
Efficiently Mining Regional Outliers in Spatial Data

Richard Frank, Wen Jin, Martin Ester

School of Computing Science

Simon Fraser University
Burnaby B.C., Canada V5A 1S6
{rfrank, wjin, ester}@cs.sfu.ca

Abstract. With the increasing availability of spatial data in many applications,
spatial clustering and outlier detection has received a lot of attention in the
database and data mining community. As a very prominent method, the spatial
scan statistic finds a region that deviates (most) significantly from the entire
dataset. In this paper, we introduce the novel problem of mining regional
outliers in spatial data. A spatial regional outlier is a rectangular region which
contains an outlying object such that the deviation between the non-spatial
attribute value of this object and the aggregate value of this attribute over all
objects in the region is maximized. Compared to the spatial scan statistic, which
targets global outliers, our task aims at local spatial outliers. We introduce two
greedy algorithms for mining regional outliers, growing regions by extending
them by at least one neighboring object per iteration, choosing the extension
which leads to the largest increase of the objective function. Our experimental
evaluation on synthetic datasets and a real dataset demonstrates the
meaningfulness of this new type of outliers and the greatly superior efficiency
of the proposed algorithms.

Keywords: Data mining, Spatial outliers, Efficient algorithms, Delaunay-
triangulation

1 Introduction

Spatial data is being collected, made available and used more and more both for
research and commercial purposes. For the automatic analysis of such data, spatial
data mining methods have received a lot of attention in the database and data mining
community [21] [27], in particular methods for spatial clustering and outlier detection.
Spatial clustering aims at partitioning the spatial region into sub-regions with high
intra-region similarity and inter-region difference [13], the goal of spatial outlier
detection is to find objects inconsistent with their spatial neighbours even though they
may not be significantly different from the entire set of objects [27]. Hotspot analysis
is related to both of the above tasks, attempting to discover spatial regions with
densities or attribute values that are significantly different from the whole dataset.

Important applications are the discovery of disease outbreaks, of crime hotspots or of
acts of bio-terrorism.

The goal of the spatial scan statistic [16] is to find such hotspots and various
efficient methods for it have been proposed in the literature [10] [20]. Just as non-
spatial outliers can be categorized into global [17] and local [7] outliers, so can spatial
outliers. The spatial scan statistic is a global method, targeting a region that deviates
(most) significantly from the entire dataset. In many applications however, users are
interested in finding local outliers, spatial regions that enclose exceptional knowledge
because they contain objects within the region that are outliers relative to the region
itself. For example, according to Tips & Traps when buying a home [14], if someone
wishes to multiply their chances for making money when reselling a home they have
to buy an inexpensive house in the most expensive neighbourhood they can afford. As
the neighbourhood appreciates over time, the least inexpensive property will
appreciate more than its neighbours, relative to its price; the reverse is also true and
purchasing an attractive house in a bad neighbourhood will not yield a good
investment [30]. By searching for local spatial outliers in property data, it would be
possible to find the least expensive properties within the best neighbourhoods, which
could become promising investment opportunities.

In this paper we introduce the problem of mining regional outliers in spatial data.
A spatial regional outlier is defined as a (rectangular) region with a spatial object in
this region such that the value of the objective function, which measures the degree of
outlierness of the object within the region, is maximized. For example, in our
motivating real estate application, the object would be one (expensive) property, and
the rectangle would be the equivalent to its (inexpensive) neighborhood. In a crime
dataset, rectangles (neighbourhoods) could be found that have, for example, locations
with very different crime rates than the neighbourhood.

A Naïve algorithm enumerating all possible rectangles has a runtime complexity of
O(n4) which does not scale to large datasets as they appear in many practical
applications. Therefore, greedy algorithms are presented which take advantage of the
implicit neighbourhood relationships between objects and the different algorithms use
different neighbourhood definitions to prune the search-space. In our methods
however, the rectangles are "grown" from a seed and at each iteration are extended to
include the object which causes the largest increase in the objective function.

The main contributions of our work are as follows:
1) We introduce the novel problem of mining regional outliers in spatial data.
2) We propose two greedy algorithms for efficiently mining such outliers in large

datasets, reducing runtime from O(n4) to O(n2) compared to the Naïve algorithm.
3) Our extensive experimental evaluation on both synthetic and real datasets

demonstrates the meaningfulness of spatial regional outliers and the efficiency of
the proposed algorithms.

The rest of the paper is organized as follows. In Section 2, we discuss related work.
Section 3 introduces our problem definition and presents the corresponding
algorithms, including a comparative analysis of these algorithms. In Section 4 we
report the results of our experiments on both synthetic and real datasets; Section 5
concludes the paper with a summary and outlook on future work.

2 Related Work

There are three parts of the literature related to our study: outlier detection, spatial
scan statistics, and the use of Voronoi/Delaunay calculations. We survey them below.

(Outlier detection) Outliers can be defined as “data objects that appear
inconsistent with respect to the remainder of the database” [5]. Outlier detection
methods include distribution-based using standard statistical distributions, depth-
based which map data objects into an m-dimensional information space and distance-
based approaches which calculate the proportion of database objects that are a
specified distance from a target object [13].

Statistical approaches to outlier detection [5] include distribution-based and depth-
based methods. However, the first method has the problem that it must assume the
dataset owns some probability distribution even though it is difficult to know the
underlying data distribution. The second method is not efficient for high dimensions.

The concept of global distance-based outliers is first introduced in [17], which
defines an object p being an outlier, if at most n objects are within distance d of p. It
generalizes the notion of statistical outlier tests, but the running time of the proposed
method is still exponential to the number of dimensions. Ramaswamy et al. [25] use
the distance of the kth-nearest neighbor to rank outliers and give an efficient algorithm
for mining top-n global outliers. Bay and Schwabacher [8] improved the method in
[17] by using the block nested loop strategy with pruning and randomization
techniques. Recently, Tao et al. [29] presented a disk-resident algorithm of finding
global outliers with a linear I/O cost. Shekhar et al. [27] studied spatial outliers, which
refer to spatially referenced objects whose non-spatial attributes are significantly
inconsistent with its neighbors, even though they may not be significantly different
from the entire objects.

Breunig et al. introduced the concept of local outlier, a kind of density-based
outlier, which assigns each data a local outlier factor LOF of being an outlier
depending on their neighborhood [7]. The outlier factors can be computed very
efficiently if some multi-dimensional index structures such as R-tree and X-tree [6]
are employed. A top-n based local outliers mining algorithm which uses distance
bound of micro-cluster to estimate the density, was presented in [15]. Lazarevic and
Kumar [18] proposed a local outlier detection algorithm with a technique called
“feature bagging”.

Some clustering algorithms like DBSCAN [9] consider identifying outliers, but
only to the point of ensuring that they do not interfere with the clustering process.
Further, outliers are only by-products of clustering algorithms.

 (Spatial Scan Statistics) The task of spatial scan statistics, which computes the
maximum discrepancy region by scanning a set of circular regions with different
radius in the spatial space [16], has received much attention in the data mining
community. Authors in [10] proposed a greedy method to find a sub-region R of the
input domain S for which the mean value of R is as large as possible. Neill and Moore
[20] aimed to find a 2-dimensional rectangular region or square region with highest
density given an n×n grid of rectangles/squares. As an extension work, assuming a
uniform, multidimensional grid of bivariate data, where each cell of the grid has a
count Ci and a baseline Bi, they aim to find spatial regions (d-dimensional rectangles)
where the Ci are significantly higher than expected given Bi [21]. Agarwal et al.[2]

studied the problem of largest discrepancy region in a domain, and present a new
exact algorithm, which has the same asymptotic running time as the algorithm of
Neill and Moore [20], but with much simpler implementation. Authors in [3] present
algorithms for maximizing statistical discrepancy functions over the space of axis-
parallel rectangles with provable approximation guarantees, both additive and
relative. Their methods apply to any convex discrepancy function.

 (Voronoi Diagrams) With spatial datasets, Voronoi diagrams and Delaunay
triangulations represent the spatial relationships between the objects [1], [12]. The
dataset is partitioned into regions, called Voronoi cells, containing all the points that
are closest to the object in the Voronoi cell [19]. For point data, the bisector segments
will be the perpendicular bisectors of neighbouring pairs of sites while for spatially
extended data, the borders will be circular arcs or arcs of parabolas [19].

Without a loss in the usefulness the distance measure could be exchanged for any
distance measure, for example, the Manhattan distance or the distance covered by
visiting k shops, as illustrated in [23]. [12] defined the distance measure as ‘furthest-
distance’ indicating regions of least influence. [24] applied Voronoi diagrams to
measure flow in population samples and then model profitability of destination points
(i.e.: stores). Voronoi diagrams are also used to describe the internal structure of
objects in [19] while [11] uses it for two applications: a) the catchment area of each
object and b) denoting the largest polluter of the object in the Voronoi cell.

The dual of the Voronoi diagram, the
Delaunay triangulation, is the structure
that is the result of connecting all objects
with neighbouring Voronoi cells (Fig. 1).
[19] defines the Delaunay triangulation of
a set of points S as “a partition of the
convex hull of S into polytopical regions
whose vertices are the points in S. The
convex hull of the nearest neighbour set
of a Voronoi vertex v is called the
Delaunay cell of v.”

3 Mining Regional Outliers in Spatial Data

In this section, we introduce the problem of mining regional outliers in spatial data
(Section 3.1). We present a Naïve algorithm that enumerates all possible solutions to
search for the best regional outlier (Section 3.2). Section 3.3 proposes a greedy
algorithm, Global Neighbourhood Algorithm (GNA), which at each iteration
considers adding to the region the object which causes the largest increase in the
objective function. Section 3.4 introduces another greedy algorithm, Local
Neighbourhood Algorithm (LNA), which prunes the search-space even further by
only considering objects which are direct neighbours. The most expensive operation
of the greedy algorithms is the calculation of the objective function for each rectangle
evaluated, which is efficiently supported by a method of caching (Section 3.5).

Fig. 1. Voronoi Diagram and corresponding
Delaunay triangulation

3.1 Problem definition

According to Tobler’s First Law of Geography ‘everything is related to everything
else; but that near things are more related than those far apart’ [28]. Hence it is
expected that within the spatial data relationships exist between objects that are near
each other, but not necessarily between those that are far apart. The existence of the
relationships causes neighbourhoods to be formed within the spatial data. The
neighbourhoods can exhibit spatial trends which illustrate the correlation of one or
more non-spatial attributes and the distance away from a central object [26]. A spatial
outlier is an object which is inconsistent with its spatial neighbours even if the non-
spatial values are normal for the rest of the objects of the same class. Due to this, non-
spatial outlier detection methods cannot work accurately without somehow taking into
account the spatial location [13].

Fig. 2 shows a representation of a small part of the BC Assessment dataset,
consisting of properties with spatial attributes (street-address and object polygons)
and non-spatial attributes (various values, for example the total value of the property
and building). The street-addresses are converted to a longitude/latitude and used for
outlier detection. In the following, we formally define the problem.

Definition 1: A spatial dataset D is a set of objects P∈D with 2 dimensional
coordinates (X,Y) and at least one non-spatial descriptive attribute value v.

We find rectangular regions, which contain the most deviating outlier given the
values of all the objects in the region. This is equivalent to finding the most
expensive, or cheapest, building in a neighbourhood for example. For each region that
is considered, an objective function f calculates and assigns to the region a value
which indicates the degree to which the region is an outlier. This is then maximized
across the entire dataset to determine the best region with the largest outlier value.
The proposed approach and algorithms work equally well for regions of other shapes,
but for cities with grid-like road-networks, rectangular blocks are appropriate.

Definition 2.: Given a spatial dataset D. A region R is an axis-parallel rectangular
area R=(PL,PU), PL ,PU

2∈ , where PL denotes the lower-left vertex (XL,YL) and PU
the upper-right vertex (XU,YU). For every edge of R, there exists an object P∈D that
lies on the edge. More precisely, for each pair of neighbouring vertices (Xi,Yi) and

Fig. 2. Sample of the BC Assessment dataset

(Xj,Yj) of R there is a λ ∈ , such that ()(,) (,) (,)i i i i j jX Y X Y X Y Pλ+ − = , [0,1]λ ∈ .

The set of objects in R is given by { , (,) |)}R L U L US P D P X Y X X X Y Y Y= ∈ = ≤ ≤ ∧ ≤ ≤ .
The complimentary set is given by

RRS D S= − .
Definition 3.: Given a spatial dataset D and a region R. The value of the region

under consideration, VR∈ , is the maximum value of applying the objective
function to R and any object P∈SR.

The objective function has to compare the range of values within the region against
the value of a certain individual object in the same region. This is done by
aggregating the attribute values of all objects in the region and comparing the
individual against the aggregate value. For example, some alternate objective
functions are shown below, where vi is the value of object i which is in the region R:

• (average of all objects in R) – (lowest value of an object):

1 1() ()R R
i i i iAVG v MIN v= =− (1)

• (average of all above-average objects) – (lowest value of an object):

1
11, ()

() ()R
i ii

R R
i i ii V AVG v

AVG v MIN v
=

== >
− (2)

• (average of above-average objects) – (average of below-average objects):

1 11, () 1, ()
() ()R R

i i i ii i

R R
i ii V AVG v i V AVG v

AVG v AVG v
= == > = <

− (3)

• (average of top-k highest) – (average of top-k lowest):

1, () 1, ()() ()R R
i i TOP k i i i BOTTOM k iAVG v AVG v= ∈ = ∈− (4)

• ABS[(average of all objects in R) – (value of most extreme object)]:

1 1 1 1[() (), () ()]R R R R
i i i i i i i iMAX AVG v MIN v MAX v AVG v= = = =− − (5)

Definition 4.: Given a dataset D and an objective function f, a Spatial Regional
Outlier is the region R such that the value of R is maximum over all R. The top-k
Spatial Regional Outliers for D are the top-k regions with the k-highest f values over
the entire dataset.

Although any of the objective functions above could be used in our problem
definition, we used function (5) in our experimental evaluation. It is an intuitive and
understandable objective function that would find the largest deviation from the
average value. The result would be, for example, the least/most expensive property in
the most/least expensive neighbourhood.

3.2 Naïve algorithm

The Naïve algorithm enumerates all possible rectangles defined by at most four
objects from the dataset, with one object lying on at least one edge of the rectangle.
Assume four objects would make up a rectangle: P1=(X1,Y1), P2=(X2,Y2), P3=(X3,Y3),
P4=(X4,Y4); the left bottom vertex of the rectangle can be given by:

() ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)L LX Y MIN X X X X MIN Y Y Y Y=
and the right upper vertex given by

() ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)U UX Y MAX X X X X MAX Y Y Y Y= .

The naïve algorithm has a run-time complexity of O(n4), given that there are n objects
in the dataset. This the runtime complexity applies both to the worst case and the
average case. The pseudo-code for this approach is given in Fig. 3 with Fig. 4
showing how the regions are evaluated. Fig. 5 shows a sample execution of the naïve
algorithm.

3.3 Greedy Global Neighbourhood Algorithm

The naïve algorithm is too inefficient for large datasets. We propose to improve the
efficiency, although at the expense of guaranteeing optimality, through an iterative
greedy algorithm. Using any of the objects as seed, we iteratively grow the rectangle
by including one or more object at a time, always choosing the one that leads to the
highest increase of the objective function. In the Global Neighbourhood Algorithm
(GNA), each object is defined to be a ‘neighbour’ to each other object, hence the
entire dataset consists of a ‘global neighbourhood’. At each iteration the current
region R is extended by adding to R the object which yields the largest increase in f
until there are no objects in RS that increase the value of f. For the pseudo-code of
algorithm GNA see Fig. 6 and Fig. 7.

Given a starting set of objects SR in region R, which in the initial iteration only
contains a single object called the seed, the greedy algorithm considers all objects in

RS as possible extensions to R. During each iteration, a locally optimal object O’,

yielding the highest VR from RS , is selected after which O’ is added to SR (Fig. 7).
The addition of an object O causes R to expand, and since R is limited to a

rectangular shape, it will also add all intermediate objects to SR between the original R
and O. For example, given the shaded region R in Fig. 8 the extension adding the

INPUT:dataset D,eval function, k
OUTPUT: TOP-k outlier regions

Algorithm Naïve(D, f, k)
 VR = 0, VR’ = 0, TOP-k = {}
 For P1 ∈ D
 For P2 ∈ D
 For P3 ∈ D
 For P4 ∈ D
 () ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)L LX Y MIN X X X X MIN Y Y Y Y=
 () ()1 2 3 4 1 2 3 4, (, , ,), (, , ,)U UX Y MAX X X X X MAX Y Y Y Y=

 R rectangle({XL,YL},{XU,YU})
 VR GetRectangleValue(R,f)

 If VR>MIN(VR) for R∈TOP-k
 Add R to TOP-k

 Return TOP-k

INPUT: region R, eval function
OUTPUT: value of rectangle

Method GetRectangleValue(R,f)
 Get bin # R would be placed in
 If R already in bin
 VR retrieve R from cache
 else
 retrieve objects SR in R
 VR value of SR using f
 add {R, VR} to cache
 Return VR

Fig. 3. Naïve algorithm. Function f is a user-
defined objective function

Fig. 4. The function that calculates, and
caches, the values of each region R

circled object would create a much larger rectangle which includes all intermediary
objects. Hence when calculating the value of the objective function for a potential
extension, the entire rectangle needs to be constructed and all objects falling into it
considered.

Analysis
Algorithm GNA has a worst-case runtime complexity of O(n3), and expected runtime
of O(n2). For the worst-case scenario assume that at each iteration a single object is
added into SR. Given a seed-object, the first iteration will consider all (n-1) objects in

RS , the second iteration will consider (n-2) objects, the third iteration (n-3), etc, with
the last iteration considering a single object. Since each iteration only adds a single
object to SR, thus there are a total of n iterations, each considering on average 2

n
objects and this is repeated for all n seed-objects. Thus the worst-case runtime is
O(n3).

For the proof of the O(n2) expected run-time, we first analyze the runtime
complexity per seed object. Assume that with each iteration p percent of the data are
additionally covered. Hence, at iteration (1), n-1 objects are considered, of those pn
are added to SR, and removed from RS . With iteration (2), n-pn-1 objects are left and

Fig. 5. Sample rectangles created by the Naïve algorithm

INPUT:dataset D,eval function,k
OUTPUT: TOP-k outlier regions

Algorithm GNA(D, f, k)
 for each seed-object O in D
 VR=0, SR = {O}, TOP-k={}

loop
 R bounding region for SR
 O' FindBestExtensionG(D,R,f)
 SR' add O' to SR
 R' bounding region for SR'
 VR' GetRectangleValue(R',f)
 If VR' > VR then
 VR = VR', SR add O' to SR

 Else exit
 If VR>MIN(VR) for R∈TOP-k
 Add R to TOP-k

 Return TOP-k

INPUT: D, R, f
OUTPUT: object with highest f

Method
FindBestExtensionG(D,R,f)
 SR objects in R

RS D - SR

 for object O in
RS

 R’ expand R to include O
 VR GetRectangleValue(R’,f)

if VR > VR' then
 VR = VR', O' = O

 Return O'

Fig. 6. Pseudo-code of the GNA algorithm Fig. 7. Method to find best extension

considered, with pn added to SR. At iteration (i) n-(i-1)pn-1 are considered. Hence the
expected number of rectangles, T, that are considered until iteration i is:

(1) (1) (2 1) ...((1) 1)T n n pn n pn n i pn= − + − − + − − + − − −

1 1

[(1)] (1)
i i

j j

T in i j np in i np j
= =

= − − − = − − −∑ ∑

Since at each iteration pn objects are removed, hence there are at most 1
pi =

iterations. Hence,
2

3
1 1 1

1

(1) ()
i

n n n i n n n
p p p p p p p p p

j

T j O n
=

= − − − = − − = − − →∑

Since there are n seed-objects, hence the expected runtime of GNA is O(n2).
The drawback to the GNA algorithm is that it cannot guarantee finding the optimal

solution. This is best illustrated with a counter-example (Fig. 9). In this case, the
optimal solution consists of the set of three objects with attribute values {34, 46, 92}.
By definition, starting at any object not in this set cannot yield the optimal value.
Starting at any of the objects in the set, the greedy algorithm chooses a local-optimal
object which happens not to be in the solution-set and hence any further extension can
never be optimal.

The reason for the inability of the greedy algorithm to find the optimal solution is
because: Starting from any object in the optimal solution, two objects have to be

Fig. 8. Original region and its extension, optimal object for extension is circled.

Optimal solution:
Object-values:{34, 92, 46}
Region-value: 34.66

Solution of GNA:
Seed-object is object 34
{34, 92, 46, 71, 99} VR = 34.4
Seed-object is object 92
{92, 34, 69} VR=31
Seed-object is object 46
{46, 71, 99} VR=27

Fig. 9. Algorithm GNA cannot guarantee optimality.

added to the region simultaneously in order for the optimal solution to be found. The
greedy algorithm is only able to consider adding one object at a time. Adding two
objects at a time would require considering pairs of objects at each iteration, yielding
an O(n4) algorithm. However, even this algorithm would not be able to find rectangles
where 3 objects have to be added simultaneously.

3.4 Greedy Local Neighbourhood Algorithm

Algorithm GNA, at every iteration, attempts to extend the region R by considering all
other objects in RS . This means R could grow arbitrarily large during any given
extension. An alternative approach is to limit to number of possible extensions
considered in the iterations which would also allow R to grow at a much more
controlled pace. A uniform and consistent way of accomplishing this would be to
allow only locally neighbouring objects of R to be considered for extension. Since
each iteration only extends R locally, hence the greedy Local Neighbourhood
Algorithm (LNA) has to consider a smaller number of objects at each iteration.

Definition 5.: Let the set of all objects be divided into 3 subsets. The objects in R
are still called SR with the complimentary set RS now being split into two subsets:

those objects neighbouring objects in R are denoted by RNS , and those not

neighbouring R are denoted by RNS , i.e.: RRN RNS D S S= − − . The neighbourhood
relationships are established via the dual of the Voronoi diagram, the Delaunay
triangulation.

According to [4], a non-random dataset’s Voronoi structure has complexity O(n) in
2 dimensions and more specifically, on average, in a random or non-random dataset
there are 6 Voronoi neighbours [22] for each object. Given that multiple objects in R
could share the same neighbour and that some objects on the inside of R will only
have neighbours that are also in R, hence the number of actual neighbours to R is
much less than 6*|R|.

Given any region R, only objects that are direct neighbours to at least one object in

Fig. 10. Region under consideration, SR in dark, with
its neighbors,

RNS in light-shading. Everything

outside SR and
RNS is called

RNS .

Fig. 11. A single object in SR is related
to many objects in RNS .

R would be considered as possible extensions. For example, given the original region
in Fig. 8, this approach would only consider the objects highlighted in Fig. 10 as
further extensions instead of all other objects in the dataset. Each object could have
multiple neighbours and the union of neighbours of SR is RNS (Fig. 11). The
algorithm is close to the GNA, but the set of objects analyzed at each stage is much
smaller. The pseudo-code is presented in Fig. 12 and Fig. 13.

Analysis
The worst-case runtime for this approach is also O(n3) because there are at most n
objects considered at each iteration, and assuming that a single object is added to R at
each iteration, there will be n iterations. The algorithm also analyzes each of the n
seed-objects independently and hence the worst-case run-time is also O(n3). The
expected runtime complexity is similar to the GNA, but since at each iteration only
the local neighbourhood is analyzed rather than the global neighbourhood, hence the
constant ratio is much smaller.

Optimality is not guaranteed with this approach either, since it prunes the search
space even more strictly than GNA. LNA restricts the extension-search to only the
local neighbourhood, but if the optimal solution contains objects which are not

INPUT:dataset D,eval function,k
OUTPUT: TOP-k outlier regions

Algorithm LNA(D, f, k)
 for each seed-object O in D
 VR=0, SR = {O}, TOP-k = {}

loop
 R bounding region for SR
 O' FindBestExtensionL(D,R,f)
 SR' add O' to SR
 R' bounding region for SR'
 VR' GetRectangleValue(R',f)
 If VR' > VR then
 VR = VR', SR add O' to SR
 If VR>MIN(VR) for R∈TOP-k
 Add R to TOP-k

 Return TOP-k

INPUT: region R, eval function
OUTPUT: object with highest f

Method FindBestExtensionL(D,R,f)

RNS neighbours to objects in R

 for object O in
RNS

 R’ expand R to include O
 VR GetRectangleValue(R’,f)

if VR > VR’ then
 VR’= VR, O’ = O

 Return O’ corresponding to VR’

Fig. 12. Pseudo-code for the LNA algorithm Fig. 13. Method to find best extension.

Fig. 14. Example dataset where LNA will not find the optimal solution (neighhourhood
relationships are dashed).

connected according to the Delaunay triangulation (i.e.: not direct neighbours), then
this approach will not find them. As a counter-example assume the dataset contains 6
objects (Fig. 14) with the optimal solution being disconnected. With this approach,
that region could not be discovered since the objects in the region do not share
neighbourhood relationships (shown as dashes).

This method might also not find the optimal solution if the data is connected. For
example, the 6 data-objects (dashed lines indicate neighbourhood relationships)

will not yield an optimal solution using the LNA. Starting at any of the objects in
subset {10-8-4-8} will lead to a local-optimal solution of “10-8-4-8”, while starting
with any of the objects in {8-7-0} will lead to a local-optimal solution of “8-7-0”.
Although this algorithm theoretically cannot guarantee finding the optimal solution, in
practice it often finds target outliers that are very close to the optimal. For a
discussion on the optimality of our approaches based on experiments, see Section 4.3.

3.5 Rectangle Caching

One of the most expensive operations within the algorithm was the calculation of VR
for each region R that had to be evaluated. One solution to this is to keep a record of
all the regions that have been evaluated and if the same region is being re-calculated
then use the stored value.

Each region can be described by two pairs of (X,Y) (or longitude/latitude)
coordinates, an (X,Y) pair for the lower-left and upper-right corners of the region. Let
this pair be represented by the 4 numbers {X1,Y1,X2,Y2}, for example {-130.495,
49.58, -130.694, 49.70}. Since the numbers are arbitrarily large (and possibly
negative), hence representing this as a 4D matrix will not be possible. All 4
coordinates however can be binned by normalizing to an integer value between 1 and
10 after which they can be represented as a 4D matrix or a tree. For example,
{X1,Y1,X2,Y2} could become bin number {5, 4, 6, 8}. There will be multiple
{X1,Y1,X2,Y2} regions that will map into the same bin, but for any given
{X1,Y1,X2,Y2} only the bin it is mapped into would have to be scanned to see if it has
already been evaluated. If it exists in the bin then retrieve the value, otherwise
evaluate the region and place it into the bin. By modifying the number of bins, it is
possible to significantly influence the number of comparisons that must be done,
depending on the dataset. This caching is shown in Fig. 4.

4 Experimental Evaluation

The experiments were run on both synthetic and real data. The synthetic data was
generated using a uniform distribution of n objects and was used to compare the three
approaches in order to evaluate the efficiency of each algorithm. This is presented in
Section 4.1. In order to find neighbourhoods where an individual property is most
different from the neighbourhood, experiments (shown in Section 4.2) were also run

on the BC Assessment Authority dataset. The dataset consists of 667,734 properties,
and includes the location and assessed values of each property in BC, Canada.

All experiments were performed on an Intel Core2Duo 6300 @ 2.5GHz with 2GB
of RAM. The implementation did not take advantage of multi-threading. We searched
for the top 5 outlier regions in each dataset and used a bin-size of 500 for our
rectangle-cache. The neighbourhood relationships were calculated via a call to
MatLab, which is treated as a black-box.

4.1 Synthetic Datasets

Different size datasets were generated randomly with both uniformly distributed
(X,Y) coordinates and descriptive attribute values. The data-size was doubled for each
consecutive run. The results are shown in Fig. 15. The runtime for the naïve algorithm
quickly becomes prohibitive, running a small dataset of 160 objects took 2.5 hours to
process and each iteration increased the number of rectangles evaluated as well as
runtime by approximately a factor of 16. The runtime for the GNA was much better,
but it also quickly became prohibitive as anything above 1000 records already
required hours to run. With the GNA, the number of rectangular regions that must be
evaluated also increased exponentially. The LNA approach however had a super-
linear runtime and was able to process datasets larger than 20,000. This was due to the
much smaller neighbourhood it had to evaluate at each iteration.

Since the naïve algorithm become infeasible even with a small dataset, the effect
on the run-time as a result of doubling the dataset was investigated and is presented in
Fig. 16. ‘Number of Doublings’ of 0 corresponds to a dataset size of 10. It is clear in
these results that the naïve complexity approximately increases by a factor of 16 when
the dataset is doubled: O(n4). It becomes prohibitive after only 4 doublings (dataset
size of 160). The GNA is two factors better at O(n2) but it still became prohibitive
after 7 doublings (corresponding to a dataset size of 1280). The LNA algorithm was
surprisingly much better because a doubling of the dataset led to a straight doubling
of the run-time implying that this is actually an O(n) algorithm; it became prohibitive
after 11 doublings (dataset size of 20480).

4.2 Real dataset

The experiments were run on the 2005 dataset of the British Columbia Assessment
Authority (BCAA). The dataset consists of the street-address, assessed property and

Fig. 15. Run-time results and number of regions vs. dataset size

building values of all taxable properties (homes, businesses, etc) within the borders of
British Columbia. Each plot was also categorized into 191 types of properties. The
original dataset consisted of 667,734 such records. 15,268 of those properties had no
specified street-address since they were classified as ‘vacant’ and hence are not
assigned addresses. As a preprocessing step, the addresses were converted into a
latitude and longitude coordinate value, a process known as geo-coding. This was
accomplished with the use of Microsoft MapPoint 2006 (MMP). The locations were
determined to within 10 decimal places. After geo-coding was complete, it was found
that 27,331 addresses existed in the source data but not on the street-network of
MMP, hence were discarded, leaving 625,135 entries for outlier detection. Through
the geo-coding process, each address was mapped to a single (X,Y) point. Note that
our problem definition requires spatial objects that are points, not polygons.

Selecting a single large dataset and creating samples of different sizes from within
that set to evaluate our performance would not at all have yielded correct results. For
example, creating equal sized non-overlapping random samples from the set of 'Stores
and Offices' in Vancouver resulted in value-ranges in one subset of ($180,400
$1,795,000) while another subset had a value-range of ($186,600 $10,977,000)
while a third subset had a range of ($215,300 $42,848,000). Performing analysis
on these subsets would clearly have been impacted by the sampling.

Considering all types of properties together also would not yield relevant results.
For example, Simon Fraser University, with an assessed value of $468million, would
immediately be flagged as an outlier since it is mainly surrounded by residential
property with values between $100,000 and $500,000. Hence outlier detection is
performed only within each type of property. Different types of properties were
extracted from the BCAA dataset to create the data that our experiments would be run
on. The criteria for the different datasets used for experimentation is shown in Fig. 17.
All algorithms were run on each dataset unless the runtime was infeasible.

As can be seen in Fig. 18, the run-time of both the GNA and LNA is still
significantly better than the naïve algorithm, with the LNA significantly out-
performing both. Whereas the naïve was only able to process a data-size of 70
properties (of type ‘Multi-Family - Garden Apartment & Row Housing’) in a
reasonable time due to its O(n4) behaviour, the GNA was able to process 220
('Churches & Bible Schools') and was roughly O(n3). With LNA however we were

Fig. 16. Factor of increase in runtime as a
result of a doubling the dataset.

Fig. 17. Property types and cities used

able to get results for a data-size of 4794 properties (of type Single Family Dwelling)
since it still behaved near-linearly.

The time required to process real data was significantly larger than with uniformly
distributed data. This was due to one major difference between the uniformly
distributed and real datasets. The real datasets included properties that shared the
same address and hence geo-coded to identical coordinates, such as condominiums
which could include hundreds of such residences. If all coordinates are unique then
the neighbourhood relationship between them is straightforward: there is one
neighbourhood relationship. However, between two neighbouring condominiums,
let’s say each with 100 properties, there will be 100*100=10,000 neighbourhood
relationships significantly increasing the runtime since each will be evaluated.

The naïve method could only evaluate 12 regions/second while the LNA was able
to evaluate 150 regions/second, hence although the number of regions is small for the
naïve it was expensive compared to the LNA. This was due to our use of the cache
(section 3.5); with the naïve, no region was evaluated twice whereas lots of duplicate
regions were not evaluated with the LNA due to the cache, saving considerable time.

Fig. 19 shows three regional outliers found in the BCAA dataset. The 'Single-
Dwelling' region identified had an average property value of $452,263 but had a
single property in it worth over $1million and was the largest regional outlier
identified. One of the properties within the 'Duplex' regional outlier (rectangle A, Fig.
19) had a value of $959,000, more than $200,000 more than the next most-expensive
property in the neighbourhood where the average price was $587,052. Another outlier
region of the same type (rectangle B) had a single property valued at $552,000 in a
region with average values of $392,337.

Fig. 18. Runtime and number of regions vs. dataset size

Fig. 19. Three spatial regional outliers in the BCAA dataset

 The test-dataset only included a single year of data, but by retrieving multi-year
property assessment data from the City Of North Vancouver website1, it was possible
to further investigate. By taking 2005 as the baseline, it was possible to calculate
percentage increases in some below, near and above,-average-priced properties for the
'Single-Dwelling' property type. Interestingly, the results indicated that the more
expensive properties increased at a lower-rate than, while the below-average
properties kept pace with, properties valued close to the average value within the
region. This perfectly illustrates the significance and interestingness of our results:
that purchasing an inexpensive property in a relatively expensive neighbourhood is a
good investment.

4.3 Optimality

In order to test the goodness of the results of the two greedy algorithms, we tested
how sub-optimal their results were compared to the naïve approach which finds the
optimal solution. The naïve algorithm was run and the values of all the rectangles
evaluated were stored then a distribution graph created. An example of such a
distribution calculated from a uniformly distributed synthetic dataset, as well as a
subset of the real dataset, is shown in Fig. 20. This figure illustrates that the bulk of
the rectangles are clearly sub-optimal. In about half the cases, the greedy approaches
were not able to find the global optimal solution, but they did consistently find local
optima that were very close to the global optimal. In almost all cases where the
global-optimal solution was not found there were less than 10 possible rectangles that
yielded a better solution than the local-optima found by the greedy algorithm. The
probability of randomly picking a better solution than found by the LNA is less than
0.0008%. This illustrates that the greedy approaches gain a significant improvement
in runtime but sacrifice very little in optimality.

1 http://www.cnv.org/?c=3&i=167

Fig. 20. Distribution of VR both on real and synthetic data.

5 Conclusions

With the increasing availability of spatial data in many applications, methods for
clustering and outlier detection in spatial data have received a lot of attention in the
database and data mining community. In this paper, we have introduced the novel
problem of mining regional outliers in spatial data. A spatial regional outlier is
defined as a (rectangular) region which contains an outlying object such that the
deviation between the non-spatial attribute value of this object and the aggregate
value of this attribute over all objects in the region is maximized. In a real estate
application, for example, these outliers could represent the least expensive properties
within the best neighbourhoods, which could become promising investment
opportunities. We have proposed two greedy algorithms for efficiently mining such
outliers in large datasets, reducing the runtime from O(n4) to O(n2) compared to the
Naïve algorithm that enumerates all possible rectangles. Our algorithms grow regions
starting from a seed object and extending them by at least one neighboring object per
iteration, always choosing the extension which leads to the largest increase of the
objective function. An extensive experimental evaluation has been conducted, using
synthetic datasets as well as the BC Assessment dataset. Our experimental results
demonstrate the meaningfulness of spatial regional outliers. They also show that the
proposed greedy algorithms scale much better to large datasets than the Naïve
algorithm, while producing results that are close to the optimum solution.

There are several interesting directions for future research. In this paper we have
considered only simple rectangular regions. This definition is very generic and widely
applicable, but in certain applications other types of regions may be more appropriate.
We plan to explore, for example, regions that are taking into account an underlying
road-network or system of waterways. In the context of spatio-temporal data, it seems
to be promising to investigate temporal aspects as well to find objects that have
clearly deviated from their region over time, e.g. properties which have demonstrated
a historic trend of outperforming their neighbourhoods.

REFERENCES

[1] F. Aurenhammer: Voronoi diagrams - a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3):345-405, September 1991.

[2] D. Agarwal, A. McGregor, J. M. Phillips, S. Venkatasubramanian and Z. Zhu: Spatial scan
statistics: approximations and performance study. KDD 2006.

[3] D. Agarwal, J. M. Phillips and S. Venkatasubramanian: The hunting of the bump: on
maximizing statistical discrepancy. Proc. 17th Ann. ACM-SIAM Symp. on Disc. Alg.,
pages 1137–1146, 2006.

[4] S. Bereg: Recent Developments and Open Problems in Voronoi Diagrams. 3rd International
Symposium, ISVD '06.

[5] V. Barnett and T. Lewis: Outliers in Statistical Data. John Wiley & Sons, 1994.
[6] S. Berchtold, D. Keim, and H.-P. Kriegel: The X-tree: An efficient and robust access

method for points and rectangles. In VLDB 1996.
[7] M. M. Breunig, H. P. Kriegel, R. T. Ng and J. Sander: LOF: Identifying Density-Based

Local Outliers. SIGMOD 2000.

[8] S. D. Bay, M. Schwabacher: Mining distance-based outliers in near linear time with
randomization and a simple pruning rule. In KDD 2003.

[9] M. Ester, H. P. Kriegel, J. Sander and X. Xu: A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases. In KDD 1996.

[10] J. H. Friedman and N. I. Fisher: Bump Hunting in High-dimensional Data. Stat. and
Comp., 9(2):123–143, April 1999.

[11] M. Graf, S. Winter, 2003: Netzwerk-Voronoi-Diagramme. Österreichische Zeitschrift für
Vermessung und Geoinformation. 91(3): 166-174. (“Network Voronoi Diagrams”, english
translation available at www.sli.unimelb.edu.au/winter/pub.htm)

[12] K. Hoff, T. Culver, J. Keyser, M. Lin, D. Manocha: Fast computation of generalized
voronoi diagrams using graphics hardware. Proceedings of ACM SIGGRAPH 1999, 1999.

[13] J. Han, M. Kamber, AKH. Tung: Spatial clustering methods in data mining: A survey. In
H. Miller and J. Han, editors, Geographic Data Mining and Knowledge Discovery. Taylor
and Francis, 2001

[14] R. Irwin: Tips and Traps When Buying a Home, Third Edition, McGraw-Hill. 2003
[15] W. Jin, A. K. H. Tung and J. W. Han: Mining Top-n Local Outliers in Large Databases. In

KDD 2001.
[16] M. Kulldorff: A spatial scan statistic. Comm. in Stat.: Th. and Meth., 26:1481–1496, 1997.
[17] E. M. Knorr and R. T. Ng: Algorithms for Mining Distance-Based Outliers in Large

Datasets. In VLDB 1998.
[18] A. Lazarevic and V. Kumar: Feature Bagging for Outlier Detection. In KDD 2005.
[19] N. Mayya, V.T. Rajan: Voronoi diagrams of polygons: A framework for shape

representation. Journal of Mathematical Imaging and Vision, Volume 6, Issue 4, Dec 1996,
Pages 355 – 378

[20] D. B. Neill and A. W. Moore. Rapid Detection of Significant Spatial clusters. In KDD,
2004.

[21] D. B. Neill, A. W. Moore, F. Pereira, and T. Mitchell: Detecting significant
multidimensional spatial clusters. L.K. Saul, et al., eds. Adv. Neur. Info. Proc. Sys., 17:969–
976, 2005.

[22] M. Naor, U. Wieder: Novel architectures for P2P applications: the continuous-discrete
approach. ACM Symposium on Parallel Algorithms and Architectures 2003.

[23] T. Ohyama: Some Voronoi diagrams that consider consumer behavior analysis. Industrial
Mathematics of the Japan Journal of Industrial and Applied Mathematics, July 2005

[24] T. Ohyama: Application of the Additively Weighted Voronoi Diagram to Flow Analysis.
The 2nd International Symposium on Voronoi Diagrams in Science and Engineering, Seoul,
Korea, Oct 2005

[25] S. Ramaswamy, R. Rastogi and K. Shim: Efficient Algorithms for Mining Outliers from
Large Data Sets. In SIGMOD 2000.

[26] MY. Santos, LA. Amaral: Geo-spatial data mining in the analysis of a demographic
database, Soft Computing - A Fusion of Foundations, Methodologies and Applications,
Volume 9, Issue 5, pp 374-384, May 2005

[27] S. Shekhar, CT. Lu, P. Zhang: A unified approach to detection spatial outliers,
GeoInformatica 7, pp 139-166. 2003

[28] W.R. Tobler: A computer movie simulating urban growth in the Detroit region. Economic
Geography, Vol46, pp 234-240, 1970

[29] Y. F. Tao, X. K. Xiao and S. G. Zhou: Mining Distance-based Outliers from Large
Databases in Any Metric Space. In KDD 2006.

[30] M.B. Weiss: The Everything Homebuying Book - All the Ins and Outs of Making the
Biggest Purchase of Your Life (Paperback). Adams Media Corporation; 2nd edition (Feb 18
2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

