
A Quantitative Similarity Measure for Maps 

Richard Frank, Martin Ester 

School of Computing Science 
Simon Fraser University 
Burnaby B.C., Canada V5A 1S6 
rfrank@cs.sfu.ca, ester@cs.sfu.ca 

ABSTRACT 

In on-demand map generation, a base-map is modified to meet the user re-
quirements on scale, resolution, and other parameters. Since there are 
many ways of satisfying the requirement, we need a method of measuring 
the quality of the alternative maps. In this paper, we introduce a uniform 
framework for measuring the quality of generalized maps. The proposed 
Map Quality measure takes into account changes in all local objects 
(Shape Similarity), their neighbourhoods (Location Similarity) and lastly 
across the entire map (Semantic Content Similarity). These three quality 
aspects measure the major generalization operators of simplification, relo-
cation and selection, exaggeration and aggregation, collapse and typifica-
tion. The three different aspects are combined using user-specified 
weights. Thus, the proposed framework supports the automatic choice of 
the best alternative map according to preferences of the user or application.  

1. INTRODUCTION 

With on-demand maps attracting increasingly more attention from large 
organizations such as Google (maps.google.com), MapQuest 
(www.mapquest.com) and Microsoft (mappoint.msn.com), the quality of 
maps generated by these companies becomes a competitive factor. Some 
of these systems allow for user customization through selection of differ-
ent object-types while others allow for the visualization of buildings in 3D 
(Google Earth). Within a single system these maps can be generated in 
many different ways and from many different resources, each of which 
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must satisfy a different set of requirements from the client. Previously, pa-
per maps were evaluated during the actual design and creation of the map, 
by the human geographer, to match the requirements as best as possible. 
Now, with large quantities of on-demand maps being generated almost in-
stantly without human involvement, the quality of the final output must 
also be determined automatically by a computer. [16]  

In on-demand map generation, a given base-map is modified to the user 
requirements on scale, resolution, and other parameters such as themes or 
symbolic representation [11]. Due also to constraints on the output me-
dium, compromises have to be made during this process: shapes must be 
modified, combined or simply not displayed [12]. Since there are many 
ways of doing generalization and satisfying the user requirement, we need 
a method of determining the best alternative map generated so that user 
preferences can be met. Current map creation processes do not include a 
way of measuring the quality of the result, nor do they allow customization 
in the way of preferences [3, 5, 13]. Currently no consolidated measure ex-
ists, one that incorporates the shapes of the individual objects, the relation-
ship between them, and their distribution on a map. The methods that have 
been suggested in the literature [5, 13, 14 and 18] measure some or all of 
these aspects, but they lack a uniform framework and cannot combine the 
individual aspects into a single metric. Existing methods display the results 
of the individual aspects, sometimes as many as 7 [13], to the user for in-
terpretation. These methods are not applicable in the increasingly impor-
tant scenario where an algorithm automatically needs to select the best-
generalized map. The goal of this paper is to find the best map from alter-
natives by establishing a uniform framework which allows the calculation 
of a single metric quantifying the quality of a map generated regardless of 
source.  

In [13] the map quality aspects have been categorized according to the 
three scales available on maps: micro (individual), meso (local) and macro 
(global). While the way map quality measure was split seems to be logical, 
most of the calculations they employ use very different methods for meas-
uring the changes. [13], [14] and [18] all propose measures, none of which 
are based on a uniform conceptual framework. 

Our approach also categorizes the measure into three aspects which are 
similar to those in [13]. When analyzing the shapes in isolation, we pro-
pose to measure the change by measuring the differences in the outline of 
the object. Then, instead of measuring the absolute changes in location 
[13, 14], we propose a method to measure the change of location relative 
to its immediate neighbours. Neighbourhood relationship is determined 
through the use of adjacent Voronoi regions. Finally, we’ve modified the 
standard entropy metric so that it’s more suitable for information displayed 
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on a map when compared to the entropy metric developed in [18]. Taking 
into account the preferences of the user, these three aspects will then com-
bine into one metric representing the quality of a map. 

Different applications will assign different importance to the above 
three aspects and hence it’s not trivial to combine them. Some applications 
might require that the shape of objects be most accurate, neglecting their 
exact location. Due to this variance, our approach allows the users to input 
their preference to which aspect should be given priority during generali-
zation. With the help of preferences, it’s now possible to tailor the map-
generation process, by generating several alternative maps meeting the 
user requirements of scale, area and resolution. After comparing them to 
the base map, we select the map with the highest quality out of the alterna-
tives generated; hence the user is presented the best map that was tailored 
to their desires rather than a generic map that only meets the user specifi-
cations of scale and resolution. 

The rest of the paper is organized as follows: Section 2 surveys related 
work while Section 3 details the specific approach that we propose along 
with detailed discussion of each aspect that it measures. Section 4 experi-
mentally evaluates our approach and highlights the benefits. Section 5 
concludes the paper with a summary and ideas for future work. 

2. RELATED WORK 

[13] proposes an approach for the quality assessment based on comparing 
data characterization, both before the generalization process and after it, at 
different levels of analysis. It describes ‘micro’, ‘meso’ and ‘macro’ level 
analysis, which is similar in breakdown to the ‘shape’, ‘location’ and ‘se-
mantic’ similarity measure of our research, respectively. Their ‘micro’ 
level contains individual objects of all classes. These objects are described 
by their properties, such as area, orientation, position, concavity and elon-
gation. Our approach treats location as relative (to neighbouring objects) 
and hence measures it on the level corresponding to the meso level while 
[13] treats it as an absolute measure without considering neighbouring ob-
jects. This micro level yields 5 individual quality measurements which in-
dividually are easy to interpret but fairly difficult when trying to view to-
gether. The meso level considers groups of objects, a city block for 
example, and they propose to measure such properties as density and prox-
imity relations within these groups. Although no specific proximity or den-
sity function is given, their definition of a neighbourhood is not as robust 
as defining neighbours to be the adjacent Voronoi cells of an object. Their 
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grouping of objects limits the usefulness of, for example, a density func-
tion, since density is now not calculated across all objects or classes but 
only in a group, whatever a group happens to be. Hence their quality func-
tion partially depends on the quality of, or meaning behind, the grouping. 
Their macro properties are based on all objects and the distribution of the 
properties of the individual objects, with the possibility of a restriction to 
only a single class of object. Unlike our proposed Semantic Content meas-
ure, they have no ‘global’ measure that takes into account, for example, the 
spatial distribution of the objects (not their properties) across the map. At 
the end, their algorithm provides them with 5 measures from the micro 
level and 1 from the meso level. The authors themselves state that the 
measures need to be aggregated somehow since a human cannot under-
stand the relevance of so many numeric measures at a single time.  

[18] proposes a set of new quantitative measures: ‘Entropy of Symbol 
Types’ and ‘Entropy of Neighbourhood’. Entropy of symbol types does 
not take into account the spatial distribution and hence the authors state 
that this measure is not useful for maps. The inherent weakness of the en-
tropy of neighbourhood is that the entropy can be the same for two maps 
with radically different distribution of object classes, but having the same 
neighbourhood relationships. The authors introduce ‘Region of Influence’ 
by using Voronoi diagrams to create ‘Entropy of Voronoi Regions’. In-
stead of using the probability of an object of class i existing, they use the 
area of the Voronoi regions. This measure does not make a distinction be-
tween a class that is made of one object with Voronoi area of 10, and n ob-
jects with a total Voronoi area of 10. 

[14] discusses how agents can co-ordinate and co-operate during the 
generalization process. Their quality measures are simple statistics regard-
ing the objects (like size, minimum width, orientation, position, angle de-
viation and separation from other objects). This paper presents only the 
framework; it however does state the need for a good map quality measure.  

[8] presents a method comparing and matching objects by proposing a 
shape description function which is based on the curvature and not the 
structure of the object. The paper discusses the ‘turning function’, a func-
tion which is a plot of the length vs. slope of the curvature of the original 
object. The turning function allows the comparison of two shapes by nu-
merically quantifying the difference between two objects by finding the 
area between the two turning-functions. Typically, the turning-function is 
normalized to have the same length, that is, the original function must have 
the same perimeter; but this is not acceptable in most cases because small 
changes to the object can lead to dramatic changes in the perimeter. To 
deal with this scenario, the authors propose a matching process whereby 
pairs of identical sides are matched up and removed from the normaliza-
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tion procedure which isolates the sides that have been modified. These 
sides are then compared by finding the difference between the two turning-
functions. 

 [5] presents a method to generalize by attempting to calculate all possi-
ble maps that can be generalized. It tries to move each object into k possi-
ble places, for n objects, there are kn possible maps. The evaluation func-
tion they adopt is based on minimizing the total number of conflicts (pair-
wise overlaps) within a particular region. As stated by the authors, they 
“require the development of more advanced evaluation functions that take 
account of a wider range of constraints, including those of form and struc-
ture”. 

 

3. OUR APPROACH 

During a typical generalization process multiple maps can be considered 
acceptable even when generated from the same source, but a single map 
has to be selected to be returned to the user. In this section, we propose a 
framework for comparing two maps generated from the same source, re-
sulting in one metric. The final results of each comparison can be evalu-
ated with respect to the user preferences and the optimal map then given to 
the user in response to their original request. This process is illustrated in 
Fig. 1. Since we are given multiple maps generated from the same source, 
we assume that correspondence between objects from different maps is es-
tablished by using the underlying Object-ID’s retrieved from the database 
when the map is created. If the method is applied to maps generated from 
different sources than extra metadata is required to establish correspon-
dence between objects. 

Since all computer-based output medium is made of pixels, be it a moni-
tor or printer, the map that is presented to the user must be in raster format, 
regardless of whether the source data was bitmap-data or vector-data. The 
generalization procedures vary depending on whether the data is sourced 
from bitmaps or vector data, but the result must be bitmap based. This pa-
per presents a method of measuring not the quality of the individual gener-
alization operators but the quality of the map that is presented to the user. 
When a map is put through a generalization process, there are several op-
erations that can be used to solve a conflict between objects on the final 
map. This conflict occurs because it is not possible to display enough de-
tail on a small-scale map in order to visualize all of the original objects. In 
a not-so-hypothetical example, two objects of length 15 pixels each are 
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separated by a single pixel, but after a scale-change of a factor of 10, those 
2 objects now occupy a total area of 3 pixels (1.5 pixels each). Since the 
space between them cannot be displayed because, by definition, the output 
medium cannot display 0.1 pixels, the 2 objects can overlap. The generali-
zation method has several choices [1, 5, 12, 14, 16, 17], it can: 
• not display one of the objects (selection/elimination) 
• enlarge the objects so they can still be displayed properly (exaggeration) 
• combine multiple objects (aggregation) 
• move the objects a bit further apart so that they do not overlap (reloca-

tion/displacement) 
• remove some features from the original object (simplification/reduction) 
• reduction in the dimensionality of the object, from spatial to a line, for 

example (collapse) 
• represent using typical distribution pattern (typification) 

 

Fig. 1. Comparison of two maps 
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Which operation deals with the conflict depends on the algorithm. There 
are multiple algorithms that have been proposed, such as ‘least squares 
with constraints’ or ‘simulated annealing’ [1], but regardless of the algo-
rithm, the above types of change can be classified into 3 different aspects. 

The first aspect is shape similarity and is derived from a change where 
the shape or size of the object is changed. Shape Similarity would measure 
the changes from exaggeration, collapse and the simplification operations 
defined above. This measure takes place on the object level because only 
the single object is changed.  

If the object is moved or the relative distances change due to a change of 
shape of one of the objects, then the location of it, and hence relatively its 
neighbours’, is changed, but this change is restricted to the local 
neighbourhood. A change on this level impacts the location similarity and 
measures location changes due to collapse, displacement, exaggeration and 
simplification.  

The last type of measure, Semantic Content Similarity, measures 
changes due to aggregation, omission and typification. These changes all 
impact the entire map and hence have a global effect. Also, each object be-
longs to a class and the removal of an object will influence the entire class 
distribution across the map hence impacting the importance of the objects.  

In order to combine the different aspects of map quality, it is desirable 
that the underlying conceptual framework for all aspects is uniform. When 
working with maps and other spatial objects, Voronoi diagrams and De-
launay triangulations are prevalent since they clearly represent the spatial 
relationships between the objects [4, 7, 9]. These Voronoi diagrams split 
an area of space into regions, called Voronoi cells, which contain all the 
points that are closest to the object contained in the Voronoi cell. The size 
of these cells gives an indication of how dense an area a certain object is in 
or how large an object is and hence is a good aid when it is required to cal-
culate the amount of information contained in a certain area. The Voronoi 
cell structure also yields the Delaunay triangulation which easily allows 
calculating an object’s immediate neighbourhood, a prerequisite to our 
calculation on the local level.  

There has been research into calculating the similarity of two shapes, 
one of these techniques is outlined in [2, 10 and 15] which uses the skele-
ton of objects, also called shock graphs. The skeleton is very similar to a 
Voronoi diagram (but within an object) and [2, 10] discusses a procedure 
of calculating the difference between two such skeletons. For certain ob-
jects, such as those with indentations, the shock graph is very different al-
though the original shapes can be considered the acceptable result of shape 
simplification, as in Fig. 2. 
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3.1. Shape Similarity 

In order to compare the individual objects, some kind of descriptor is 
needed which describes the amount of change between two shapes. In the 
methods used previously, shapes are described by certain properties which 
yield a number, and either the absolute or relative change between the two 
values results in the Shape Similarity measure. [13] describes properties 
such as area, perimeter or length/width and applies them to calculate 
Shape Similarity, but none of these are unique to a single shape and hence 
are not the best descriptors. The Turning Function is a step function which 
describes a shape by its perimeter vs. slope; the x-coordinate denotes the 
distance along the perimeter and the y-coordinate denotes the value of the 
slope [8]. The difference in y-coordinates of adjacent line segments repre-
sents the turn-angle of the corresponding line-segments in the original ob-
ject.  

On maps, which are bitmaps when they are presented to the user, all the 
objects on the map are pixel based and hence have outlines composed of 
45º or 90º angles (at the pixel level) when using the 8 neighbourhood defi-
nition, hence the turning-function will be a step-wise function. This func-
tion uniquely identifies the shape and is rotation independent since rotation 
of the original shape is equivalent to a translation in the turning-function 
[8]. However, in order to be able to compare two shapes, their turning-
function must have the same length, i.e. we must normalize with respect to 
the perimeter. A small disturbance in the perimeter of the object could 
cause the normalized turning-function to not align properly during match-
ing because sides that should be the same will not be due to one object 
now having a larger perimeter than the other even if the two shapes are 
very similar otherwise.  

To isolate disturbances, a matching procedure must be performed [8]. 
The goal is for the shapes to be compared and the largest identical segment 
(including the turns in between them) removed from the normalization and 
distance calculations. Detecting the identical segments is simple if only the 

  
Fig. 2. Object, it's generalized shape, their shock graphs 
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absolute lengths are considered but can be problematic if the scale of the 
objects are varied since then the right scale-change has to be found before 
matching can take place but finding the right scale-change relies on finding 
an optimal matching first. Our matching algorithm compares the lengths 
and turns of all the edges in both shapes and removes the largest identical 
subset.  

After matching, the non-overlapping area, Area(Oi), between the two 
turning-functions is calculated, where Oi  represents object i on both maps. 
For an example see solid areas in the graph of Fig. 3. This yields the abso-
lute difference between the two shapes with a numerical value that can 
theoretically be fairly large. In order to restrict the result to be between 0 
and 1, the relative Shape Similarity (SS) for object i on Map A and Map B 
is defined as: 

, ,

( )( ) 1
[ ( ), ( )]

i
i i

i A i B

Area OSS O
Max Area TF Area TF

= −  

• where Area(TFi,A) is the area under the turning-function for object i on 
map A. 

 

  
Original Objecti Original Objectj 

  
Turning Function TFi Turning Function TFj 

 

TFi and TFj overlaid, with the difference in area highlighted 
Fig. 3. Turning Function Comparison 
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If the two shapes being compared are identical, then their turning-
functions will be identical, resulting in an SS measure of 1. Globally, each 
shape on Map A is compared to its corresponding shape on Map B and 
each shape will yield one Shape Similarity number. The SS across an en-
tire Map A, when compared to Map B, is defined as the average of all the 
shape difference numbers: 

( , ) ( ) /A B i i
i

SS Map Map SS O n=∑  

3.2. Location Similarity  

Objects can be displaced during generalization and this displacement be-
comes greater as the scale decreases [6]. This change can be reflected and 
measured in the change in distance relative to other objects. A local 
neighbourhood for an object is composed of the object itself and its imme-
diate neighbours, where the neighbours are defined based on adjacency of 
Voronoi cells. Calculating the pair-wise distances for all objects is compu-
tationally expensive and is not necessary since changes in the Voronoi 
structure do not propagate past the immediate neighbouring cells, hence, 
when calculating the Location Similarity, all calculations can be restricted 
to the immediate neighbourhood, as illustrated in Fig. 4. 

The distance between two spatially extended objects is typically based 
on the distance between representative points on these objects. Defining 
the representative points to be the center-of-gravities can lead to the points 
to be inside other objects. Alternatively, the representative points can be 
defined to be the points furthest from the other objects, i.e., the point on 
object A is the point which is furthest from object B and vice versa. In in-
stances of very large objects, even when the objects are in contact with 
each other, the distance can be very large and so this type of measurement 
does not yield appropriate results. The representative points of A can also 

  
Before Generalization After Generalization 

Fig. 4. Relocation 
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be ones closest to B; this measure seems intuitive because this is the way 
humans also define distance, from the closest edge between two locations. 
Hence this type of measurement is used. 

The pair-wise distances between two objects can be stored in a matrix 
distA(i,m), where i and m are two objects on Map A. The Location Similar-
ity metric for object i is then defined to be:  

1

( , ) ( , )
max( ( ))( , ) 1

p
A B

m

dist i m dist i m
dist i

i pLS A B =

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦
∑

= −  

• where max(dist(i)) is the maximum distance between object i and all of 
its Voronoi neighbours and p is the number of neighbours. 
 

( , )iLS A B  can be interpreted as the average change in distances between a 
central object i and the objects around the central object. 

Since LSi is a local neighbourhood measure, it generates a measure for 
every single object and those measures must be combined into a single 
global measure describing the Location Similarity for the map. Thus the 
global Location Similarity for the map is defined by 

( , ) /
n

A B i
i

LS Map Map LS n⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑  

• where LSi is the Location Similarity metric for object i and n is the 
number of objects on the map. 
 

This definition is assuming that all the objects are of equal importance, and 
if this assumption does not hold then weights can be introduced for each 
class or object. 

Since the location-similarity metric is normalized with respect to the 
largest distance between the object and its neighbouring objects, the largest 
possible value that can occur is 1. If none of the objects move then both 
dist(i,m) will have the same value and LSi(A,B) will equal 1. Since LSi(A,B) 
is restricted to a value between 0 and 1, the average of all LSi(A,B)-s (the 
Location Similarity index for the entire map) will also be bounded to be 
between 0 and 1. 

Due to operations done during generalization, such as a deletion or 
move, it is possible that the set of neighbours before and after generaliza-
tion will not be the same, as illustrated by the central object in Fig. 5, in 
which case when we calculate the ( , )iLS A B  for the shaded object, 

( , ) ( , )A Bdist i m dist i m− will not be defined between some objects because 
some objects will not exist after generalization and hence their pair-wise 
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distance cannot be determined. Therefore the neighbourhood definition 
must be restricted to objects that existed before and after generalization. 
Hence, the Location Similarity of objects (such as the shaded object) is 
only defined on the common set of neighbors between the two objects.  

 
Another possible outcome of generalization where the neighbourhood 

set is not the same before and after generalization is aggregation. In this 
case the aggregate object is not the same as the individual objects (before 
generalization) and hence would not be placed into the intersection of the 
two sets. A simple example is shown with the shaded objects in Fig. 6 
where the central four objects are aggregated. These differences are not 
measured by the Location Similarity metric, but by the Semantic Content 
Similarity. 

  

Before Generalization After Generalization 
Fig. 5. Deletion (shaded object used for comparison) 

  
Before Generalization After Generalization 

Fig. 6. Aggregation (different shading represent different classes) 
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3.3. Semantic Content Similarity 

During the generalization process several objects can be aggregated into 
one, or be deleted. These operations imply a loss of information and there 
have been statistics developed in [18] for measuring the amount of infor-
mation in a set of objects. The existing entropy calculation measures the 
information within a set of non-spatial objects and is based solely on the 
number of objects within each class on the map. On a map the objects are 
spatially distributed, two maps with identical number of objects from the 
same classes could have drastically different spatial distributions as dis-
cussed in [18]. The method we propose takes into account spatial informa-
tion by weighing each entry in the Entropy sum by their respective Vo-
ronoi areas, as a percent of the total map area. 

Before attempting to define a modified entropy measure, it is important 
to define what the entropy measure is based on, i.e.: what an object is. Ob-
jects that intersect or behave as a network that span the entire map (ex: 
road network) should be treated as segments of individual objects such as 
individual roads or river-segments. For example: an object with a general 
shape of ‘+’ can be split into 4 non-intersecting segments. Similarly, when 
objects ‘branch’ (eg: a river splits), the object can be broken into the com-
ponent line segments: a river segment the shape ‘Y’ will have 3 compo-
nents. This allows any shape-similarity measure to work since there are no 
objects that are not closed or contain holes. This also is required in order to 
measure the disappearance or displacement of road segments of a road-
network since a disappearance of a segment would be detected by the Se-
mantic Information measure while a displacement would be captured in 
the Shape Similarity measure. 

We need to determine the change of semantic content between two 
maps, the original and the generalized. As discussed in [18], the size of the 
Voronoi cell is a good indicator of how large the object is and also indi-
cates to a certain degree the distribution on the map. It would be beneficial 
to modify the existing Entropy measure by incorporating the relevance of 
objects according to their Voronoi regions. True, information is lost when 
something disappears, but the objects remaining become more important; 
diversity is lost, but the fewer objects are more influential. We define the 
Voronoi Entropy of Map A using: 

 
[ ]( ) ln( ) %A i iVE Map P P V= × ×∑  

where 
• Vi is the total area of the Voronoi regions of objects of class i, 
• Ki is number of objects of class i, 
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• N is total objects on the map, 
• and Pi = Ki/N. 
 

 A class is a collection of objects that have the same semantic attributes 
but can vary in position, size and other attributes, for example ‘banks’, 
‘roads’. As an example, using Fig. 6, the information in Table 1 can be 
collected. 

  
Hence, calculating the VE for both maps, VE(MapA) and VE(MapB): 
 

( )AVE Map [4 log(4) .5] [4 log(4) .125] [3 log(3) .375]
2.0419

= × × + × × + × ×
=

 

( )BVE Map [4 log(4) .5] [1 log(1) .125] [3 log(3) .375]
1.7408

= × × + × × + × ×
=

 

 
The largest value that the entropy measure of a single map can take can 

be arbitrarily large, but the change between the two maps, when expressed 
relative to the map with the larger entropy, is between 0 and 1. The Seman-
tic Content Similarity (SCS) similarity can hence be defined as the amount 
the two entropy measures have changed: 

[ ]
[ ]

( ), ( )
( , )

( ), ( )
A B

A B
A B

MIN VE Map VE Map
SCS Map Map

MAX VE Map VE Map
=

 

The relative similarity can be 1 when Maps A & B are identical in com-
position, although they don’t have to be identical, just the number and 
class of objects along with their Voronoi Areas have to be the same. This 
type of change, however unlikely, will give a result of 1, but these changes 
would be measured by the other map quality measures. 

  Map 1 Map 2 

Object Class # objects % Voronoi 
area 

# objects % Voronoi 
area 

Clear Stores 4 50% 4 50% 

Dark Residence 4 12.5% 1 12.5% 

Pattern Parking-lot 3 37.5% 3 37.5% 

Table 1. Semantic Content Similarity 
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3.4. Combining the three quality aspects 

Although the results from the three components are meaningful individu-
ally, in order to calculate one metric for each map, the three results have to 
be consolidated into one. Since all three numbers purposefully have the 
same range of values (0 to 1) and all behave in a similar fashion (i.e.: small 
change is indicated by a small value) it is possible to combine them. The 
simple average can be a good indicator of all three values; it however gives 
equal weight to all components when that assumption might not be appro-
priate for the application or user.  

Since the importance of the different aspects of map quality depends on 
the user or application, the weights for each can be user defined. 

 
1

2 3

( , ) * ( , )
* ( , ) * ( , )

A B A B

A B A B

Quality Map Map w SS Map Map
w LC Map Map w SCS Map Map

= +
+ +

 

Where wi is the weight for the metric and ∑ =1iw . 
 

The resulting quality value would be associated with the map that it was 
calculated from. A lower quality value would indicate that the map had to 
undergo a larger amount of change and hence the quality is worse than a 
map with a higher measure. By comparing the result of the calculation and 
choosing the generalized map with the highest similarity value, it is possi-
ble to select the best quality maps. 

In some instances the generalization operators can be considered to be 
dependent, for example the change of shape of one object could cause the 
distance between two objects to change. In these instances, two (or all 
three) measures would simultaneously change to reflect the change in the 
object itself. This not only is intuitive but desired. 

4. EXPERIMENTAL RESULTS  

To illustrate the meaningfulness of the proposed map similarity measure, 
we present experimental results on some maps generated using generaliza-
tion methods developed in the GEMURE project [16]. One of the goals of 
the GEMURE project was to improve on-demand cartographic information 
delivery through generalization and multiple-representation, and they re-
quired a method to evaluate the results, which our method was designed to 
do. 

The first map being a large-scale map (Fig. 7) that act as the ‘base-map’ 
while two others (Fig. 8 and Fig. 9) are alternative generalizations of the 
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same area. These alternative maps are then compared to the ‘base-map’ in 
order to find out their accuracy. The maps depict a small section of Quebec 
City with three different classes of objects: roads, residential buildings and 
commercial buildings. 

The first generalized map, Map1 (Fig. 8) includes generalization effects 
of shape simplification along with merges of nearby smaller objects. The 
second map, Map2 (Fig. 9), is at a smaller-scale than Map1 and also uses 
selection with a large number of objects disappearing or merging with 
neighbouring objects. The results of the comparison are shown in Table 2. 
In the following, we discuss the different results for the three aspects of 
Map Quality. 

The SS values are also somewhat intuitive: in Map1 all the objects that 
are both in the Base-Map and Map1 are fairly similar (note that this does 
not mean that all the objects are the same, some small objects were aggre-
gated into bigger objects, but these are not counted in the Shape calcula-
tion) whereas the outline of a lot of the objects were drastically changed 
going from the Base-Map to Map2. Since the objects on Map1 are rela-
tively close to their original counterparts, while Map2 underwent a lot of 
change, hence the SS quality of Map1 is measured to be higher than Map2. 

 The location-similarity is relatively high for all the maps. Map1 is able 
to preserve the location well since it is not generalized very much, Map2 

   
Fig. 7. Base-Map Fig. 8. Map 1 Fig. 9. Map 2 

Table 2 - Results using a different set of weights 
 Comparing 
*weight indicated in parenthesis Base-Map to Map1 Base-Map to Map2 

Shape Similarity (15%) 0.996 0.285 

Location Similarity (70%) 0.821 0.828 

Semantic Similarity (15%) 0.437 0.270 

Final Similarity 0.790 0.663 
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uses selection in abundance and hence is also able to preserve location 
relatively well.  

Semantic Content Similarity was low for both maps because they un-
derwent significant aggregation during generalization. Map1 however had 
the best SCS since it contained the most objects while Map2 contained 
fewer. This is also reflected in the SCS measures.  

By defining a set of weights, the user is able to place more emphasis on 
different aspects of map quality. It is possible that a different map is se-
lected depending on what the weights are. In this case, Map1 is determined 
to be of better quality. 

5. CONCLUSION 

In this paper we presented an approach that can calculate the quality of al-
ternative generalized maps using a uniform framework and present a single 
number that quantifies the quality. The approach takes into account 
changes in individual objects in the form of the Shape Similarity, groups of 
objects using the Location Similarity and changes across the entire map us-
ing Semantic Content Similarity. The framework also allows for the user 
to specify a set of preferences which then influences the final metric and 
hence the choice of the “best” map. Our experimental evaluation on real 
maps demonstrates that the proposed Map Quality measure produces intui-
tive results and, thus, supports the automatic map selection according to 
the preferences of the user. 

Our method could also lead to a novel way of performing spatio-
temporal data mining by allowing the calculation of the changes that areas 
of a map have gone through over time. By comparing two maps of the 
same area, but different time-periods, and applying a data-mining algo-
rithm to sub-areas of the two maps, it would be possible to use the map as 
the search-space to search out the sub-area with the most change. Each 
sub-area from time-period T1 can be compared to the same sub-area in 
time-period T2 using the Map Quality calculations discussed above, and a 
quality metric calculated for each sub-area. The sub-area with the smallest 
Map Quality metric would indicate the region that has undergone the larg-
est amount of change between T1 and T2. Using this method, it would be 
possible to answer such queries as “Where did most of the development 
occur between T1 and T2?” with nothing more than the temporal database 
containing the map available. 
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