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Abstract. With the increasing availability of spatial data in many applications, 
spatial clustering and outlier detection has received a lot of attention in the 
database and data mining community. As a very prominent method, the spatial 
scan statistic finds a region that deviates (most) significantly from the entire 
dataset. In this paper, we introduce the novel problem of mining regional 
outliers in spatial data. A spatial regional outlier is a rectangular region which 
contains an outlying object such that the deviation between the non-spatial 
attribute value of this object and the aggregate value of this attribute over all 
objects in the region is maximized. Compared to the spatial scan statistic, which 
targets global outliers, our task aims at local spatial outliers. We introduce two 
greedy algorithms for mining regional outliers, growing regions by extending 
them by at least one neighboring object per iteration, choosing the extension 
which leads to the largest increase of the objective function. Our experimental 
evaluation on synthetic datasets and a real dataset demonstrates the 
meaningfulness of this new type of outliers and the greatly superior efficiency 
of the proposed algorithms.  

Keywords: Data mining, Spatial outliers, Efficient algorithms, Delaunay-
triangulation 

1 Introduction 

Spatial data is being collected, made available and used more and more both for 
research and commercial purposes. For the automatic analysis of such data, spatial 
data mining methods have received a lot of attention in the database and data mining 
community [21] [27], in particular methods for spatial clustering and outlier detection. 
Spatial clustering aims at partitioning the spatial region into sub-regions with high 
intra-region similarity and inter-region difference [13], the goal of spatial outlier 
detection is to find objects inconsistent with their spatial neighbours even though they 
may not be significantly different from the entire set of objects [27]. Hotspot analysis 
is related to both of the above tasks, attempting to discover spatial regions with 
densities or attribute values that are significantly different from the whole dataset. 



 

Important applications are the discovery of disease outbreaks, of crime hotspots or of 
acts of bio-terrorism.  

The goal of the spatial scan statistic [16] is to find such hotspots and various 
efficient methods for it have been proposed in the literature [10] [20]. Just as non-
spatial outliers can be categorized into global [17] and local [7] outliers, so can spatial 
outliers. The spatial scan statistic is a global method, targeting a region that deviates 
(most) significantly from the entire dataset. In many applications however, users are 
interested in finding local outliers, spatial regions that enclose exceptional knowledge 
because they contain objects within the region that are outliers relative to the region 
itself. For example, according to Tips & Traps when buying a home [14], if someone 
wishes to multiply their chances for making money when reselling a home they have 
to buy an inexpensive house in the most expensive neighbourhood they can afford. As 
the neighbourhood appreciates over time, the least inexpensive property will 
appreciate more than its neighbours, relative to its price; the reverse is also true and 
purchasing an attractive house in a bad neighbourhood will not yield a good 
investment [30]. By searching for local spatial outliers in property data, it would be 
possible to find the least expensive properties within the best neighbourhoods, which 
could become promising investment opportunities. 

In this paper we introduce the problem of mining regional outliers in spatial data. 
A spatial regional outlier is defined as a (rectangular) region with a spatial object in 
this region such that the value of the objective function, which measures the degree of 
outlierness of the object within the region, is maximized. For example, in our 
motivating real estate application, the object would be one (expensive) property, and 
the rectangle would be the equivalent to its (inexpensive) neighborhood. In a crime 
dataset, rectangles (neighbourhoods) could be found that have, for example, locations 
with very different crime rates than the neighbourhood.  

A Naïve algorithm enumerating all possible rectangles has a runtime complexity of 
O(n4) which does not scale to large datasets as they appear in many practical 
applications. Therefore, greedy algorithms are presented which take advantage of the 
implicit neighbourhood relationships between objects and the different algorithms use 
different neighbourhood definitions to prune the search-space. In our methods 
however, the rectangles are "grown" from a seed and at each iteration are extended to 
include the object which causes the largest increase in the objective function.  

The main contributions of our work are as follows: 
1) We introduce the novel problem of mining regional outliers in spatial data. 
2) We propose two greedy algorithms for efficiently mining such outliers in large 

datasets, reducing runtime from O(n4) to O(n2) compared to the Naïve algorithm. 
3) Our extensive experimental evaluation on both synthetic and real datasets 

demonstrates the meaningfulness of spatial regional outliers and the efficiency of 
the proposed algorithms.  

The rest of the paper is organized as follows. In Section 2, we discuss related work. 
Section 3 introduces our problem definition and presents the corresponding 
algorithms, including a comparative analysis of these algorithms. In Section 4 we 
report the results of our experiments on both synthetic and real datasets; Section 5 
concludes the paper with a summary and outlook on future work.  



2 Related Work 

There are three parts of the literature related to our study: outlier detection, spatial 
scan statistics, and the use of Voronoi/Delaunay calculations. We survey them below.  

(Outlier detection) Outliers can be defined as “data objects that appear 
inconsistent with respect to the remainder of the database” [5]. Outlier detection 
methods include distribution-based using standard statistical distributions, depth-
based which map data objects into an m-dimensional information space and distance-
based approaches which calculate the proportion of database objects that are a 
specified distance from a target object [13].  

Statistical approaches to outlier detection [5] include distribution-based and depth-
based methods. However, the first method has the problem that it must assume the 
dataset owns some probability distribution even though it is difficult to know the 
underlying data distribution. The second method is not efficient for high dimensions. 

The concept of global distance-based outliers is first introduced in [17], which 
defines an object p being an outlier, if at most n objects are within distance d of p. It 
generalizes the notion of statistical outlier tests, but the running time of the proposed 
method is still exponential to the number of dimensions. Ramaswamy et al. [25] use 
the distance of the kth-nearest neighbor to rank outliers and give an efficient algorithm 
for mining top-n global outliers. Bay and Schwabacher [8] improved the method in 
[17] by using the block nested loop strategy with pruning and randomization 
techniques. Recently, Tao et al. [29] presented a disk-resident algorithm of finding 
global outliers with a linear I/O cost. Shekhar et al. [27] studied spatial outliers, which 
refer to spatially referenced objects whose non-spatial attributes are significantly 
inconsistent with its neighbors, even though they may not be significantly different 
from the entire objects. 

Breunig et al. introduced the concept of local outlier, a kind of density-based 
outlier, which assigns each data a local outlier factor LOF of being an outlier 
depending on their neighborhood [7]. The outlier factors can be computed very 
efficiently if some multi-dimensional index structures such as R-tree and X-tree [6] 
are employed. A top-n based local outliers mining algorithm which uses distance 
bound of micro-cluster to estimate the density, was presented in [15].  Lazarevic and 
Kumar [18] proposed a local outlier detection algorithm with a technique called 
“feature bagging”. 

Some clustering algorithms like DBSCAN [9] consider identifying outliers, but 
only to the point of ensuring that they do not interfere with the clustering process. 
Further, outliers are only by-products of clustering algorithms.   

 (Spatial Scan Statistics) The task of spatial scan statistics, which computes the 
maximum discrepancy region by scanning a set of circular regions with different 
radius in the spatial space [16], has received much attention in the data mining 
community. Authors in [10] proposed a greedy method to find a sub-region R of the 
input domain S for which the mean value of R is as large as possible. Neill and Moore 
[20] aimed to find a 2-dimensional rectangular region or square region with highest 
density given an n×n grid of rectangles/squares. As an extension work, assuming a 
uniform, multidimensional grid of bivariate data, where each cell of the grid has a 
count Ci and a baseline Bi, they aim to find spatial  regions (d-dimensional rectangles) 
where the Ci are significantly higher than expected given Bi [21].  Agarwal et al.[2] 



 

studied the problem of largest discrepancy region in a domain, and present a new 
exact algorithm, which has the same asymptotic running time as the algorithm of 
Neill and Moore [20], but with much simpler implementation. Authors in [3] present 
algorithms for maximizing statistical discrepancy functions over the space of axis-
parallel rectangles with provable approximation guarantees, both additive and 
relative. Their methods apply to any convex discrepancy function. 

 (Voronoi Diagrams) With spatial datasets, Voronoi diagrams and Delaunay 
triangulations represent the spatial relationships between the objects [1], [12]. The 
dataset is partitioned into regions, called Voronoi cells, containing all the points that 
are closest to the object in the Voronoi cell [19]. For point data, the bisector segments 
will be the perpendicular bisectors of neighbouring pairs of sites while for spatially 
extended data, the borders will be circular arcs or arcs of parabolas [19].  

Without a loss in the usefulness the distance measure could be exchanged for any 
distance measure, for example, the Manhattan distance or the distance covered by 
visiting k shops, as illustrated in [23]. [12] defined the distance measure as ‘furthest-
distance’ indicating regions of least influence. [24] applied Voronoi diagrams to 
measure flow in population samples and then model profitability of destination points 
(i.e.: stores). Voronoi diagrams are also used to describe the internal structure of 
objects in [19] while [11] uses it for two applications: a) the catchment area of each 
object and b) denoting the largest polluter of the object in the Voronoi cell.  

The dual of the Voronoi diagram, the 
Delaunay triangulation, is the structure 
that is the result of connecting all objects 
with neighbouring Voronoi cells (Fig. 1). 
[19] defines the Delaunay triangulation of 
a set of points S as “a partition of the 
convex hull of S into polytopical regions 
whose vertices are the points in S. The 
convex hull of the nearest neighbour set 
of a Voronoi vertex v is called the 
Delaunay cell of v.” 

3 Mining Regional Outliers in Spatial Data 

In this section, we introduce the problem of mining regional outliers in spatial data 
(Section 3.1). We present a Naïve algorithm that enumerates all possible solutions to 
search for the best regional outlier (Section 3.2). Section 3.3 proposes a greedy 
algorithm, Global Neighbourhood Algorithm (GNA), which at each iteration 
considers adding to the region the object which causes the largest increase in the 
objective function. Section 3.4 introduces another greedy algorithm, Local 
Neighbourhood Algorithm (LNA), which prunes the search-space even further by 
only considering objects which are direct neighbours. The most expensive operation 
of the greedy algorithms is the calculation of the objective function for each rectangle 
evaluated, which is efficiently supported by a method of caching (Section 3.5). 

  
Fig. 1. Voronoi Diagram and corresponding  
Delaunay triangulation 



3.1 Problem definition 

According to Tobler’s First Law of Geography ‘everything is related to everything 
else; but that near things are more related than those far apart’ [28]. Hence it is 
expected that within the spatial data relationships exist between objects that are near 
each other, but not necessarily between those that are far apart. The existence of the 
relationships causes neighbourhoods to be formed within the spatial data. The 
neighbourhoods can exhibit spatial trends which illustrate the correlation of one or 
more non-spatial attributes and the distance away from a central object [26]. A spatial 
outlier is an object which is inconsistent with its spatial neighbours even if the non-
spatial values are normal for the rest of the objects of the same class. Due to this, non-
spatial outlier detection methods cannot work accurately without somehow taking into 
account the spatial location [13]. 

Fig. 2 shows a representation of a small part of the BC Assessment dataset, 
consisting of properties with spatial attributes (street-address and object polygons) 
and non-spatial attributes (various values, for example the total value of the property 
and building). The street-addresses are converted to a longitude/latitude and used for 
outlier detection. In the following, we formally define the problem.  

Definition 1: A spatial dataset D is a set of objects P∈D with 2 dimensional 
coordinates (X,Y) and at least one non-spatial descriptive attribute value v. 

We find rectangular regions, which contain the most deviating outlier given the 
values of all the objects in the region. This is equivalent to finding the most 
expensive, or cheapest, building in a neighbourhood for example. For each region that 
is considered, an objective function f calculates and assigns to the region a value 
which indicates the degree to which the region is an outlier. This is then maximized 
across the entire dataset to determine the best region with the largest outlier value. 
The proposed approach and algorithms work equally well for regions of other shapes, 
but for cities with grid-like road-networks, rectangular blocks are appropriate. 

Definition 2.: Given a spatial dataset D. A region R is an axis-parallel rectangular 
area R=(PL,PU), PL ,PU

2∈ , where PL denotes the lower-left vertex (XL,YL) and PU 
the upper-right vertex (XU,YU). For every edge of R, there exists an object P∈D that 
lies on the edge. More precisely, for each pair of neighbouring vertices (Xi,Yi) and 

 
Fig. 2. Sample of the BC Assessment dataset 



 

(Xj,Yj) of R there is a λ ∈ , such that ( )( , ) ( , ) ( , )i i i i j jX Y X Y X Y Pλ+ − = , [0,1]λ ∈ . 

The set of objects in R is given by { , ( , ) | )}R L U L US P D P X Y X X X Y Y Y= ∈ = ≤ ≤ ∧ ≤ ≤ . 
The complimentary set is given by  

RRS D S= − . 
Definition 3.: Given a spatial dataset D and a region R. The value of the region 

under consideration, VR∈ , is the maximum value of applying the objective 
function to R and any object P∈SR. 

The objective function has to compare the range of values within the region against 
the value of a certain individual object in the same region. This is done by 
aggregating the attribute values of all objects in the region and comparing the 
individual against the aggregate value. For example, some alternate objective 
functions are shown below, where vi is the value of object  i which is in the region R: 

• (average of all objects in R) – (lowest value of an object):  

1 1( ) ( )R R
i i i iAVG v MIN v= =−  (1) 

• (average of all above-average objects) – (lowest value of an object): 

1
11, ( )

( ) ( )R
i ii

R R
i i ii V AVG v

AVG v MIN v
=

== >
−  (2) 

• (average of above-average objects) – (average of below-average objects): 

1 11, ( ) 1, ( )
( ) ( )R R

i i i ii i

R R
i ii V AVG v i V AVG v

AVG v AVG v
= == > = <

−  (3) 

• (average of top-k highest) – (average of top-k lowest): 

1, ( ) 1, ( )( ) ( )R R
i i TOP k i i i BOTTOM k iAVG v AVG v= ∈ = ∈−  (4) 

• ABS[(average of all objects in R) – (value of most extreme object)]: 

1 1 1 1[ ( ) ( ), ( ) ( )]R R R R
i i i i i i i iMAX AVG v MIN v MAX v AVG v= = = =− −  (5) 

Definition 4.: Given a dataset D and an objective function f, a Spatial Regional 
Outlier is the region R such that the value of R is maximum over all R. The top-k 
Spatial Regional Outliers for D are the top-k regions with the k-highest f values over 
the entire dataset. 

Although any of the objective functions above could be used in our problem 
definition, we used function (5) in our experimental evaluation. It is an intuitive and 
understandable objective function that would find the largest deviation from the 
average value. The result would be, for example, the least/most expensive property in 
the most/least expensive neighbourhood.  

3.2 Naïve algorithm  

The Naïve algorithm enumerates all possible rectangles defined by at most four 
objects from the dataset, with one object lying on at least one edge of the rectangle. 
Assume four objects would make up a rectangle: P1=(X1,Y1), P2=(X2,Y2), P3=(X3,Y3), 
P4=(X4,Y4); the left bottom vertex of the rectangle can be given by: 

( ) ( )1 2 3 4 1 2 3 4, ( , , , ), ( , , , )L LX Y MIN X X X X MIN Y Y Y Y=  
and the right upper vertex given by 

( ) ( )1 2 3 4 1 2 3 4, ( , , , ), ( , , , )U UX Y MAX X X X X MAX Y Y Y Y= . 



The naïve algorithm has a run-time complexity of O(n4), given that there are n objects 
in the dataset. This the runtime complexity applies both to the worst case and the 
average case. The pseudo-code for this approach is given in Fig. 3 with Fig. 4 
showing how the regions are evaluated. Fig. 5 shows a sample execution of the naïve 
algorithm.  

3.3 Greedy Global Neighbourhood Algorithm 

The naïve algorithm is too inefficient for large datasets. We propose to improve the 
efficiency, although at the expense of guaranteeing optimality, through an iterative 
greedy algorithm. Using any of the objects as seed, we iteratively grow the rectangle 
by including one or more object at a time, always choosing the one that leads to the 
highest increase of the objective function. In the Global Neighbourhood Algorithm 
(GNA), each object is defined to be a ‘neighbour’ to each other object, hence the 
entire dataset consists of a ‘global neighbourhood’. At each iteration the current 
region R is extended by adding to R the object which yields the largest increase in f 
until there are no objects in RS  that increase the value of f. For the pseudo-code of 
algorithm GNA see Fig. 6 and Fig. 7. 

Given a starting set of objects SR in region R, which in the initial iteration only 
contains a single object called the seed, the greedy algorithm considers all objects in 

RS  as possible extensions to R. During each iteration, a locally optimal object O’, 

yielding the highest VR from RS , is selected after which O’ is added to SR (Fig. 7). 
The addition of an object O causes R to expand, and since R is limited to a 

rectangular shape, it will also add all intermediate objects to SR between the original R 
and O. For example, given the shaded region R in Fig. 8 the extension adding the 

 
INPUT:dataset D,eval function, k 
OUTPUT: TOP-k outlier regions 
 
Algorithm Naïve(D, f, k) 
 VR = 0, VR’ = 0, TOP-k = {} 
 For P1 ∈ D 
  For P2 ∈ D 
   For P3 ∈ D 
    For P4 ∈ D 
       ( ) ( )1 2 3 4 1 2 3 4, ( , , , ), ( , , , )L LX Y MIN X X X X MIN Y Y Y Y=  
       ( ) ( )1 2 3 4 1 2 3 4, ( , , , ), ( , , , )U UX Y MAX X X X X MAX Y Y Y Y=  

    R rectangle({XL,YL},{XU,YU}) 
    VR GetRectangleValue(R,f) 

  If VR>MIN(VR) for R∈TOP-k 
   Add R to TOP-k 

 Return TOP-k 

 
INPUT: region R, eval function 
OUTPUT: value of rectangle 
 
Method GetRectangleValue(R,f) 
 Get bin # R would be placed in 
 If R already in bin 
  VR  retrieve R from cache 
 else 
  retrieve objects SR in R 
  VR  value of SR using f 
  add {R, VR} to cache 
 Return VR 

Fig. 3. Naïve algorithm. Function f is a user-
defined objective function  

Fig. 4. The function that calculates, and 
caches, the values of each region R 



 

circled object would create a much larger rectangle which includes all intermediary 
objects. Hence when calculating the value of the objective function for a potential 
extension, the entire rectangle needs to be constructed and all objects falling into it 
considered.  

Analysis 
Algorithm GNA has a worst-case runtime complexity of O(n3), and expected runtime 
of O(n2). For the worst-case scenario assume that at each iteration a single object is 
added into SR. Given a seed-object, the first iteration will consider all (n-1) objects in 

RS , the second iteration will consider (n-2) objects, the third iteration (n-3), etc, with 
the last iteration considering a single object. Since each iteration only adds a single 
object to SR, thus there are a total of n iterations, each considering on average 2

n  
objects and this is repeated for all n seed-objects. Thus the worst-case runtime is 
O(n3).  

For the proof of the O(n2) expected run-time, we first analyze the runtime 
complexity per seed object. Assume that with each iteration p percent of the data are 
additionally covered. Hence, at iteration (1), n-1 objects are considered, of those pn 
are added to SR, and removed from RS . With iteration (2), n-pn-1 objects are left and 

 
Fig. 5. Sample rectangles created by the Naïve algorithm 

 
INPUT:dataset D,eval function,k 
OUTPUT: TOP-k outlier regions 
 
Algorithm GNA(D, f, k) 
 for each seed-object O in D 
  VR=0, SR = {O}, TOP-k={} 

loop 
 R  bounding region for SR 
 O' FindBestExtensionG(D,R,f) 
 SR'  add O' to SR 
 R'  bounding region for SR' 
 VR' GetRectangleValue(R',f) 
 If VR' > VR then  
  VR = VR', SR  add O' to SR 

   Else exit 
 If VR>MIN(VR) for R∈TOP-k 
  Add R to TOP-k 

 Return TOP-k 

 
INPUT: D, R, f 
OUTPUT: object with highest f 
 
Method 
FindBestExtensionG(D,R,f) 
 SR  objects in R 

 
RS   D - SR 

 for object O in 
RS  

  R’  expand R to include O 
  VR GetRectangleValue(R’,f) 

if VR > VR' then  
 VR = VR', O' = O 

 Return O' 

Fig. 6.  Pseudo-code of the GNA algorithm Fig. 7. Method to find best extension 



considered, with pn added to SR. At iteration (i) n-(i-1)pn-1 are considered. Hence the 
expected number of rectangles, T, that are considered until iteration i is: 

( 1) ( 1) ( 2 1) ...( ( 1) 1)T n n pn n pn n i pn= − + − − + − − + − − −  

1 1

[( 1) ] ( 1)
i i

j j

T in i j np in i np j
= =

= − − − = − − −∑ ∑  

Since at each iteration pn objects are removed, hence there are at most 1
pi =  

iterations. Hence, 
2

3
1 1 1

1

( 1) ( )
i

n n n i n n n
p p p p p p p p p

j

T j O n
=

= − − − = − − = − − →∑  

Since there are n seed-objects, hence the expected runtime of GNA is O(n2). 
The drawback to the GNA algorithm is that it cannot guarantee finding the optimal 

solution. This is best illustrated with a counter-example (Fig. 9). In this case, the 
optimal solution consists of the set of three objects with attribute values {34, 46, 92}. 
By definition, starting at any object not in this set cannot yield the optimal value. 
Starting at any of the objects in the set, the greedy algorithm chooses a local-optimal 
object which happens not to be in the solution-set and hence any further extension can 
never be optimal. 

The reason for the inability of the greedy algorithm to find the optimal solution is 
because: Starting from any object in the optimal solution, two objects have to be 

  
Fig. 8. Original region and its extension, optimal object for extension is circled. 

Optimal solution: 
Object-values:{34, 92, 46}  
Region-value: 34.66 
 
Solution of GNA: 
Seed-object is object 34 
{34, 92, 46, 71, 99}  VR = 34.4 
Seed-object is object 92 
{92, 34, 69}  VR=31 
Seed-object is object 46 
{46, 71, 99}  VR=27 

Fig. 9. Algorithm GNA cannot guarantee optimality. 



 

added to the region simultaneously in order for the optimal solution to be found. The 
greedy algorithm is only able to consider adding one object at a time. Adding two 
objects at a time would require considering pairs of objects at each iteration, yielding 
an O(n4) algorithm. However, even this algorithm would not be able to find rectangles 
where 3 objects have to be added simultaneously. 

3.4 Greedy Local Neighbourhood Algorithm 

Algorithm GNA, at every iteration, attempts to extend the region R by considering all 
other objects in RS . This means R could grow arbitrarily large during any given 
extension. An alternative approach is to limit to number of possible extensions 
considered in the iterations which would also allow R to grow at a much more 
controlled pace. A uniform and consistent way of accomplishing this would be to 
allow only locally neighbouring objects of R to be considered for extension. Since 
each iteration only extends R locally, hence the greedy Local Neighbourhood 
Algorithm (LNA) has to consider a smaller number of objects at each iteration. 

Definition 5.: Let the set of all objects be divided into 3 subsets. The objects in R 
are still called SR with the complimentary set RS  now being split into two subsets: 

those objects neighbouring objects in R are denoted by RNS , and those not 

neighbouring R are denoted by RNS , i.e.: RRN RNS D S S= − − . The neighbourhood 
relationships are established via the dual of the Voronoi diagram, the Delaunay 
triangulation. 

According to [4], a non-random dataset’s Voronoi structure has complexity O(n) in 
2 dimensions and more specifically, on average, in a random or non-random dataset 
there are 6 Voronoi neighbours [22] for each object. Given that multiple objects in R 
could share the same neighbour and that some objects on the inside of R will only 
have neighbours that are also in R, hence the number of actual neighbours to R is 
much less than 6*|R|.  

Given any region R, only objects that are direct neighbours to at least one object in 

 

 

Fig. 10. Region under consideration, SR in dark, with 
its neighbors, 

RNS  in light-shading. Everything 

outside SR and 
RNS  is called 

RNS . 

Fig. 11. A single object in SR is related 
to many objects in RNS . 



R would be considered as possible extensions. For example, given the original region 
in Fig. 8, this approach would only consider the objects highlighted in Fig. 10 as 
further extensions instead of all other objects in the dataset. Each object could have 
multiple neighbours and the union of neighbours of SR is RNS  (Fig. 11). The 
algorithm is close to the GNA, but the set of objects analyzed at each stage is much 
smaller. The pseudo-code is presented in Fig. 12 and Fig. 13. 

Analysis 
The worst-case runtime for this approach is also O(n3) because there are at most n 
objects considered at each iteration, and assuming that a single object is added to R at 
each iteration, there will be n iterations. The algorithm also analyzes each of the n 
seed-objects independently and hence the worst-case run-time is also O(n3). The 
expected runtime complexity is similar to the GNA, but since at each iteration only 
the local neighbourhood is analyzed rather than the global neighbourhood, hence the 
constant ratio is much smaller.   

Optimality is not guaranteed with this approach either, since it prunes the search 
space even more strictly than GNA. LNA restricts the extension-search to only the 
local neighbourhood, but if the optimal solution contains objects which are not 

INPUT:dataset D,eval function,k 
OUTPUT: TOP-k outlier regions 
 
Algorithm LNA(D, f, k) 
 for each seed-object O in D 
  VR=0, SR = {O}, TOP-k = {} 

loop 
 R  bounding region for SR 
 O' FindBestExtensionL(D,R,f) 
 SR'  add O' to SR 
 R'  bounding region for SR' 
 VR' GetRectangleValue(R',f) 
 If VR' > VR then  
  VR = VR', SR  add O' to SR 
 If VR>MIN(VR) for R∈TOP-k 
  Add R to TOP-k 

 Return TOP-k 

INPUT: region R, eval function 
OUTPUT: object with highest f 
 
Method FindBestExtensionL(D,R,f) 
 

RNS neighbours to objects in R 

 for object O in 
RNS  

  R’  expand R to include O 
  VR  GetRectangleValue(R’,f) 

if VR  > VR’ then 
 VR’= VR, O’ = O 

 Return O’ corresponding to VR’ 

Fig. 12. Pseudo-code for the LNA algorithm Fig. 13.  Method to find best extension.  

  

Fig. 14. Example dataset where LNA will not find the optimal solution (neighhourhood 
relationships are dashed). 



 

connected according to the Delaunay triangulation (i.e.: not direct neighbours), then 
this approach will not find them. As a counter-example assume the dataset contains 6 
objects (Fig. 14) with the optimal solution being disconnected. With this approach, 
that region could not be discovered since the objects in the region do not share 
neighbourhood relationships (shown as dashes). 

This method might also not find the optimal solution if the data is connected. For 
example, the 6 data-objects (dashed lines indicate neighbourhood relationships) 

 
will not yield an optimal solution using the LNA. Starting at any of the objects in 
subset {10-8-4-8} will lead to a local-optimal solution of “10-8-4-8”, while starting 
with any of the objects in {8-7-0} will lead to a local-optimal solution of “8-7-0”. 
Although this algorithm theoretically cannot guarantee finding the optimal solution, in 
practice it often finds target outliers that are very close to the optimal. For a 
discussion on the optimality of our approaches based on experiments, see Section 4.3. 

3.5 Rectangle Caching 

One of the most expensive operations within the algorithm was the calculation of VR 
for each region R that had to be evaluated. One solution to this is to keep a record of 
all the regions that have been evaluated and if the same region is being re-calculated 
then use the stored value.  

Each region can be described by two pairs of (X,Y) (or longitude/latitude) 
coordinates, an (X,Y) pair for the lower-left and upper-right corners of the region. Let 
this pair be represented by the 4 numbers {X1,Y1,X2,Y2}, for example {-130.495, 
49.58, -130.694, 49.70}. Since the numbers are arbitrarily large (and possibly 
negative), hence representing this as a 4D matrix will not be possible. All 4 
coordinates however can be binned by normalizing to an integer value between 1 and 
10 after which they can be represented as a 4D matrix or a tree. For example, 
{X1,Y1,X2,Y2} could become bin number {5, 4, 6, 8}. There will be multiple 
{X1,Y1,X2,Y2} regions that will map into the same bin, but for any given 
{X1,Y1,X2,Y2} only the bin it is mapped into would have to be scanned to see if it has 
already been evaluated. If it exists in the bin then retrieve the value, otherwise 
evaluate the region and place it into the bin. By modifying the number of bins, it is 
possible to significantly influence the number of comparisons that must be done, 
depending on the dataset. This caching is shown in Fig. 4. 

4 Experimental Evaluation 

The experiments were run on both synthetic and real data. The synthetic data was 
generated using a uniform distribution of n objects and was used to compare the three 
approaches in order to evaluate the efficiency of each algorithm. This is presented in 
Section 4.1. In order to find neighbourhoods where an individual property is most 
different from the neighbourhood, experiments (shown in Section 4.2) were also run 



on the BC Assessment Authority dataset. The dataset consists of 667,734 properties, 
and includes the location and assessed values of each property in BC, Canada.  

All experiments were performed on an Intel Core2Duo 6300 @ 2.5GHz with 2GB 
of RAM. The implementation did not take advantage of multi-threading. We searched 
for the top 5 outlier regions in each dataset and used a bin-size of 500 for our 
rectangle-cache. The neighbourhood relationships were calculated via a call to 
MatLab, which is treated as a black-box. 

4.1 Synthetic Datasets 

Different size datasets were generated randomly with both uniformly distributed 
(X,Y) coordinates and descriptive attribute values. The data-size was doubled for each 
consecutive run. The results are shown in Fig. 15. The runtime for the naïve algorithm 
quickly becomes prohibitive, running a small dataset of 160 objects took 2.5 hours to 
process and each iteration increased the number of rectangles evaluated as well as 
runtime by approximately a factor of 16. The runtime for the GNA was much better, 
but it also quickly became prohibitive as anything above 1000 records already 
required hours to run. With the GNA, the number of rectangular regions that must be 
evaluated also increased exponentially. The LNA approach however had a super-
linear runtime and was able to process datasets larger than 20,000. This was due to the 
much smaller neighbourhood it had to evaluate at each iteration.  

Since the naïve algorithm become infeasible even with a small dataset, the effect 
on the run-time as a result of doubling the dataset was investigated and is presented in 
Fig. 16. ‘Number of Doublings’ of 0 corresponds to a dataset size of 10. It is clear in 
these results that the naïve complexity approximately increases by a factor of 16 when 
the dataset is doubled: O(n4). It becomes prohibitive after only 4 doublings (dataset 
size of 160). The GNA is two factors better at O(n2) but it still became prohibitive 
after 7 doublings (corresponding to a dataset size of 1280). The LNA algorithm was 
surprisingly much better because a doubling of the dataset led to a straight doubling 
of the run-time implying that this is actually an O(n) algorithm; it became prohibitive 
after 11 doublings (dataset size of 20480). 

4.2 Real dataset 

The experiments were run on the 2005 dataset of the British Columbia Assessment 
Authority (BCAA). The dataset consists of the street-address, assessed property and 

  
Fig. 15. Run-time results and number of regions vs. dataset size 



 

building values of all taxable properties (homes, businesses, etc) within the borders of 
British Columbia. Each plot was also categorized into 191 types of properties. The 
original dataset consisted of 667,734 such records. 15,268 of those properties had no 
specified street-address since they were classified as ‘vacant’ and hence are not 
assigned addresses. As a preprocessing step, the addresses were converted into a 
latitude and longitude coordinate value, a process known as geo-coding. This was 
accomplished with the use of Microsoft MapPoint 2006 (MMP). The locations were 
determined to within 10 decimal places. After geo-coding was complete, it was found 
that 27,331 addresses existed in the source data but not on the street-network of 
MMP, hence were discarded, leaving 625,135 entries for outlier detection. Through 
the geo-coding process, each address was mapped to a single (X,Y) point. Note that 
our problem definition requires spatial objects that are points, not polygons. 

Selecting a single large dataset and creating samples of different sizes from within 
that set to evaluate our performance would not at all have yielded correct results. For 
example, creating equal sized non-overlapping random samples from the set of 'Stores 
and Offices' in Vancouver resulted in value-ranges in one subset of ($180,400  
$1,795,000) while another subset had a value-range of ($186,600  $10,977,000) 
while a third subset had a range of ($215,300  $42,848,000). Performing analysis 
on these subsets would clearly have been impacted by the sampling. 

Considering all types of properties together also would not yield relevant results. 
For example, Simon Fraser University, with an assessed value of $468million, would 
immediately be flagged as an outlier since it is mainly surrounded by residential 
property with values between $100,000 and $500,000. Hence outlier detection is 
performed only within each type of property. Different types of properties were 
extracted from the BCAA dataset to create the data that our experiments would be run 
on. The criteria for the different datasets used for experimentation is shown in Fig. 17. 
All algorithms were run on each dataset unless the runtime was infeasible.  

As can be seen in Fig. 18, the run-time of both the GNA and LNA is still 
significantly better than the naïve algorithm, with the LNA significantly out-
performing both. Whereas the naïve was only able to process a data-size of 70 
properties (of type ‘Multi-Family - Garden Apartment & Row Housing’) in a 
reasonable time due to its O(n4) behaviour, the GNA was able to process 220 
('Churches & Bible Schools') and was roughly O(n3). With LNA however we were 

  

Fig. 16. Factor of increase in runtime as a 
result of a doubling the dataset. 

Fig. 17. Property types and cities used 



able to get results for a data-size of 4794 properties (of type Single Family Dwelling) 
since it still behaved near-linearly.  

The time required to process real data was significantly larger than with uniformly 
distributed data. This was due to one major difference between the uniformly 
distributed and real datasets. The real datasets included properties that shared the 
same address and hence geo-coded to identical coordinates, such as condominiums 
which could include hundreds of such residences. If all coordinates are unique then 
the neighbourhood relationship between them is straightforward: there is one 
neighbourhood relationship. However, between two neighbouring condominiums, 
let’s say each with 100 properties, there will be 100*100=10,000 neighbourhood 
relationships significantly increasing the runtime since each will be evaluated.  

The naïve method could only evaluate 12 regions/second while the LNA was able 
to evaluate 150 regions/second, hence although the number of regions is small for the 
naïve it was expensive compared to the LNA. This was due to our use of the cache 
(section 3.5); with the naïve, no region was evaluated twice whereas lots of duplicate 
regions were not evaluated with the LNA due to the cache, saving considerable time. 

Fig. 19 shows three regional outliers found in the BCAA dataset. The 'Single-
Dwelling' region identified had an average property value of $452,263 but had a 
single property in it worth over $1million and was the largest regional outlier 
identified. One of the properties within the 'Duplex' regional outlier (rectangle A, Fig. 
19) had a value of $959,000, more than $200,000 more than the next most-expensive 
property in the neighbourhood where the average price was $587,052. Another outlier 
region of the same type (rectangle B) had a single property valued at $552,000 in a 
region with average values of $392,337. 

  
Fig. 18. Runtime and number of regions vs. dataset size 

 
Fig. 19. Three spatial regional outliers in the BCAA dataset 



 

 The test-dataset only included a single year of data, but by retrieving multi-year 
property assessment data from the City Of North Vancouver website1, it was possible 
to further investigate. By taking 2005 as the baseline, it was possible to calculate 
percentage increases in some below, near and above,-average-priced properties for the 
'Single-Dwelling' property type. Interestingly, the results indicated that the more 
expensive properties increased at a lower-rate than, while the below-average 
properties kept pace with, properties valued close to the average value within the 
region. This perfectly illustrates the significance and interestingness of our results: 
that purchasing an inexpensive property in a relatively expensive neighbourhood is a 
good investment. 

4.3 Optimality 

In order to test the goodness of the results of the two greedy algorithms, we tested 
how sub-optimal their results were compared to the naïve approach which finds the 
optimal solution. The naïve algorithm was run and the values of all the rectangles 
evaluated were stored then a distribution graph created. An example of such a 
distribution calculated from a uniformly distributed synthetic dataset, as well as a 
subset of the real dataset, is shown in Fig. 20. This figure illustrates that the bulk of 
the rectangles are clearly sub-optimal. In about half the cases, the greedy approaches 
were not able to find the global optimal solution, but they did consistently find local 
optima that were very close to the global optimal. In almost all cases where the 
global-optimal solution was not found there were less than 10 possible rectangles that 
yielded a better solution than the local-optima found by the greedy algorithm. The 
probability of randomly picking a better solution than found by the LNA is less than 
0.0008%. This illustrates that the greedy approaches gain a significant improvement 
in runtime but sacrifice very little in optimality. 

                                                            
1 http://www.cnv.org/?c=3&i=167 

 
Fig. 20. Distribution of VR both on real and synthetic data. 



5 Conclusions 

With the increasing availability of spatial data in many applications, methods for 
clustering and outlier detection in spatial data have received a lot of attention in the 
database and data mining community. In this paper, we have introduced the novel 
problem of mining regional outliers in spatial data. A spatial regional outlier is 
defined as a (rectangular) region which contains an outlying object such that the 
deviation between the non-spatial attribute value of this object and the aggregate 
value of this attribute over all objects in the region is maximized. In a real estate 
application, for example, these outliers could represent the least expensive properties 
within the best neighbourhoods, which could become promising investment 
opportunities. We have proposed two greedy algorithms for efficiently mining such 
outliers in large datasets, reducing the runtime from O(n4) to O(n2) compared to the 
Naïve algorithm that enumerates all possible rectangles. Our algorithms grow regions 
starting from a seed object and extending them by at least one neighboring object per 
iteration, always choosing the extension which leads to the largest increase of the 
objective function. An extensive experimental evaluation has been conducted, using 
synthetic datasets as well as the BC Assessment dataset. Our experimental results 
demonstrate the meaningfulness of spatial regional outliers. They also show that the 
proposed greedy algorithms scale much better to large datasets than the Naïve 
algorithm, while producing results that are close to the optimum solution. 

There are several interesting directions for future research. In this paper we have 
considered only simple rectangular regions. This definition is very generic and widely 
applicable, but in certain applications other types of regions may be more appropriate. 
We plan to explore, for example, regions that are taking into account an underlying 
road-network or system of waterways. In the context of spatio-temporal data, it seems 
to be promising to investigate temporal aspects as well to find objects that have 
clearly deviated from their region over time, e.g. properties which have demonstrated 
a historic trend of outperforming their neighbourhoods. 
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