩C2=∅

C1∪C2=C

w(G, T 1
ρ′ , v, C1)w(vu)w(G, T 2

ρ′′ , u, C2).

(5)

Note thatw(H) will, as in the summands, appear exactlyd times across the different
suitable choices of color setsC1, C2. For example,H in Fig. 2, rooted atv, is a colorful
copy of a star-like rooted treeT with three leaves. There are three different ways by



8 P. Dao et. al.

which one can decomposeH into a path of length2, denoted byH1 and a single node
H2, meaning thatd = 3 in this case. Now observe that the weight ofH w(H) will ap-
pear three times as a summand in the above summation scheme, according to the three
different decompositions ofH . The proof for the case of additive weight schemes pro-
ceeds mutatis mutandis, after having replaced multiplication by addition and adjusted
the base case (w(G, T ′

ρ′ , v, {i} = 0 regardless of the color ofv). Let N(v) be the set of
neighbors ofv, we have

w(G, T ′
ρ′ , v, C)

=
1

d

∑

u∈N(v)

∑

C1∩C2=∅

C1∪C2=C

n2w(G, T 1
ρ′ , v, C1) + n1n2w(vu) + n1w(G, T 2

ρ′′ , u, C2) (6)

wheren1 = |S(G, T 1
ρ′ , v, C1)|, n2 = |S(G, T 2

ρ′′ , u, C2)| are the cardinalities of the
respective sets of colorful copies ofT 1

ρ′ resp.T 2
ρ′′ rooted atv resp.u which can be

computed efficiently [1] and parallely withw(G, T 1
ρ′ , v, C1) andw(G, T 2

ρ′′ , u, C2).

Note that eachw(G, T ′
ρ′ , v, C) can be computed inO(deg(v) · 2O(k)) time where

deg(v) is the degree ofv. Thus, the computation of total weight of colorful non-induced
occurrences ofT in G is in O(|E|2O(k)) time. ⋄

Theorem 1. The algorithmAPPROXWEIGHTEDOCCURR (G, T , ǫ, δ) estimates the
total weight of non-induced occurrences of a treeT in G with additive errorǫ and with
probability at least1 − 2δ and runs in timeO(|E| · 2O(k) · log(1/δ) · 1

ǫ2 ) where|E| is
the number of edges in the input network.

Proof. Now we only need to consider its running time. Notice that we need to repeat
the color coding step and counting steps ·t times and each iteration runs in timeO(|E| ·
2O(k)) where|E| is the number of edges in the input network. Thus, sincep = kk/k! =
O(ek) = O(2O(k)), the asymptotic running time of our algorithm evaluates as

O(s·t·|E|·2O(k)) = O(|E|·2O(k) ·log(1/δ)·
1

ǫ2p
) = O(|E|·2O(k) log(1/δ)·

1

ǫ2
). (7)

3 Results

3.1 Data and Implementation

Weighted PPI NetworksWe downloaded PPI networks with confidence scores from
theSTRINGdatabase, version 8.0 [15] for the prokaryotic, unicellular organismsE.coli,
H.pylori, B.subtilis, T. pallidum, the eukaryotic, unicellular organismS.cerevisiae(Yeast)
and the eukaryotic, multicellular organismC.elegans. Edge weights exclusively reflect
confidence in experimentally determined physical interactions to be functional cellular
entities and not only experimental artifacts (see [25, 24] for detailed information). See
Table 1 for some basic statistics about these networks.

Query Tree TopologiesThere are 23 and 47 possible tree topologies with 8 and
9 nodes respectively. We obtained the list of treelets from the Combinatorial Object
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Table 1.Number of vertices, edges, in the studied PPI networks.

E.coli H.pylori B. subtilisT. pallidumS.cerevisiaeC.elegans
Vertices 2482 1019 939 398 5913 5353
Edges 22476 9274 9184 4198 207075 43100

Server [18]. See our supplementary website [8] for diagramsof the respective tree
topologies.

Implementation / Choice of ParametersWe implemented our algorithm APPROX-
WEIGHTOCCUR with the multiplicative weight scheme such that the weight of a query
tree can be interpreted as its probability to be present in the network, as aforementioned.
We setǫ = 0.01 as the approximation ratio andδ = 0.001 as the error probability. Then
we computed expected numbers of occurrences of all query trees of size8 and9 for
each of the networks described above. By normalizing the occurrences of the differ-
ent query trees of size8 resp.9 over the23 resp.47 different query trees, we obtained
size8 resp. size9 treelet distributions which we refer to asnormalized weighted treelet
distributions. The idea behind normalizing expected occurrences is for comparing PPI
networks with different number of nodes and edges and to increase robustness with re-
spect to missing data which still is a considerable issue in PPI network studies. We will
demonstrate the robustness by an approved series of experiments [12] in the subsequent
subsection 3.3. Experiments were performed on a Sun Fire X4600 Server with 64GB
RAM and 8 dual AMD Opteron CPUs with 2.6 Ghz speed each.

3.2 Comparison of PPI networks

In order to be able to appropriately benchmark our results against previous findings we
considered the same organisms that were examined in [1]. We also considered the two
prokaryotic organismsB.subtilis(a Gram-negative bacterium commonly found in soil)
andT.pallidum(a Gram-negative pathogen giving rise to congenital syphilis). The cor-
responding weighted treelet distributions are displayed in Fig. 3. The upper row of fig-
ures shows that the treelet distributions of the prokaryotic organisms are all similar. This
is quite amazing since the weighted PPI networks have been determined in experiments
which were independent of one another and without the integration of cross-species
associations [15]. As can be seen in the middle row of Fig. 3, the treelet distributions
of the Yeast PPI network is quite different from the ones of the prokaryotic organisms,
which had not been observed in the boolean networks used in [1]. Still, there are obvious
differences between the unicellular organisms andC.elegans, the multicellular model
organism under consideration. It might be interesting to note that the greatest differ-
ences occur for the expected numbers of occurrences of tree topologies23 resp.47,
which are the stars with8 resp.9 nodes. As a last point, note that global features such
as degree and clustering coefficient distributions of thesenetworks do not differ much
(see the supplementary materials [8] for respective results).
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Fig. 3.Normalized weighted treelet distributions of the prokaryotesH.pylori, E.coli, B.subtilis, T.
pallidumPPI networks (top row) and of the prokaryotesH.pylori, E.coli, B.subtilis, T. pallidum,
S.cervisiae(Yeast) andC.elegansPPI networks (middle row). and of five networks (a) size 8, (b)
size 9 generated from theS.cervisiaeYeast PPI network as outlined in ssec. 3.3 (bottom row).
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3.3 Robustness Analysis

In order to assess the reliability of the normalized weighted treelet distributions as a
measure of weighted PPI network similarity one needs to ensure that they are robust
w.r.t. small alterations to the network. This is motivated by that there still might be
some insecurity about the amount and the quality of currently available PPI data. In this
section, we evaluate the robustness of normalized weightedtreelet distributions mean-
ing that minor changes in the weighted PPI networks do not result in drastic changes in
their normalized weighted treelet distributions.

Therefore, we used the random sparsification method which was proposed in [12]
and was applied in earlier studies [1]. The method iteratively sparsifies networks by
removing vertices and edges in a sampling procedure and specifically addresses the
pecularities of experimentally generating PPI networks. It is based on two parameters,
the bait sampling probabilityαb and the edge sampling probabilityαe which refer to
sampling vertices and edges. As in [1], we setαb = 0.7 andαe = 0.7 and shrank the
weighted PPI network of Yeast to five smaller networks accordingly. A comparison of
the normalized weighted treelet distributions of the shrunken networks is displayed in
the bottom row of Fig. 3. As can be seen, the normalized weighted treelet distributions
are very similar to one another which confirms that normalized treelet distributions are
robust w.r.t. experimentally induced noise and/or missingdata.

4 Conclusions

To quantify organismic complexity and evolutionary diversity from a systemic point
of view poses challenging biological and computational problems. Here, we have in-
vestigatednormalized weighted treelet distributions, based on exploration of PPI net-
work whose edges are assigned to confidence scores, which canbe retrieved from the
STRING database as an appropriate measure. As a theoreticalnovelty, we have ex-
tended the color coding technique to weighted networks. As aresult, we were able to
reveal differences between uni- and multicellular as well as pro- and eukaryotic or-
ganisms. Systemic differences based on local features in PPI networks between pro-
and eukaryotes had not been reported before. In sum, our study reveals novel systemic
differences and confirms previously reported ones on a substantially more reliable data.
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