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Abstract

The increasing availability of network data is creating a great

potential for knowledge discovery from graph data. In many

applications, feature vectors are given in addition to graph

data, where nodes represent entities, edges relationships be-

tween entities, and feature vectors associated with the nodes

represent properties of entities. Often features and edges

contain complementary information. In such scenarios the

simultaneous use of both data types promises more mean-

ingful and accurate results. Along these lines, we intro-

duce the novel problem of mining cohesive patterns from

graphs with feature vectors, which combines the concepts of

dense subgraphs and subspace clusters into a very expres-

sive problem definition. A cohesive pattern is a dense and

connected subgraph that has homogeneous values in a large

enough feature subspace. We argue that this problem def-

inition is natural in identifying small communities in social

networks and functional modules in Protein-Protein interac-

tion networks. We present the algorithm CoPaM (Cohesive

Pattern Miner), which exploits various pruning strategies

to efficiently find all maximal cohesive patterns. Our the-

oretical analysis proves the correctness of CoPaM, and our

experimental evaluation demonstrates its effectiveness and

efficiency.

1 Introduction

Graphs provide a natural representation of important
real life networks such as social networks and biological
networks. Recently, such network data has become
increasingly available. While earlier analysis methods
focused on graph properties such as degree distribution,
diameter and simple graph patterns such as cliques,
more recent analysis methods aim at finding more
sophisticated patterns and structures in graphs. In
social network analysis, e.g., online social network data
is being analyzed to detect communities that can be
used for more targeted delivery of online advertisements.
In systems biology, researchers want to find functional
modules in protein interaction networks which can serve
as the basis of computer-aided drug design.

Most of the existing methods such as graph parti-
tioning [15] and quasi-clique finding [14] work on graph

data only. However, in many applications more infor-
mative graphs are given, where nodes represent enti-
ties, edges relationships between entities, and feature
vectors associated with the nodes represent entity prop-
erties such as demographic features of customers and
expression data of genes. Often features and edges con-
tain complementary information, i.e. neither the rela-
tionships can be derived from the feature vectors nor
vice versa. In such scenarios the simultaneous use of
both data types promises more meaningful and accu-
rate results. Joint cluster analysis [3] aims at partition-
ing a graph with feature vectors into connected compo-
nents whose nodes have similar feature vectors. [16] in-
troduces a spectral clustering method which partitions
graphs with feature vectors. While these approaches
can exploit feature vectors and graph data, they cannot
ensure that the discovered clusters are dense and con-
nected, since they have to partition the entire graph.
Furthermore, the identified clusters cannot overlap.

Integrating the concepts of dense subgraphs and
subspace clusters, this paper introduces the novel prob-
lem of finding cohesive patterns. We define a co-
hesive pattern as a connected subgraph whose density
exceeds a given threshold. Furthermore a cohesive pat-
tern has, in a large enough subspace, homogeneous fea-
ture values. Different from graph partitioning methods
and similar to frequent-pattern mining methods, cohe-
sive patterns can overlap and do not have to cover the
entire dataset. Moreover, the number of patterns does
not need to be specified in advance. A major criti-
cism of pattern mining is the large number of patterns
produced. In our case the number of dense and con-
nected subgraphs can be extremely high. Integrating
constraints on the feature vectors reduces the number
of patterns substantially and adds additional meaning
to the identified patterns (cohesive patterns‘). Our al-
gorithm effectively prunes the search space by simul-
taneously using the constraints on the feature vectors,
density and connectedness and has therefore to consider
only a small portion of the large number of subgraphs.
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Figure 1: Example of a social network of CS students

1.1 Motivational applications We use the follow-
ing applications from social network analysis and sys-
tems biology to motivate our problem definition. In
social network analysis, one of the most impor-
tant tasks is the identification of communities [22], i.e.
groups of people that have strong social interactions and
share some interest. Communities like sports clubs or
research groups have the following characteristic prop-
erties: Their members know each other quite well,
i.e. have many edges between them such that informa-
tion can be exchanged and flow within the community.
Members of a community are expected to have similar
feature values in the subspace on which they are based,
e.g. features related to the personal or professional life.
Communities can overlap, since a person can be, e.g.,
member of a sports club and a research lab. The num-
ber of communities is not known in advance. Finally,
not every person has to be part of a community. Fig-
ure 1 shows an example of a social network of computer
science students where students are associated with two
features, their favorite sports and their study focus. The
first community (A,B and C) consists of soccer play-
ers, united by their favorite sports, and the second one
(G,H and I) contains students who share logic as their
study focus. Student A belongs to both communities.
Students D, E, F are not part of any of the communi-
ties, because they do not share any interest (research or
sports) with their friends (connected nodes).

In systems biology, one application of our prob-
lem definition is the identification of functional modules,
i.e. groups of genes that are involved in a specific cellu-
lar process. Initial attempts were restricted to the use
of a single data type such as gene expression or protein
interaction data. However, each of these data types de-
scribes only one specific aspect of the cellular system
and fails to characterize the system as a whole. Most
cellular functions are carried out by group of proteins,
that highly interact with each other, but loosely inter-

act with the rest of the proteins. Therefore, a functional
module forms a dense and connected component in the
interaction network, with complexes having the highest
densities followed by pathways with a somewhat lower
density. Functional modules are also characterized by
similar expression patterns of their genes (that code the
proteins of the module), though not in all conditions
but only in a subset, because many proteins perform
different functions in different tissues and during dif-
ferent developmental stages. Two approaches, which
successfully combined both data types, can be found in
[20, 8].

1.2 Main contributions

• We introduce the novel problem of mining cohe-
sive patterns, which integrates the concepts of
finding dense subgraphs and subspace clustering.

• We develope the algorithm CoPaM (Cohesive Pat-
tern Miner) that efficiently finds the set of all max-
imal cohesive patterns.

• We provide a theoretical analysis giving insights
into the difficulty of the problem and prove the
correctness of the CoPaM algorithm.

• We run experiments on social network and biolog-
ical datasets demonstrating the meaningfulness of
cohesive patterns and show the efficiency and scal-
ability of CoPaM.

Overview: The rest of the paper is organized as
follows. Section 2 reviews related work. In Section 3,
the problem of mining cohesive patterns is introduced.
CoPaM - Cohesive Pattern Miner - is presented in
Section 4. A theoretical analysis of CoPaM can be
found in Section 5. Section 6 reports the results of our
experimental evaluation. Section 7 concludes the paper
with a summary and interesting directions for future
research.

2 Related Work

The topic of mining dense graphs has recently received
a lot of attention in the data mining community. The
existing methods assume as input a collection of graphs
and produce the frequent subgraphs that satisfy some
coherency or density constraint. The input graphs
are undirected vertex-labelled graphs. One of the key
issues in graph mining is how to efficiently perform
the graph isomorphism testing which plays a crucial
role in the counting of the support of candidate graph
patterns. [21] presents a method to find all frequent
maximal cliques in a depth-first approach exploiting
the anti-monotonicity properties of cliques and support.



A more relaxed and more realistic density constraint
requires only that the graph patterns are quasi-cliques,
i.e. that every node has at least a specified percentage
α of all possible edges within the pattern. [14] and
[24] propose new search space pruning strategies for
efficiently mining all frequent, and all closed frequent
resp., quasi-cliques. In many applications, both clique
and quasi clique constraints are very hard constraints
and may cause missing subtle, but interesting patterns.

Different from the above methods, [23] assumes a
database of graphs with unique node identifiers, so that
graph isomorphism is not an issue. The authors inves-
tigate the problem of mining all closed frequent graphs
with edge connectivity at least k, where the edge con-
nectivity is defined as the minimum cut size. The pro-
posed CLOSECUT algorithm works well on datasets
which contain mainly patterns with high support and
low connectivity. The second algorithm, SPLAT, tar-
gets datasets containing mainly highly connected pat-
terns. Relaxing the minimum support constraint, [9]
presents an algorithm to mine subgraphs that are dense,
defined based on the size of the minimum cut, and ex-
hibit correlated occurrence.

The above methods all work on large databases
of labelled, relatively small graphs. Another line of
research has investigated methods for finding dense
subgraphs in a single large graph. However, finding
dense subgraphs is a notoriously hard combinatorial
problem, even to solve approximately (see, e.g., [4]).
In the absence of a minimum support constraint, such
algorithms typically give up the goal of finding all dense
subgraphs and resort to heuristics that efficiently find
some of these subgraphs. For example, [6] presents an
algorithm based on a recursive application of shingling
followed by a final clustering step. Graph partitioning
algorithms such as normalized cut [15] can be considered
as another approach for efficiently finding some of the
densest subgraphs. Constrained on minimizing the
cut size, these algorithms partition the graph into
components. The small weight of the cut size is
responsible for a higher density of the components.

A variety of approaches have been developed for in-
tegrated mining of graphs with associated feature vec-
tors. Multi-relational clustering algorithms, e.g. the
PRM-based approach of [19], partition a database of
multiple related tables, which can be modeled as a
multi-modal graph with feature vectors, into a speci-
fied number of clusters optimizing an objective func-
tion such as the likelihood. Joint cluster analysis [3]
aims at partitioning a graph with feature vectors into
connected components with similar feature vectors in
all dimensions, a more specialized approach specifically
targeting graphs with features. While these approaches

take into account graphs with feature vectors, they do
not ensure that the discovered clusters are dense and
connected. The Co-Clustering method [8] defines an in-
tegrated distance function incorporating both the simi-
larity of feature vectors and the network shortest path
distance and then applies any distance-based clustering
algorithm. Another integrated method that has been
developed in the bioinformatics community is MATISSE
[20], a probabilistic method that determines connected
subnetworks in graphs (such as interaction networks)
that exhibit high feature (e.g., gene expression) simi-
larity, without enforcing clusters to be dense and con-
nected.

3 Problem definition

In this section we define the problem of mining cohesive
patterns in feature vector graphs. First we give some
definitions necessary to understand the problem defini-
tion.

Definition 1. (Feature vector graph) A fea-
ture vector graph is a graph G = (V, E ,D,F),
in which V = {v1, . . . vn} denotes the node set and
E ⊆ {{vi, vj} |vi, vj ∈ V, vi 6= vj} the edge set.
The function F : V → D1 × . . . × Dd is a feature
function (F(v), v ∈ V is a feature vector). The set
D = {D1, . . . ,Dd} is called the feature space of G,
D′ ⊆ D feature subspace.

Social network data or protein interaction networks in
combination with gene expression data are examples for
feature vector graphs. For example, in Figure 1 the
nodes in the network have a two-dimensional feature
vector attached. This data can be formally represented
as G = (V, E ,D,F), where

V = {A, . . . I}, E = {{A,B}{A,C}, . . .},
D = {{soccer, tennis, squash, dancing}, {DM, logic, ML, DB}}
and function F , e.g. F(A) = (soccer, logic). Note

that we denote with G the overall graph, and with G
a subgraph in G. In this paper we are interested in
finding cohesive patterns, i.e. subgraphs G of G with
certain properties. First, cohesive patterns have to be
connected. Second, their density d(G) needs to exceed a
given threshold. In this paper, the density is defined as
the cliquishness, which is the fraction of the number of
edges divided by the number of possible edges. Third,
we require the features of the nodes of G to be cohesive
in some feature subspace. In order to formalize this last
constraint, we define a subspace cohesion function.

A subspace cohesion function s is a boolean
function

s : P(V)× P(D)×< → {T, F}



which has as input a subset V of the node set V, a subset
D of the feature space D, and a real number, such that

(s(V, D, θs) = T ∧ @D′ ⊃ D : s(V, D′, θs) = T ) ⇒

(s(V, D′′, θs) = T ⇒ D′′ ⊆ D),

i.e. the maximal cohesive feature subspace D for a
subgraph with node set V is uniquely determined.

Furthermore, s is assumed to be anti-monotone, i.e.
s(V, D, θs) = T ⇒ s(V ′, D′, θs) = T ∀V ′ ⊂ V, D′ ⊂ D

θs is called subspace cohesion threshold.
To illustrate the subspace cohesion function, con-

sider again the example in Figure 1. All nodes in a com-
munity have the same value in at least one dimension.
Formally, s(V, D, θs) = T if ∀v ∈ V, d ∈ D : Fd(v) = c
for some value c. So far, we have not restricted the size
of D, i.e. in the worst case D is empty and s true for
any node set V . To prevent such a case and to enforce
some stricter cohesion, we will constrain the size of D
in the following definition, which reflect the properties
of small communities in social networks and functional
modules in protein interaction networks.

Definition 2. [Cohesive pattern] Given a feature vec-
tor graph G = (V, E ,D,F) and the following parameters:

• subspace cohesion function s,

• subspace cohesion threshold θs,

• dimensionality threshold θdim and

• density threshold α.

An induced subgraph G = (V, E, D), V ⊂ V, E =
{v1, v2|v1, v2 ∈ V, {v1, v2} ∈ E}, D ⊂ D, is called
cohesive pattern if it satisfies the following three
constraints:

• Subspace cohesion constraint: G is homoge-
neous in D ⊆ D, i.e. s(V,D, θs) = true and
|D| ≥ θdim ≥ 1

• Density constraint: d(G) := 2|E|
|V |(|V |−1) ≥ α. (In

this case G is also called α-dense.)

• Connectivity constraint: G is connected.

We call the density constraint, the subspace cohe-
sion constraint, and the connectivity constraint together
cohesive pattern constraint (CP constraint). Fur-
thermore, we call an edge cohesive if the induced sub-
graph of its corresponding nodes fulfills the CP con-
straint, otherwise non-cohesive.

We are particular interested in finding maximal
cohesive patterns which are defined as follows:

Definition 3. [Maximal cohesive pattern] Let G =
(V, E ,D,A) be a feature vector graph and G = (V, E, D)
be a cohesive pattern. G is called maximal cohesive
pattern, if @V ′ ⊃ V and @D′ ⊆ D such that the
graph G′ = (V ′, E′, D′) induced by V ′ is also a cohesive
pattern. Furthermore, we require D to be maximal, i.e.
@D′′ ⊆ D\D, such that G = (V,E, D′′) is a cohesive
pattern.

This definition leads to the following problem defi-
nition in which we want to find maximal cohesive pat-
terns.
Cohesive pattern mining (CoPaM) problem
Let G be a feature vector graph, s a subspace cohesion
function, θs a subspace cohesion threshold, θdim a
dimensionality threshold and α a density threshold, the
Cohesive Pattern Mining (CoPaM) Problem is to
find the set of all maximal cohesive patterns of G wrt.
the aforementioned parameters.

We briefly analyze the complexity of this problem
definition. It is known that finding the maximum
size clique of a graph is NP-complete [11]. In our
problem definition, in the worst case, we need to find
the maximum clique in the input graph. Hence it is
NP-hard. However, we expect the size of the largest
clique to be constant, therefore, in practice this part
of the problem is feasible. In the worst case (all
dense graphs are cohesive), our problem can be reduced
to the problem of counting all cliques from a graph
which is known to be #P-Complete [5]. Again this
theoretical worst case does not typically occur in real-
world datasets and the runtimes reported in Section 6
show the practicality of our algorithm.

In the following, we define several properties of
cohesive patterns and of nodes which are used in our
algorithm.

Definition 4. [(Maximally) expanded-by-one] A co-
hesive pattern G = ({v1, · · · vn}, E,D) is called
expanded-by-one if there exists at least one permu-
tation τ = (vi1 , . . . vin) over the nodes of G that induces
a sequence ({vi1 , vi2}, . . . , G− {vin−1 , vin}, G− vin , G),
such that all graphs in this sequence are cohesive pat-
terns wrt. D. If a cohesive pattern G cannot be extended
by any neighboring node without violating the CP con-
straint, G is called maximally expanded-by-one.

The intuition behind this definition is the following.
A graph G is expanded-by-one if it can be iteratively
generated by starting from two connected nodes and
adding one connected node at a time, such that all
resulting patterns are cohesive.

Not all maximally expanded-by-one patterns are
maximal cohesive patterns, as the example in Figure



Figure 2: Example for cohesive pattern containing α-
critical node c for α = 0.41. G1 + c and G2 + c are
merging candidates.

2 demonstrates. For α = 0.41, the white nodes
form a maximally expanded-by-one pattern, however
this pattern is not maximal (the complete graph is
maximal). Furthermore, the complete graph is also
not expanded-by-one, since the only node which can be
removed without violation of the density constraint is
c. The node c is a bridge node which is defined in the
following:

Definition 5. (Bridge node) c is called bridge
node if G− c is disconnected.

Since c is a bridge node, in G − c the connectivity
constraint is violated. In Section 5, we show that this
case can only occur for α < 1

2 . Cohesive patterns which
are not expanded-by-one, still have a very nice property.
They can be decomposed into three subgraphs, namely
two merging candidates and one expand-by-one part.
The merging candidates are defined in the following.

Definition 6. [Merging candidate (node)] A cohesive
pattern G = (V, E, D) is called merging candidate if

∃v ∈ V : deg(v) < deg(v′) + 2∀v′ ∈ V \ {v},
where deg(v) is the degree of v. Node v is called
merging candidate node.

For example, in Figure 2, two of the merging candidates
are G1 + c and G2 + c. We will need this concept of
merging candidates in our algorithm which we introduce
in the following section.

Definition 7. (α-removable node, α-critical)
Given cohesive pattern G = (V, E,D), c ∈ V . c is
called α-removable node if G− c is α-dense.
A cohesive pattern G is called α-critical, if every
α-removable node is a bridge node. The α-removable
nodes in an α-critical graph are called α-critical
nodes.

The graph in Figure 2 is α-critical, since the only
α-removable node is the bridge node c. Therefore, c is
called α-critical node.

4 Algorithm

In this section, we introduce the algorithm CoPaM
(cohesive pattern miner), which solves the cohesive
pattern mining problem. This two phase algorithm
adopts a level-wise bottom-up pattern enumeration, i.e.
the search space of cohesive patterns of size n is based
on the cohesive patterns of size n− 1. We will analyze
important properties of cohesive patterns in Section 5
after introducing the algorithm in 4.2 and two non-
integrated approaches in 4.1.

4.1 Cohesive Pattern Mining Baseline Ap-
proaches. A non-integrated cohesive pattern mining
approach finds first all connected and dense patterns
and checks for subspace cohesion afterwards. Alterna-
tively, it first finds all subsets of nodes which are cohe-
sive in a subspace and checks the density and connec-
tivity constraints afterwards. In the experimental sec-
tion we compare CoPaM with these two non-integrated
baseline pattern miners, which we explain now in more
detail:
Baseline 1
Algorithm: CoPaM-based connected and dense pat-
tern generation
Postprocessing: Checking against subspace cohesion
constraint
First, we generate all connected and dense pattern using
CoPaM, see Subsection 4.2. More specifically, we use a
trivial subspace cohesion constraint which is true for any
pattern and run CoPaM with this constraint in order to
generate all connected and dense patterns. Second, as
postprocessing, we filter out all candidate patterns not
satisfying the subspace cohesion constraint.
Baseline 2
Algorithm: Apriori-based subspace clustering
Postprocessing: Checking against connectivity and
density constraints
First, we generate all subsets of nodes (clusters) whose
feature vectors satisfy the subspace cohesion constraint.
We use an apriori-based approach which exploits the
anti-monotonicity of the subspace cohesion function to
do that. Second, from the identified clusters, we filter
out the ones which do not fulfill the connectivity and
density constraints.

For both baseline methods a maximality check is
necessary.

One strategy commonly used which could be con-
sidered as a third baseline is the following. We construct
a second graph by thresholding the feature vector sim-
ilarity and mine both graphs simultaneously. However,
similarity on the complete feature space leads to signifi-
cant loss of information due to the curse of dimensional-
ity. This is why, in such applications, subspace cluster-



ing methods have been proven to outperform full space
clustering methods. However, this strategy of using two
graphs cannot be adapted to subspace clustering.

4.2 CoPaM - Cohesive Pattern Miner. The
pseudo code of the Cohesive Pattern Miner (CoPaM)
can be found in Algorithm 1; the first phase (expand-
by-one) in Algorithm 2 and the second phase (merge)
in Algorithm 3.

The input of CoPaM is a feature vector graph
G and the following parameters: a density threshold
α, 1

3 < α ≤ 1, a subspace cohesion function s, a
subspace cohesion threshold θs and a minimum number
of dimensions θdim. The output is the set of all maximal
cohesive patterns.

The algorithm starts with a preprocessing phase,
in which non-cohesive edges are removed from the input
graph, since they can never be part of any cohesive
pattern. In this reduced graph, we identify all connected
components. In the following, each of these components
is analyzed separately, applying the first and second
phase of our algorithm.

Expand-by-one (Algorithm 2) takes as input
cohesive patterns of size 2 and returns maximally
expanded-by-one cohesive patterns. Let level denote
the number of nodes of the current cohesive patterns
(initially it is 2). In each level, we expand existing co-
hesive patterns of size level by any neighboring node
obtaining patterns of size level + 1. Note that for ev-
ery expanded pattern, the corresponding maximal co-
hesive feature subspace is uniquely determined. The
expand-by-one method avoids redundant generation of
candidate patterns as much as possible. If an ex-
panded pattern G + v fulfills the CP constraint (Al-
gorithm 2, line 10), then we know that G was not max-
imal and we replace it by G + v in the candidate set
currCohesivePatterns, otherwise we add G to the re-
sult set. After having considered all patterns of a cer-
tain level (size), we move to the next level until all
patterns are maximally expanded-by-one. This is re-
flected in the pseudo code by implementing the variable
currCohesivePatterns as a queue. Therefore, expand-
by-one does a breadth-first search. The advantage of
this search strategy is that at any point of time we only
need to keep cohesive patterns of two levels in memory
- this reduces the amount of memory needed substan-
tially.

The expand-by-one phase generates only expanded-
by-one cohesive patterns, which follows directly from
its definition. We will show in the next section that if
α ≥ 1

2 , all cohesive patterns are indeed expanded-by-
one cohesive patterns. Therefore, the first phase finds
all cohesive patterns for α ≥ 1

2 . If α is between 1
3 and

1
2 a second phase is required. In this second phase,
called merge phase, the search space is restricted to
merging candidates which were identified in the first
phase. If α < 1

3 then the algorithm is not guaranteed to
be complete. Note that in applications such as social
network analysis and systems biology typically α is
larger than 1

3 , in most case even larger than 1
2 .

Algorithm 1 CoPaM: Cohesive Pattern Miner

1: INPUT: G = (V, E ,D,A), α, s, θs, θdim

2: OUTPUT: maximal cohesive patterns
3: PREPROCESSING: remove non-cohesive edges from G
4: for all connected components Ci = (Vi, Ei) in G do
5: currCohesivePatternsi ← ∅
6: mergingCandi ← ∅
7: FIRST PHASE: EXPAND-BY-ONE
8: for all (edges e = {v1, v2} ∈ Ei) do
9: Ge ← ({v1, v2}, {{v1, v2}}, D)

10: currCohesivePatternsi.add(Ge)
11: currCohesivePatternsi ←

Expand-by-one(currCohesivePatternsi)
12: if (α < 1

2
) then

13: SECOND PHASE: MERGE
14: mergedPatternsi ← merge(mergingCandi)
15: currCohesivePatternsi.

add(Expand-by-one(mergedPatternsi))
16: currCohesivePatterns = ∪icurrCohesivePatternsi

17: MAXIMALITY CHECK: remove non-maximal cohesive
patterns from currCohesivePatterns

18: return currCohesivePatterns

Algorithm 2 First phase: Expand-by-one
1: INPUT: Queue currCohesivePatterns
2: OUTPUT: maximally expanded-by-one cohesive pat-

terns,
merging candidates

3: Queue resultSet ← ∅
4: Set mergingCand ← ∅
5: while (G ← currCohesivePatterns.pop() 6= NULL)

do
6: if (α < 1

2
) then

7: if (isMergingCandidate(G)) then
8: mergingCand.add(G)
9: G.isMaximal ← true

10: for all (neighboring nodes v of G) do
11: if (G + v fulfills CP constraint) then
12: if NOT currCohesivePatterns.Contains(G+v)

then
13: currCohesivePatterns.add(G + v)
14: G.isMaximal ← false
15: if (G.isMaximal) then
16: resultSet.add(G)
17: return resultSet, mergingCand



Algorithm 3 Second Phase: Merge
1: INPUT: hashtable mergingCand
2: OUTPUT: α-critical graphs
3: result ← ∅
4: for all (G1, G2 ∈ mergingCand which have only the

merging cand. node in common) do
5: if (( G1 ∪G2) is α-critical) then
6: result.add(G1 ∪G2)
7: return result

The merge phase takes a set of merging candidates
and joins two merging candidates if they have the same
merging candidate node. This is efficiently supported
by using a hashtable as index structure, whose keys are
the node ids of the merging candidate node. As we show
in Section 5, we only need consider graphs which overlap
by exactly one node, namely the merging candidate
node. We return only α-critical cohesive patterns. We
have to apply again the expand-by-one phase on these
graphs.

The goal of the final maximality check is to re-
move cohesive patterns which are not maximal. This
postprocessing step is necessary, since the CP con-
straint is not anti-monotone, see Section 5. This is
different from frequent itemset mining, where the anti-
monotonicity property guarantees that we find only
maximal patterns. The result set of CoPaM is imple-
mented as a queue, such that any new element is added
at the beginning and during this maximality check we
can retrieve the elements in reverse order of their in-
sertion in constant time. Furthermore, the maximality
check makes use of a hashtable and an array. The keys
of the hashtable are the node ids. In the buckets we
store all maximal cohesive patterns which contain this
particular node. In a second data structure, an array,
we record the number of elements in each bucket. We
insert all cohesive patterns identified by CoPaM into
the hashtable in opposite order of their creation, i.e.
starting with the largest pattern. When adding a new
pattern P we do the following:

• Find smallest bucket Bsmallest to which P has to
be added, using the array information.

• Test whether P is subset of any of the elements in
Bsmallest.
If P is not subset, add P to the hashtable.
If P is subset, then discard it.

This concludes the description of CoPaM. In the
following section we prove its correctness for α ≥ 1

3 .

5 Correctness of CoPaM

In this section, we first analyze the monotonicity prop-
erties of the CP constraint. We will see that the CP
constraint is not anti-monotone. This makes it very
different from other pattern mining algorithms which
make heavily use of this property. In subsection 5.2, we
show that the CP constraint is loose anti-monotone (de-
fined in 5.1) for 1

2 ≤ α, and we prove that the expand-
by-one phase finds all cohesive patterns in this case.
For 1

3 ≤ α < 1
2 , the CP constraint is not loose anti-

monotone, but it has some nice properties that allow
for finding all cohesive patterns by merging the patterns
found in the expand-by-one phase. These properties and
the correctness of the merge phase are discussed in 5.3.

5.1 Monotonicity properties. Given that a graph
G satisfies constraint C, C is called anti-monotone if
all subgraphs of G satisfy C.

Let G be a graph G of size n satisfying constraint
C. C is called loose anti-monotone if there exists
at least one subgraph of G of size n − 1 which fulfills
C as well. The concept of loose anti-monotonicity was
introduced by [2].

Frequent pattern mining algorithms, like the fre-
quent item set mining algorithm a-priori [1], make use
of the anti-monotonicity property of the support. Un-
fortunately, CP constraint is not anti-monotone.
For a given graph not every node can be removed such
that the remaining graph is still connected. A counter
example is shown by the cohesive pattern in Figure 2,
where the removal of c (the only α-removable node) dis-
connects the graph. However, in any graph, there exists
a node, such that its removal does not disconnect the
graph, see Lemma 5.1. This implies that the connectiv-
ity constraint is loose anti-monotone. In the following,
we analyze the monotonicity properties of the density
constraint and the simultaneous application of the den-
sity and connectivity constraint for different ranges of
α. Note that the subspace cohesion constraint is anti-
monotone by definition.

Lemma 5.1. Given a connected graph G = (V, E) of
size at least 2. There exist two distinct nodes v1, v2 ∈ V
such that G− v1 and G− v2 are connected.

Proof. We use induction on the number of nodes in
G. If G does not contain any bridge node, then we are
done. Otherwise, let v be a bridge node in G. Then G−v
consists of l > 1 connected components G1, . . . Gl. If G1

contains only one node, then this node is not a bridge
node in G. Suppose G1 has more than one node. By
induction hypothesis, there are two distinct nodes u and
w in G1 such that they are not bridge nodes in G1. If vu
or vw, say vu, is not an edge in E, then u is not a bridge



node in G, therefore G− u is connected. Otherwise uv
and wv are edges in G, then G− u is connected. Thus,
there is a node in G1 which is not a bridge node.

A similar argument is used for G2.¤

Theorem 5.1. The density constraint is loose anti-
monotone.

Proof. Let G = (V, E) be an α-dense graph, v ∈ V ,
and G′ = G− v = (V ′, E′). We distinguish:

• ∃v ∈ V : degG(v) < dα(|V | − 1)e.
⇒ |E′| = |E| − dG(v) ≥ α (|V |−1)(|V |−2)

2 =
α (|V ′|)(|V ′|−1)

2

• ∀v ∈ V : degG(v) ≥ dα(|V | − 1)e
Let v ∈ V be the node with minimum degree
m ≥ dα(|V | − 1)e in G.
⇒ |E′| ≥ |V |m

2 −m ≥ 1
2 (|V | − 2)m ≥

1
2 (|V | − 2)α(|V | − 1) = α |V

′|(|V ′|−1)
2

Therefore, G′ is α-dense. ¤
To summarize the results of this subsection:

• The subspace cohesion constraint is anti-monotone.

• The density constraint is loose anti-monotone.

• The connectivity constraint is loose anti-monotone.

5.2 Correctness of CoPaM for 1
2 ≤ α. After hav-

ing analyzed the monotonicity properties of the con-
straints separately, we will now analyze the simultane-
ous satisfaction of them.

Theorem 5.2. Simultaneous satisfaction of the con-
nectedness and density constraint is loose anti-
monotone for α ≥ 1

2 .

Proof. Let G = (V, E, D) be connected and α-dense
for α ≥ 1

2 . Assume the only α-removable nodes in G
are bridge nodes. Let b ∈ V be one of them. Then
G − b contains at least two connected components G1

and G2. There is at least one node in G1, say v1,
whose removal does not disconnect G (application of
Lemma 5.1 to G1 + v). Since v1 was not α-removable,
degG(v1) > α(|V | − 1). Therefore, G1 contains more
than α(|V | − 1) − 1 + 1 ≥ 1

2 (|V | − 1) nodes. Using a
similar argument for G2, results in G having more than
|V | nodes, which is a contradiction. Therefore, there
exists a node v ∈ V , such that G − v is connected and
α-dense. ¤
Algorithmic implication of Theorem 5.2: Let
α ≥ 1

2 . Let’s say, we want to find a cohesive pattern
G = (V, E). By Theorem 5.2, there exists a node

v ∈ V such that G − v is α-dense and connected.
Since the subspace cohesion constraint is anti-monotone
by definition, we know that G − v is again a cohesive
pattern. If we apply this top-down strategy recursively,
we will end up with a cohesive edge. The set of all
cohesive edges is exactly the input to CoPaM. Within
the expand-by-one phase, we expand current cohesive
patterns by neighboring nodes. Therefore, the expand-
by-one phase finds all cohesive patterns for α ≥ 1

2 .

Theorem 5.3. The connectedness and α density con-
straints together are not loose anti-monotone, if α < 1

2 .

Example: Figure 2 shows a cohesive pattern for α =
0.41. The only 0.41-removable node is c. Since c is
a bridge node, its removal disconnects the graph, and
therefore the connectedness constraint is violated. ¤

5.3 Correctness of CoPaM for 1
3 ≤ α < 1

2 . We
have seen that the CP constraint is not loose anti-
monotone for 1

2 < α. We still can guarantee the
correctness of CoPaM by applying the second phase,
merging phase, as we will see in the following.

Lemma 5.2. Let 1
3 ≤ α < 1

2 and G = (V, E, D) be a
cohesive pattern. The removal of all α-removable nodes
of V disconnects G into two connected subgraphs.

Proof. The proof is similar to the one of Theorem 5.2
using α = 1

3 instead of 1
2 and deriving a contradiction

that it is not possible to have three subgraphs. For
details, see our extended version [12]. ¤

Theorem 5.4. If 1
3 ≤ α < 1

2 , a cohesive pattern G is
either expanded-by-one, or it can be decomposed into an
expand-by-one part and two merging candidates which
are expanded-by-one.

Proof. Let G be a cohesive pattern of size n. If G
is expanded-by-one, we use the same argument as in
Theorem 5.2. Otherwise, let Gn = G be a cohesive
pattern which is not expanded-by-one. Let vn be an
α-removable node in Gn which is not a bridge node,
i.e. G − vn = Gn−1 is a cohesive pattern. We apply
this strategy recursively until Gj , j ≤ n, contains an α-
critical node. This strategy corresponds to the second
call of the expand-by-one phase (line 15 of Algorithm
1).

By Lemma 5.2, Gj contains exactly two connected
components (G1 and G2) and a set CC of connected
α-critical nodes, i.e. Gj = G1 ∪ CC ∪ G2. By
Theorem, Decomposition Theorem, (see [12] for this
lengthy and complicated proof), we know that there
exists a partition, C1 and C2, C1∪C2 = CC, |C1∩C2| ≥
1, of nodes in CC such that G1 + C1 and G2 + C2 are



expanded-by-one and therefore found in the expand-by-
one phase. G1+C1 and G2+C2 are merging candidates
and will be merged into Gj in the merge phase.¤
Algorithmic implications: The correctness proof is
done in a top-down manner, i.e. for any cohesive
pattern, we show that it can be decomposed in the
described three components, two merging candidates
and an expand-by-one part. However, our algorithm
finds in a bottom-up manner all merging candidates
and expands them afterwards. Since our algorithm
follows exactly the proof, we have a guarantee that it
finds all maximal cohesive patterns. In Figure 2, the
two merging candidates are G1 + c and G2 + c. The
component CC consists only of node c.

6 Experiments

We evaluate CoPaM on three real-world datasets, one
social network dataset and two biological datasets. We
also perform a runtime analysis on synthetic datasets
and compare CoPaM with two baseline algorithms.

As other graph pattern mining algorithms [14],
[24], CoPaM was evaluated in terms of efficiency and
scalability on synthetic data sets. In addition we
evaluate the meaningfulness of the cohesive patterns by
providing anecdotal evidence on the social network data
and by comparing the result to a given domain ontology
in the biological dataset.

There exists no golden standard for the social net-
work data or biological dataset. However in the biolog-
ical domain, some background knowledge is available
that is commonly used in bioinformatics to assess the
quality of modules which correspond to our cohesive
patterns.

In computational biology, there already exist meth-
ods for finding modules as which our cohesive patterns
can be interpreted. However, existing methods in social
network analysis find large communities which are not
comparable to the relatively small patterns (e.g. collab-
oration groups) that we find with CoPaM.

To assess the quality of the biological dataset, we
compared it to two related state-of-the-art algorithms
that operate on both graph data and feature vectors,
MATISSE [20] and Co-clustering [8].

All experiments were performed on a PC running
Linux with a 1.86GHz CPU and 4 GB of main memory.

6.1 Social Network Dataset. One of the appli-
cations of our algorithm is to identify collaboration
groups. We used a co-authorship network which is
based on the two well-known scientific literature dig-

ital databases citeseer1 and DBLP2. In [13], Newman
showed that scientific collaboration networks reflect the
properties of general social networks very well. We chose
papers, written between 2000 and 2004, belonging to
three different research areas: Theory, Machine Learn-
ing, and Databases & Data Mining. 1,942 authors were
extracted out of these papers. We attached to each au-
thor the keywords (out of selected 603) which occurred
in the abstracts of their papers. Therefore, our feature
vectors were Boolean. We connected two authors via
an edge if they co-authored at least one paper. In total,
the dataset contains 4,919 edges.

We chose the following subspace cohesion function
ssn:

ssn(V, D, true) = ∀v ∈ V, d ∈ D : Fd(v) = true

Fd(v) denotes the feature value of node v in dimension
d. This subspace cohesion function requires that all
members of a community have all keywords in subspace
D in common. Furthermore, we chose as threshold for
the minimum dimensionality 16 and as density α = 1

3 .

Figure 3: Max. cohesive pattern from social network
dataset

In total, CoPaM identified 59 collaboration groups
of size 6 or larger. As anecdotal evidence of the
meaningfulness of cohesive patterns we discuss the
following examples:

1. Wei Wang, Philip Yu, Jiawei Han, Beng Ooi, Kian-
Lee Tan, Hongjun Lu (density = 0.4)

2. Philip Yu, Jiawei Han, Charu Aggarwal, Laks
Laskhamanan, Divesh Srivastava, H. Jagadish
(density = 0.5)

Jiawei Han and Philip S. Yu are part of both pat-
terns. Depending on the topic they have collaborated

1http://citeseer.ist.psu.edu/
2http://www.informatik.uni-trier.de/∼ley/db/



with different researchers. According to the first pat-
tern they worked with Wei Wang, Beng Ooi, Kian-Lee
Tan and Hongjun Lu on statistical methods (some of
the identified subspace dimensions are skew, mixture,
and uniform). According to the second pattern, they
worked with Charu Aggarwal, Laks Lakshmanan, Di-
vesh Srivastava and H. Jagadish on hierarchical docu-
ment mining (document, feature and hierarchical).

We also identified the cohesive pattern of size
18 which can be found in Figure 3. This pattern
corresponds to the VLDB paper with the title The
Propel Distributed Services Platform.

6.2 Biological datasets. Our two biological dataset
are human and yeast. In both datasets the nodes
correspond to genes, the edges to interactions (protein-
protein and genetic interactions) and the feature vectors
to gene expression data. It has been argued, e.g. by
[7, 20, 8], that the combined analysis of these two
data types for the identification of modules is more
promising than the individual analysis. Indeed, the
identified maximal cohesive patterns have a specific
biological meaning, namely modules, as we will show
in the following.
Human Dataset (H.sapiens): The interaction net-
work (graph data) was extracted from the BioGRID
database [18], which integrates both protein-protein
and genetic interactions from multiple publicly avail-
able datasets. For the expression data (feature vec-
tors), we used the comprehensive human tissue expres-
sion dataset [17]. As suggested by the authors, we re-
tained only variably expressed genes which showed at
least 2-fold ratio variation from the mean in at least
2 experiments. The final dataset contains 3,628 nodes
connected by 8,924 edges and 115 dimensions.
Yeast Dataset (S.cerevisiae): The network (graph)
was downloaded from the BioGRID database [18]. The
gene expression data (feature vectors) was acquired
from [10], which contains fold changes of genes in 300
cDNA experiments. The final dataset contains 1,043
differentially expressed genes with 2,664 interactions
and 300 dimensional feature vectors.

Due to the absence of comprehensive module an-
notations, a common method for evaluating module in-
ference algorithms is testing for statistically significant
over-represented biological process gene ontology (GO)
terms in the group of interest. We used the GoMiner
tool3 for testing whether the maximal cohesive pat-
terns are enriched with GO terms with P-values, which
are corrected for multiple hypothesis testing, below a
threshold of 0.01. We used three metrics to evaluate

3http://discover.nci.nih.gov/gominer/

Table 1: Quality assessment on the human dataset
Algorithm Coverage Enrichment F-Value

Co-Clustering 0.65 0.79 0.71

MATISSE 0.38 0.93 0.54

CoPaM 0.64 0.96 0.77

Table 2: Quality assessment on the yeast dataset
Algorithm Coverage Enrichment F-Value

Co-Clustering 0.42 0.71 0.53

MATISSE 0.17 0.94 0.29

CoPaM 0.59 0.95 0.73

the quality of the results:

1. Enrichment (precision) is computed as the percent-
age of found modules that are enriched with at least
one GO term.

2. Coverage (recall) is defined as the number of GO
terms associated with an enriched cluster found by
the method divided by the number of all GO terms
in the dataset.

3. F-Value The F-Value captures the trade-off be-
tween precision and recall. Given enrichment E
and coverage C, it is computed as F = 2EC

E+C .

The subspace cohesion function, sbio, is defined as

sbio(V,D, θs)

= ∀d ∈ D : |max{Fd(v), v ∈ V }−min{Fd(v), v ∈ V }| ≤ θs.

Fd(v) denotes again the feature value of node v in
dimension d. This cohesion function requires that the
expression values (or fold changes) of all genes (nodes)
in a pattern induced by V are within a range of θs in all
experiments (dimensions) D. Note that if Fd(v) refers
to missing data, sbio is false.

For the comparison partners, we used the recom-
mended parameter settings. For CoPaM, the density
threshold was set to 0.65, based on the density distribu-
tion of known modules4. For yeast, we set 1.25 as the
fold-change range threshold (θs) with minimum dimen-
sionality 140, which is also derived from the true mod-
ules. For the human dataset, we used more relaxed pa-
rameters of 1.4 and 10 for the fold-change range thresh-
old (θs) and minimum dimensionality respectively due
to the high amount of noise and missing values in the
human gene expression data.
Results: Table 1 and Table 2 show the results from
the human and yeast datasets respectively. The best

4http://www.yeastgenome.org



Table 3: Runtime for syn. generated graphs
Nr. of nodes 746 1,492 2,238 2,984 3,730

Runtime in sec 50 111 306 421 560

] max. cp. 667 1347 2037 2723 3419

score for each category is identified with bold font. In
both datasets, MATISSE and CoPaM consistently yield
enrichment over 90%. However, coverage-wise we see
that only Co-Clustering and CoPaM yield scores over
60% in the human dataset and CoPaM achieves the
top coverage by a large margin in the yeast dataset.
MATISSE outputs only the statistically significant pat-
terns, hence it achieves high enrichment. However, it
performs poorly in terms of coverage. On the other
hand, Co-Clustering forces every node into a pattern,
hence it yields high coverage at the cost of poor en-
richment. Although CoPaM does not force every node
to belong to a pattern, it achieves comparable, if not
better, coverage, due to its completeness (for the used
values of α). This means that CoPaM is able to find
patterns of a larger range of functionalities without sac-
rificing quality. This is supported by the F-value, in
which CoPaM performs the best.

CoPaM finds connected, dense and homogeneous
patterns. It allows overlap and does not force every
node into a pattern. None of the comparison partners
address all these issues simultaneously, and we argue
this is the main reason for the superiority of CoPaM.
The runtime for the human dataset was 8 seconds and
18 seconds for the yeast dataset.
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Figure 4: Runtime for generating cohesive patterns of
size 7 based on cohesive patterns of size 6.

6.3 Synthetic Datasets. In this section, we analyze
the runtime of CoPaM on synthetic datasets. Genera-
tive graph models are a research area of its own. To
our best knowledge, existing methods cannot take into
account feature vectors. Generating the feature vectors

independently of the graph data, makes the assump-
tion that both data types are independent. However,
people who are co-authors are interested in similar re-
search areas and proteins which interact are more likely
to have similar expression data [7]. In order to simulate
real feature vector graphs as much as possible, we based
our synthetic graphs on the social network dataset de-
scribed in 5.1. We took the largest component after the
removal of non-cohesive edges and made several copies
of it, connecting the components randomly with cohe-
sive edges. These graphs have the property that they
are connected after the preprocessing phase in order to
have a fair comparison. We chose the following param-
eter settings: α = 1

3 , s is the same as for the social
network data set, minimum dimensionality is set to 20
which resulted in a largest component of size 746.

We generated graphs with the sizes of 746, 1492,
2238, 2984, 3730. The total runtimes and number of
maximal cohesive patterns can be found in Table 3.
The size of the largest pattern is 19. The runtime
ranges from 50 seconds for the graph of size 746 to
560 seconds for the graph of size 3730. The number
of maximal cohesive patterns is between 667 and 3419.
Let us now have a closer look at the different levels of
these runtimes. Recall that a level in our algorithm
corresponds to the step of generating cohesive patterns
of size n based on the ones of size n-1. For example, on
level 7, where the time for generating cohesive patterns
of size 7 based on the ones of size 6 is measured,
we recognize a linear trend, see Figure 4. The data
points in this figure correspond to the runtime for the
different synthetically generated graphs. The runtime
for generating 43,978 patterns in the graph of size 746
is 5 seconds and increases linearly with the number of
cohesive patterns, up to 26 seconds for 238,489 patterns
in the graph of size 3,730.

6.4 Comparison to baseline algorithms. We
compare the number of patterns produced by the base-
line algorithms introduced in 4.1 (called Baseline 1 and
2) versus CoPaM. All algorithms are output-sensitive
algorithms in each level (=size of patterns), therefore
the runtime is reflected by the number of patterns. We
also have shown this experimentally in the previous sub-
section. We used again the dataset described in section
5.1 with the stated parameters. For the generation of
patterns up to a size of 5 (a larger number caused a
memory overflow), Baseline 1 generated 70 times more
patterns than CoPaM and Baseline 2 eleven times more.

7 Conclusion

While most existing methods for analyzing network data
use graph data only, in many applications more infor-



mative graphs with feature vectors are given. Recently,
integrated methods for mining graph data and feature
vectors have emerged in several research communities.
To mine patterns in such networks, we have introduced
the novel problem of mining cohesive patterns, which
combines the concepts of dense subgraphs and of sub-
space clusters into a very powerful problem definition
with important real life applications such as social net-
work analysis and systems biology. The task is to find
all maximal cohesive patterns, i.e. dense and connected
subgraphs with feature values that are homogeneous in a
large enough subspace. The proposed CoPaM algorithm
makes the computationally hard problem tractable by
simultaneously pruning the search space based on the
given density and subspace cohesion constraints. We
prove that our algorithm is complete with respect to this
problem definition for a density threshold above 1

3 . Our
experiments on real life datasets show that CoPaM pro-
duces meaningful patterns. Our evaluation on synthetic
data demonstrates the scalability of our algorithm.

We conclude by discussing several directions for fu-
ture research. First, we plan to investigate the paral-
lelization of the CoPaM algorithm which promises to
further improve its scalability to very large and high di-
mensional feature vector graphs. Second, so far we have
experimented with two subspace cohesion functions that
are appropriate for our driving applications. In the fu-
ture, we plan to use functions that do not produce a
unique maximal cohesive pattern for a given subgraph,
e.g. functions based on the concept of order-preserving
submatrices. This extension of the CoPaM algorithm is
worth exploring especially in the context of biological
applications.
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