
Discovering Significant OPSM Subspace Clusters in
Massive Gene Expression Data

Byron J. Gao†, Obi L.Griffith‡, Martin Ester†, and Steven J.M. Jones‡
† School of Computing Science, Simon Fraser University, Canada

‡ Genome Sciences Centre, British Columbia Cancer Agency, Canada

bgao@cs.sfu.ca, obig@bcgsc.ca, ester@cs.sfu.ca, sjones@bcgsc.ca

ABSTRACT
Order-preserving submatrixes (OPSMs) have been accepted
as a biologically meaningful subspace cluster model, captur-
ing the general tendency of gene expressions across a subset
of conditions. In an OPSM, the expression levels of all genes
induce the same linear ordering of the conditions. OPSM
mining is reducible to a special case of the sequential pat-
tern mining problem, in which a pattern and its supporting
sequences uniquely specify an OPSM cluster. Those small
twig clusters, specified by long patterns with naturally low
support, incur explosive computational costs and would be
completely pruned off by most existing methods for massive
datasets containing thousands of conditions and hundreds of
thousands of genes, which are common in today’s gene ex-
pression analysis. However, it is in particular interest of bi-
ologists to reveal such small groups of genes that are tightly
coregulated under many conditions, and some pathways or
processes might require only two genes to act in concert. In
this paper, we introduce the KiWi mining framework for
massive datasets, that exploits two parameters k and w to
provide a biased testing on a bounded number of candidates,
substantially reducing the search space and problem scale,
targeting on highly promising seeds that lead to significant
clusters and twig clusters. Extensive biological and compu-
tational evaluations on real datasets demonstrate that KiWi
can effectively mine biologically meaningful OPSM subspace
clusters with good efficiency and scalability.

Categories and Subject Descriptors: H.2.8 [Database
Applications]: Data Mining; J.3 [Life and Medical Sciences]:
Biology and Genetics

General Terms: algorithms, performance

Keywords: twig cluster, order-preserving submatrix, sub-
space clustering, gene expression data, scalability

1. INTRODUCTION
As an incomparable breakthrough in experimental mole-

cular biology, DNA microarrays, serial analysis of gene ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

pression (SAGE) and similar technologies have enabled a
wave of extraordinary genomewide investigations of gene ex-
pression, allowing the monitoring of activities of many genes
over many different conditions. The resulting expression
data can be viewed as an n×m matrix with n genes (rows)
and m conditions (columns), in which each entry gives the
expression level of a given gene under a given condition.

Clustering is a major tool for gene expression analysis.
Coexpression of genes in a cluster can be used to infer func-
tional associations between genes and identify coregulation.
Since most genes are expected to be tightly coregulated only
under certain conditions, subspace clustering has gained pop-
ularity in recent years. Pattern-based subspace clustering,
where clustering is performed by pattern similarity rather
than distance, is particularly meaningful due to the fact that
coregulated genes are not necessarily expressed at the same
(or even similar) absolute expression levels. For example, a
transcription factor may be able to perform its function at a
very different concentration from its target genes. Recently,
order-preserving submatrixes (OPSMs) [6] have been intro-
duced and accepted as a biologically meaningful pattern-
based subspace cluster model. An OPSM, essentially a sub-
space cluster, is a subset of rows and columns in a data
matrix where all the rows induce the same linear ordering of
the columns, as shown in Figure 1. An OPSM cluster may
arise when the expression levels of the coregulated genes rise
and fall synchronously in response to a sequence of environ-
ment stimuli. Discovery of significant OPSMs can play an
essential role in inferring gene regulatory networks.

The OPSM cluster model focuses on the relative order
of columns rather than the uniformity of actual values in
data matrixes. By sorting the row vectors and replacing
the entries with their corresponding column labels, the data
matrix can be transformed into a sequence database, and
OPSM mining is reduced to a special case of the sequential
pattern mining problem with some unique properties. In
particular, the sequence database is extremely dense since
each column label appears exactly once (assuming no miss-
ing values) in each sequence. A sequential pattern uniquely
specifies an OPSM cluster, with all the supporting sequences
as the cluster contents. The number of supporting sequences
is the support for the pattern.

As costs of gene expression analysis continue to decrease,
the numbers and sizes of expression datasets have been grow-
ing at an ever-increasing rate. To give just two examples,
the Gene Expression Omnibus (GEO) currently records over
70,000 conditions for over 100 different organisms [5] and the
Stanford Microarray Database (SMD) contains over 10,000

public experiments for 21 organisms [15]. With expression
datasets of potentially tens or hundreds of thousands of both
rows and columns, there is a need for algorithms that can
handle not only “large datasets” but “massive datasets”.

Protein-protein interactions, biological pathway member-
ship and coregulation demonstrate “power law” relation-
ships [3]. That is to say, we tend to observe a small number
of very large gene groups and a large number of very small
groups. For gene coregulation, the smaller groups, roughly
under 50 genes, are of particular interest since in many cases
biologists are looking for tissue or condition specific gene reg-
ulation related to some highly specialized process or disease.
Some pathways or processes may require only two genes to
act in concert. In the context of OPSM discovery, we use the
term twig clusters to denote those small clusters specified by
long patterns with naturally low support, corresponding to
the “twigs” in a pattern search tree. Discovery of twig clus-
ters is of essential biological importance.

Most existing sequential pattern mining methods, breadth-
first or depth-first, aim at finding a complete set of patterns
and rely on some minimum support threshold, min sup, to
prune the search space. However, the discovery of twig clus-
ters requires the smallest possible min sup of 2, making the
pruning futile. The challenge becomes even more onerous in
OPSM mining due to the fact that the transformed sequence
database is extremely dense. Therefore, existing methods
do not scale to massive gene expression datasets for small
min sup values, failing to produce any twig clusters.

To address these challenges, we propose the mining frame-
work KiWi that exploits two parameters k and w to perform
a biased testing on a bounded number of candidate patterns,
targeting significant OPSMs with a focus on twig clusters.
KiWi performs a beam search, at each level maintaining
only the k most promising patterns as seeds for extension
in further levels. When testing candidate patterns, KiWi
considers only a vertical slice of width w of the supporting
sequences, instead of the entire suffixes, ensuring the k spots
are reserved for seeds that are likely to be extended into
longer patterns. For ranking statistic, KiWi uses weighted
support, taking the distribution of data into consideration.

Our main contributions are as follows:
1. We introduce the KiWi framework for mining signif-

icant OPSM subspace clusters in massive gene expression
datasets. The framework is also applicable to mining se-
quential patterns from dense, massive datasets in general.

2. We present a corresponding algorithm that imple-
ments the KiWi framework, tailored to the OPSM problem,
providing candidate testing optimizations, memory manage-
ment and seed management.

3. As an add-on, KiWi can also discover generalized
OPSMs where the expression levels of genes induce either
the same or opposite linear ordering of the conditions, cap-
turing anti-correlations among genes as well.

4. Our comprehensive experimental study on real datasets
demonstrates that KiWi can find numerous biologically mean-
ingful twig clusters that existing methods fail to; in addition,
KiWi scales nicely to massive datasets.

The rest of the paper is organized as follows. Section 2
introduces the objective of the paper and reviews related
work. Section 3 proposes the KiWi mining framework and
presents the main algorithm. Section 4 reports the experi-
mental results, and Section 5 concludes the paper.

0 1 2 3 4 5 6 7

I 27 36 11 19 45 5 55 50

II 39 13 8 25 1 3 45 20

III 2 23 32 42 23 37 24 32

IV 30 19 45 38 20 57 5 20

V 15 45 40 28 55 53 10 2

VI 20 2 5 15 6 1 30 45

 (a) Data matrix (b) Data matrix plotted

 (c) GOPSM consisting of two OPSMs (d) GOPSM rearranged

0

20

40

60

0 1 2 3 4 5 6 7

0

20

40

60

0 2 3 5 6

0

20

40

60

5 2 3 0 6

Figure 1: OPSM and GOPSM.

The raw data matrix in (a) exhibits no obvious pattern when

plotted in (b). (c) shows an GOPSM consisting of two OPSMs

corresponding to the submatrixes with shaded entries and under-

lined entries in the data matrix respectively. (d) shows a permu-

tation of columns of the GOPSM, under which the row sequences

are in either strictly ascending or descending order.

2. OBJECTIVE AND RELATED WORK
Gene expression data can be represented as an n×m ma-

trix D containing expression levels for n genes (rows) under
m conditions (columns). A submatrix S = (R × C), where
R is a subset of rows and C a subset of columns in D, is
called an order-preserving submatrix (OPSM) [6] if there is
a permutation of the columns in C under which the sequence
of expression values in each row of R is strictly ascending.
If the constraint is relaxed such that the sequence can be
either strictly ascending or descending, S becomes a gener-
alized order-preserving submatrix (GOPSM). GOPSMs are
able to capture anti-correlations among genes, which can im-
ply common process/pathway membership or negative reg-
ulation. One gene may repress the expression of other genes
(negative regulators) and anti-correlated genes might repre-
sent members of opposing pathways. Figure 1 illustrates the
concepts of OPSM and GOPSM.

As motivated in the introduction, we want to find signifi-
cant OPSMs in massive gene expression data. While various
significance measures can be defined, it is consensus that for
fixed # columns (# rows), larger # rows (# columns) leads
to more significance. Rather than combining them into a
single measure, we consider the competing goals of maxi-
mizing # columns and # rows in a bicriteria optimization
problem. The feasible region of such a bicriteria problem, as
shown in Figure 2, contains all feasible solutions, each being
a (# rows, # columns) pair such that there exists such an
OPSM in the given data matrix. A feasible pair can map
to multiple OPSMs. The significant region contains par-
tially ordered feasible solutions that are close to the Pareto
optimums. While the closeness can be defined in various
ways, one straightforward approach is to threshold # rows
for each # columns, such that there are no more than t
number of OPSMs with their # rows ≥ the threshold. The
twig region is part of the significant region that is deepest
and hardest to reach, containing the longest terminals of
the search tree (space). Note that the search space for pat-
tern mining can generally be organized in a tree structure,
e.g., Rymon’s generic set enumeration tree [14] for frequent

twig region

#
ro

w
s

columns
2

significant region

λ

Pareto front: the monotonically descending

line containing all non-dominated solutions.

feasible region: the region under (including)

Pareto front containing all feasible solutions.

significant region: the shaded region under

(including) Pareto front in feasible region.

twig region: the dark shaded region at the

bottom of significant region.

feasible region

Pareto front

Figure 2: Significant region and twig region.

pattern mining. In this paper, we use significant clusters
and twig clusters to denote OPSMs having their (# rows,
columns) pairs falling in the corresponding regions.

In Figure 2, λ is an imaginary lower bound of min sup,
reflecting the minimum min sup for which the complete set
of frequent patterns can be efficiently mined using existing
algorithms. It may move down with the growth of com-
putational power, and move up due to the ever-increasing
complexity of data. For dense and massive datasets, a large
part of the significant region is normally pruned off, and the
complete twig region is always in the prunings. Note that
the Pareto front in Figure 2 serves only for the purpose of ex-
planation. The dashed curve is a more realistic illustration
of the shape of the Pareto front, showing more clearly how
severe the pruning damage can be. In our experiment, Pre-
fixSpan [13], one of the fastest sequential mining algorithms,
did not return after 48 hours on real dataset human-SMD-
cDNA (12671 genes and 2852 conditions) [15] for min sup
= 2535. It returned after 36 hours on Affymetrix (12332
genes and 1640 conditions) [5] for min sup = 1234 with the
maximum pattern length of 7. If we consider λ = 1234, then
it would cross the Pareto front at # columns = 7, while the
longest pattern with support ≥ 2 has length of 161.

The objective of the paper, is to discover significant OPSM
subspace clusters from massive gene expression data, with a
focus on twig clusters with size as small as 2.

2.1 Relationship to Sequential Pattern Mining
Conventional sequential pattern mining was motivated and

introduced [2] in the context of transaction databases, where
a sequence is an ordered list of itemsets. A common subse-
quence with support beyond the minimum support thresh-
old, min sup, is called a sequential pattern. The sequential
pattern mining problem is to find the complete set of se-
quential patterns with respect to min sup.

OPSM mining can be reduced to a special case of the se-
quential pattern mining problem. If we sort each row in the
data matrix D in ascending order, and replace the entries
with their corresponding column labels, then D is trans-
formed into a sequence database, as shown in Figure 3 (b).
Each sequential pattern uniquely specifies an OPSM cluster,
with all the supporting sequences (sequences containing the
pattern) as the cluster contents. The number of supporting
sequences is the support for the pattern, i.e., the cluster size.

Comparing to conventional sequential pattern mining, the
OPSM problem bears some special properties. First, each
sequence in the transformed sequence database is an ordered
list of 1-item itemsets. Second, each column label (item) in
the alphabet appears at most once in the sequences; or, ex-
actly once in the absence of missing values. Third, even if
with a small alphabet, sequences can be long, easily contain-
ing thousands of items (conditions). These properties imply

that the transformed sequence database in the OPSM prob-
lem is extremely dense and high-dimensional.

In principle, with an additional scan to obtain the sup-
porting sequences for each pattern, sequential pattern min-
ing methods are applicable to OPSM discovery. However,
the dense and high dimensional nature of the transformed
sequence database renders min sup-based methods infeasi-
ble for massive datasets with low threshold settings.

2.2 Related Work
Subspace clustering (e.g., [1]) aims at discovering clusters

embedded in subspaces. Measuring similarity by pattern
rather than distance, pattern-based subspace clustering has
proved to be particularly meaningful in the application of
gene expression analysis. Biclustering [7] discovers local co-
herence of genes and conditions in a submatrix of a DNA
array. In the biological sense, genes in such clusters have
the same amount of response to the conditions. δ-pCluster
[18] models clusters that exhibit shifting or scaling patterns.
Scaling pattern can be transformed into shifting pattern by
applying a logarithmic function on the raw data. Under
shifting pattern, the expression levels of all genes in a clus-
ter rise and fall coherently under a subset of conditions.

The δ-pCluster model can be too restrictive in many ap-
plications. As a relaxation, order-preserving submatrixes
(OPSMs) [6] are essentially subspace clusters in which the
expression levels of all genes induce the same linear or-
dering of the conditions. As the OPSM problem is NP-
hard, a model-based algorithm is given in [6] to find the
“best” OPSM according to a hard-coded statistical mea-
sure. Scalability issues are not considered. The proposed
algorithm requires excessive computational resources if ap-
plied to large gene expression matrixes. OP-clustering [12]
generalizes the OPSM model by grouping attributes into
equivalent classes. Their proposed method, OPC-tree, per-
forms exhaustive enumeration as in conventional sequential
pattern mining, and fails for the same reason to obtain most
significant subspace clusters from massive datasets.

Sequential pattern mining was introduced in [2]. Existing
methods are essentially either breath-first such as GSP [16]
or depth-first such as PrefixSpan [13]. PrefixSpan is known
as one of the most efficient algorithms so far.

3. THE KiWi MINING FRAMEWORK
With the objective to discover significant OPSM subspace

clusters including twig clusters in massive datasets, KiWi
utilizes two parameters k and w to provide a biased testing
on a bounded number of candidates, substantially reduc-
ing the search space and problem scale, targeting on highly
promising seeds that are likely to lead to long patterns.

3.1 Principles
We use pattern to denote an ordered subset of column la-

bels (pattern elements), e.g., pi = [p1, p2, ..., pi] is a pattern
of length i and pi+1 = pi + pi+1. pi can be used to denote
either a candidate or a seed (qualified candidate) at level
(iteration) i as they are generated in a level-wise manner,
starting with level 1. Conceptually, all seeds from level i−1
are extended by each possible single element, creating candi-
dates for level i. Note that this candidate generation step is
avoided in the actual implementation. These candidates are
assessed using a certain statistic, and the k candidates with
the highest values of this statistic are retained as the seeds of

level i. The number of candidates is thus upper-bounded by
k×m and the search space is selectively restricted. Based on
the observation that a long pattern segments its supporting
sequences into small sections, the elements of a long pattern
can be expected to appear early, say, in the next w posi-
tions of the supporting sequences. Thus to test candidates,
KiWi considers a vertical slice of width w of the supporting
sequences, instead of the entire suffixes.

For each seed pi, the projected database for pi, PD(pi),
is maintained containing the sequences supporting pi under
the w-constraint, that is, a sequence in PD(pi) is segmented
by the elements of pi into sections of length no more than w
except for the last section. Rapidly shrinking, the projected
databases provide a horizontal slicing of the sequence data-
base and reduce the problem scale effectively from iteration
to iteration. The usage of w further performs a vertical slic-
ing on the projected databases, dramatically reducing the
problem scale since w is usually very small comparing to
m. The truncated projected database for pi with respect to
w, TPD(pi, w), contains some truncated regions of width at
most w, each for a sequence in PD(pi) called window(pi, w)
that immediately follows the appearance of pi.

In testing candidate pi+1, only TPD(pi, w) is considered,
which does not only substantially improve efficiency, but is
also necessary for long pattern discovery. Should we con-
sider the entire suffixes of the sequences, some unpromising
candidates that appear very late in the sequences would gain
high ranks to take many of the k spots that are reserved for
promising seeds, and the iteration would soon terminate and
fail to grow long patterns.

To rank candidates, support seems to be an apparent and
natural choice as the statistic. Experiments also show this
choice can produce reasonably good results. Nevertheless,
support does not consider the distribution of column labels
in the sequence database. Moreover, many candidates may
have tied support values thus cannot be well distinguished.
We introduce the novel concept of weighted support. While
each supporting sequence contributes 1 to support, its con-
tribution to weighted support depends on “how it supports”,
i.e., on the position of the supported pattern in the sequence.
Specifically, let r be a sequence supporting a candidate pi,
suffix(pi, r) is the suffix of r starting at element pi, whose
length, |suffix(pi, r)|, signals the potential of pi to continue
to grow in r. The weighted support for pi is defined as the
summation of all such suffix lengths over the supporting se-
quences of pi, as exemplified in Figure 3 (b). The usage of
weighted support significantly improves the quality of seeds,
leading to the discovery of longer patterns with even small
k values. Also, it makes w an insensitive parameter.

All the seeds from different levels constitute the output
pattern set SEEDS(k, w) ⊆ Complete(2), where Complete(2)
is the complete set of patterns with support of at least 2.
Figure 3 (e) shows Complete(2) in a tree structure. Once
k and w are determined, SEEDS(k, w) is determined. In
KiWi, pl ∈ SEEDS(k, w) ⇒ pi ∈ SEEDS(k, w) for 1 ≤ i ≤ l,
that is, for pl to be discovered, each of its prefixes pi has to
appear among the top k seeds in the ith iteration.

Running example. In Figure 3, the raw data matrix
with 4 conditions and 6 genes in (a) is transformed into a
4 × 6 sequence database as shown in (b). (b) ∼ (d) ex-
emplify the PDs and TPDs (the shaded areas) along the
growing process of pattern [0, 1] with respect to w = 2,
from which we can see how the problem scale is greatly re-

0 1 2 3

I 7 5 2 4 1 (3)

II 10 31 24 5 2 (3) 1 (2)

III 35 17 6 22 1 (6) 0 (3)

IV 2 10 18 7 0 (3)

V 10 23 15 4 [] (6) 2 (6) 1 (5) 0 (3)

VI 76 44 23 31 0 (3)

1 (2) 0 (2)

1 (2)

2 3 1 0 2 (2) 1 (2)

3 0 2 1 1 (5) 0 (2)

2 1 3 0 2 (3) 1 (2)

0 3 1 2

3 0 2 1

2 3 1 0 1 (3)

2 (2)

1 (3) 0 (3)

3 0 2 1 2 (3) 0 (3)

0 3 1 2 1 (2) 0 (2)

3 0 2 1 1 (2)

2 (2) 1 (2)

3 (5) 1 (3) 0 (2)

0 3 1 2 2 (3) 1 (2)

 (d) PD ([0, 1]) and TPD ([0, 1], 2) (f) SEEDS (6, 2)

3 (3)
[] (6)

0 (4)

(a) Row Matrix

(b) PD ([]) and TPD ([], 2)

(c) PD ([0]) and TPD ([0], 2)

 level 1 level 2 level 3 level 4

0 (6)

0 (3)

(e) Complete (2) and SEEDS (6, 4)

3 (3)

0 (5)

3 (6)

12

10

17

Figure 3: Running example.

duced level by level. (e) shows Complete(2) and the actual
support for each pattern. (e) also shows the pattern discov-
ery process for k = 6 and w = 4, in which support is used
as the statistic for simplicity of illustration. For each level
of 0 to 4, the non-gray-colored patterns are candidates and
the dark-colored ones are eventually chosen as seeds. The
results in (e) are reasonably good, but one longest pattern,
[2, 3, 1, 0] is missing. Level 2 of (e) also shows the ranking
problem that, some candidates with support 3 are chosen
as seeds, some not. (f) shows the mining process when w is
adjusted to 2. The results in (f) are very good with both
the longest patterns discovered, together with most of the
more frequent patterns at each level. Comparing to (e), the
full length case, the support values are suppressed but in a
biased fashion. Some candidates appearing early have their
support values less suppressed, thus they are favored and
have increased probabilities to emerge as seeds.

When weighted support is used, w is insensitive. For w
= 4, 3, or 2, exactly the same results are returned as in (f).
The underlined numbers in (f) for level 1 show the weighted
support values for the candidates, e.g., the weighted support
for [0] is 10, which can be verified in (b). In (b), the three
0-suffixes for sequences supporting [0] are underlined. Note
that only TPD([], 2) is considered in testing candidate [0].
From (f) we can also see that, if weighted support is used,
even for k = 2, the two longest patterns will still be returned.

More discussions and insights on the ranking statistics and
choices of k and w are detailed in [8]. Existing depth-first
methods such as PrefixSpan [13] cannot perform within-level
comparisons to keep the most promising patterns to work on;
thus most computations are wasted on recursively mining
patterns that are eventually shown to be insignificant, de-
spite their advantage of parsimonious memory usage. Most
existing breath-first methods such as GSP [16] are inferior
to PrefixSpan due to various reasons [13], the large memory
consumption is a serious inherent problem. KiWi, however,
can well-bound the memory usage and significantly reduce
the search space and problem scale due to the introductions
of k and w. Note that if k is big enough and w is set to m,
KiWi returns the complete set of patterns.

3.2 Algorithm and Techniques
Algorithm 1 gives the pseudocode for the KiWi pattern

discovery algorithm with certain low level details.
Overview. Column labels are renamed with integers 0

to m− 1 before the raw data matrix is transformed into the
sequence database SB ; thus each sequence in SB is a per-
mutation of a subset of {0, 1, ..., m−1}. The output pattern
set SEEDS contains seeds from different levels, at most k
for each level and organized as linked lists in order to save
space. seeds is a list of seeds, each being a pattern and a
list of elements conceptually (physically, an element in some
linked list). [] denotes the empty list. projections is a list of
projected databases, each for a seed in seeds with the same
index, represented as a list of supporting sequence indexes.
mSeeds is a list of integers used for statistic counting, which
always has size of m× |seeds| since we preserve m positions
for each seed. The data structures seeds, mSeeds, and pro-
jections are reused from iteration to iteration.

Initially, seeds contains one empty seed [] (line 1), and
PD([]) contains all the n sequence indexes (line 2). As long
as seeds is not empty (line 3), we continue to grow the seeds.
In each iteration, we first perform candidate testing (line 4,
5, 6, 7, 8), then, seeds is updated with the (at most) k can-
didates having top values in mSeeds (line 9). The projected
databases are updated as well for the seeds in seeds (line
10). Finally, seeds gets rid of the seeds with support less
than 2 (line 11) and is written to disk (line 12). For effi-
ciency, instead of recording the supporting sequence indexes
for each candidate during testing, we update projections af-
ter the update of seeds, then only at most k seeds need to
be processed and the update takes negligible time.

Candidate testing. Generally, support counting is the
major time consumer in frequent (sequential) pattern min-
ing. KiWi achieves great efficiency in statistic counting due
to several reasons. First, since only the top k seeds are al-
lowed to grow, the number of candidates is well bounded and
the search space is selectively restricted. Second, the hor-
izontal (line 6) and vertical (line 7) slicing of the sequence
database dramatically reduce the problem scale from the en-
tire database to a particular truncated projected database.

While these principles guarantee an efficient runtime com-
plexity of candidate testing, technically, KiWi is also care-
fully designed to achieve the best efficiency within the com-
plexity. m is not big comparing to conventional sequential
pattern mining; thus, we preserve m positions in mSeeds for
each seed since it has at most m ways to grow one more el-
ement. This fixed 1-to-m correspondence allows us to avoid
explicit candidate generation. Note that the candidate gen-
eration and pruning time is not trivial in GSP like methods
when the database is dense. In more details, let seeds[s] + e
be a candidate with e as the newly appended element, then,
s′ = m× s + e, meaning that the statistic incrementing for
the candidate will be done in mSeeds[s′] (line 8). Conversely,
knowing s′, an index in mSeeds, we have e = s′ mod m and
s = s′ div m, meaning that the statistic stored in mSeeds[s′]
is for candidate seeds[s]+e. This converse derivation is used
in line 9 to update seeds, growing the linked lists properly.

In Algorithm 1, lines 4 ∼ 8 perform statistic counting.
First, mSeeds is initialized with m × |seeds| number of 0’s
(line 4). Then, for each seed in seeds (line 5), for each ele-
ment in the truncated projected database for the seed, (lines
6, 7), weighted support is incremented for the corresponding
candidate (line 8), precisely, seeds[s] + e.

Algorithm 1 KiWi pattern discovery

Input: n×m sequence database SB, k, w
Output: SEEDS(k, w)

1: seeds = [[]];
2: projections = [[0, 1, ... n− 1]];
3: while (|seeds| != 0) {
4: mSeeds.initialize(m× |seeds|, 0);
5: for each seed in seeds with index s
6: for each sequence r in projections[s]
7: for each element e in window(seeds[s], w) of r
8: mSeeds[m× s + e] += |suffix(e, r)|;
9: seeds.update(k,mSeeds);

10: projections.update(seeds);
11: seeds.cleanup();
12: seeds.writeup(); }

Other techniques used by KiWi in pattern discovery, such
as the use of inverse SB (ISB), memory management and
seeds management are detailed in [8].

Complexities. The runtime of KiWi is dominated by
candidate testing in lines 4 ∼ 8 of Algorithm 1. By upper-
bounding the number of visits of the TPDs, we can obtain
the worst case complexity as O(lkwn), where l is the length
of the longest pattern. Note that for each pattern, there
are at most n supporting sequences. For the average case
analysis we assume a random data matrix. In such a matrix,
each pattern of length i is on average supported by n × 1

i!

number of sequences. Knowing that i! ≥ 2i for i ≥ 1, the
average case runtime is O(kwn×(1

1!
+ 1

2!
+...+ 1

l!
)) = O(kwn×

(1
20 + 1

21 + ...+ 1
2l)) = O(kwn×2) = O(kwn). Note that the

average case runtime is linear in n for fixed min sup of 2.
Some other algorithms also show similar empirical results,
but their support is defined as a fraction of n, i.e., min sup
increases proportionally with the increase of n.

The worst case space complexity is O(mn + km + kn),
where mn is for SB and ISB, km for mSeeds, and kn for
projections since each pattern can be supported by at most
n sequences. The memory taken by seeds is O(k) and neg-
ligible. It is reasonable to assume SB can be well accom-
modated in memory, and normally n À m, thus projections
would incur the largest memory consumption. In practice,
the support for each seed reduces dramatically along the
growing of the seed. It can be very big for the first iteration,
but in that case the number of patterns is upper bounded
by min(k, m). Some memory management techniques are
also employed to avoid memory spill caused by projections.
Overall, the memory consumption in KiWi is well bounded.

OPSM formation and GOPSM mining. To actually
form OPSM clusters, we need to retrieve the supporting
sequences for the output patterns, which were not stored
for space efficiency. We provide a pattern querying phase
following pattern discovery, allowing users to specify inter-
esting patterns, and only for which SB is scanned to form
the corresponding OPSMs. A pattern extension heuristic is
also applied for the patterns after obtaining their support-
ing sequences. Surprisingly, only some simple adjustment
is sufficient to allow KiWi to mine GOPSMs, i.e., doubling
SB by appending a list of reversely ordered sequences, or
more efficiently, mining SB forward and backward simulta-
neously. [8] has more details regarding OPSM formation,
pattern extension, and GOPSM mining.

4. EXPERIMENTAL EVALUATIONS
Comprehensive experiments were performed on massive

real and synthetic datasets for biological and computational
evaluations of KiWi. The real datasets included Affymetrix
(HG-U133A) experiments from GEO (GPL96) [5], SAGE
libraries also from GEO (GPL4), and cDNA experiments
from SMD [15]. Affymetrix probes, cDNA clones and SAGE
tags were normalized and mapped to gene/protein identifiers
as previously reported [9]. For comparison with existing
algorithms, two small datasets, SU [17], a smaller dataset of
Affymatrix (HG-U95A) experiments, and breast cancer [10],
were also used. Table 1 lists the sizes of these datasets. The
experiments were run on a 2.8GHz/2GB Windows machine.

4.1 Biological Evaluation
Biologically meaningful groups of coregulated genes should

tend to have common (statistically over-represented) biolog-
ical processes and transcription factor binding sites (TFBS).
In this series of experiments, we use two methods to demon-
strate that KiWi is able to identify clusters from gene ex-
pression datasets of very large size, that are consistent with
biological expectation for coregulated genes.

Methods. The first method uses the Gene Ontology
(GO), a set of structured, controlled vocabularies to iden-
tify functional associations between gene products [4]. Cur-
rent GO annotation and external reference files were down-
loaded from the Gene Ontology Annotation resource at EBI
(www.ebi.ac.uk/GOA). Using these files, and the Ensembl
Perl API (www.ensembl.org) the gene identifiers in the clus-
ter data were mapped to protein identifiers compatible with
GO. Each cluster of protein IDs was then submitted to
the High-Throughput GoMiner command-line interface [19].
Statistically over-represented GO terms were defined using
a Fisher’s exact test and corrected for multiple testing by
false discovery rate detection (100 permutations). The sec-
ond method uses the oPOSSUM tool to identify statistically
over-represented transcription factor binding sites (TFBS)
[11]. The oPOSSUM API was downloaded and installed
(www.cisreg.ca/cgi-bin/oPOSSUM/opossum). Each cluster
of genes was submitted to the software and statistically over-
represented TFBSs were defined using the Z -score option.

Results. Biological validation was performed on the affy-
metrix dataset with 12332 genes and 1640 conditions. For
the validation, a set of representative clusters were chosen
with size from 5 to 10 and minimum dimensionality of 15.
A total of 634 clusters met these criteria, with 22 clusters
containing anti-correlated genes. The GO analysis shows
that clusters identified by KiWi are significantly more likely
to share a common biological process than random expecta-
tion (Figure 4 (a)). For example, if we consider a P -value
threshold of 0.01, more than 10% of clusters have at least
one significant GO term compared to the random expecta-
tion of close to zero. Similarly, the TFBS analysis shows
that clusters identified by KiWi are significantly more likely
than random expectation to share sequences bound by the
same transcription factor (Figure 4 (b)). For example, if we
consider a Z -score of 30, more than 10% of clusters have at
least one TFBS over-represented in the regulatory regions
for these genes. Random expectation for this same Z -score
threshold is close to zero. To summarize, KiWi success-
fully identifies small groups of correlated and anti-correlated
genes that belong to a common function or process and/or
share common transcription factor binding sites.

(a) P -value (FDR corrected, 100 permutations) (b) Z-score for TFBS over-representation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0010.010.11F
ra

c
ti
o
n
 o

f
c
lu

s
te

rs
 w

it
h
 a

 s
ig

n
if
ic

a
n
t
G

O
 t
e
rm

KiWi results

Random

expectation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 20 30 40 50 60F
ra

c
ti
o
n
 o

f
c
lu

s
te

rs
 w

it
h
 a

 s
ig

n
if
ic

a
n
t
T

F
B

S

KiWi results

Random

expectation

Figure 4: Biological evaluation.

4.2 Computational Evaluation
In this series of experiments, we show that KiWi is able

to effectively discover significant OPSM clusters including
twig clusters using real datasets; we also demonstrate the
efficiency and scalability of KiWi using synthetic data.

Discovery of twig clusters. To demonstrate KiWi can
well reach the twig region, we compared KiWi with LoPad, a
dynamic programming based algorithm that finds the (real)
longest pattern with respect to min sup of 2. Table 1 reports
the longest pattern length and running time (in seconds) for
LoPad and KiWi respectively. We observe that in all cases
KiWi was able to find the optimal results or very close, in
significantly shorter time. Note that LoPad, with runtime
complexity of O(m2n2), did not return after one week for
the cDNA dataset and the program was terminated.

Table 1: KiWi vs. LoPad : longest pattern discovery.
Dataset # of # of LoPad Time KiWi Time

genes conditions (s) (s)

breast cancer 3226 22 16 87 16 1
SU-gene 6990 85 51 2807 51 13
SU-prot 8727 85 51 3529 51 15

SAGE-gene 20283 243 59 28995 59 701
SAGE-tag 153204 243 55 32585 54 858
Affymetix 12332 1640 161 341476 160 1458

cDNA 12671 2852 NA NA 228 1735

Discovery of significant clusters. To assess the statis-
tical significance of an OPSM, [6] computes an upper bound
on the probability that the corresponding model would ap-
pear in a random matrix, and their algorithm (referred to
as Alg) tries to find the most significant OPSM one at a
time. They reported several significant OPSMs with differ-
ent pattern lengths on the breast cancer dataset. While they
did not give the runtime, KiWi, in just 1.47 seconds, found
much better results for every case they reported as shown
in Table 2. In addition, since this is a very small dataset,
we were able to set min sup = 2 and obtain the results from
PrefixSpan in 2085 seconds (with output file size of 12 GB),
from which we can see that our results are actually optimal.

We have defined significant clusters as OPSMs having
their (# rows, # columns) pairs falling in the significant
region. We also gave a quantitative definition of the signif-
icant region, i.e., to threshold # rows (support) for each #
columns (pattern length), such that there are no more than
t number of OPSMs with their # rows ≥ the threshold.
To evaluate the coverage of significant clusters by KiWi, we
used the small breast cancer dataset since it was the only one
we obtained output from PrefixSpan for min sup = 2. For

t = 100 and 1000 (values inside the brackets) respectively,
Table 3 shows the support range above the threshold, the
number of significant clusters returned by PrefixSpan and
KiWi, together with the coverage for each pattern length
of 1 – 16. The KiWi results were obtained in 24 seconds,
about 1.2% of PrefixSpan, but they cover on average 92.6%
(t = 100) and 80.7% (t = 1000) of the significant clusters.

Table 2: KiWi vs. Alg : significant OPSM discovery.
Pattern length Alg KiWi PrefixSpan

4 347 795 795
6 42 129 129
8 7 19 19

Table 3: KiWi vs. PrefixSpan: coverage.
Pat. Support Prefix- KiWi Coverage
len. range Span (%)

1 3226 – 3226 (3226) 22 (22) 22 (22) 100 (100)
2 2506 – 1909 (720) 100 (462) 100 (462) 100 (100)
3 1613 – 1136 (800) 98 (996) 98 (996) 100 (100)
4 795 – 571 (414) 99 (994) 99 (994) 100 (100)
5 337 – 244 (184) 99 (978) 99 (978) 100 (100)
6 129 – 94 (73) 100 (958) 100 (958) 100 (100)
7 50 – 35 (27) 77 (870) 77 (870) 100 (100)
8 19 – 14 (11) 63 (860) 63 (594) 100 (69.1)
9 9 – 7 (6) 75 (398) 54 (183) 72 (46)
10 6 – 5 (4) 12 (381) 12 (255) 100 (66.9)
11 4 – 4 (3) 3 (971) 3 (574) 100 (59.1)
12 3 – 3 (3) 38 (38) 25 (25) 65.8 (65.8)
13 3 – 3 (3) 1 (1) 1 (1) 100 (100)
14 2 – NA (2) NA (723) NA (243) NA (33.6)
15 2 – 2 (2) 35 (35) 18 (18) 51.4 (51.4)
16 2 – 2 (2) 1 (1) 1 (1) 100 (100)

Efficiency and scalability. We used synthetic data
(random matrixes of different sizes) for the runtime analysis
of KiWi. The results shown in Figure 5 (a) – (c) confirm
the average case complexity of O(kwn). In (d), the runtime
does not show a clear trend when varying m, which is con-
sistent with our complexity analysis. (c) and (d) together
show that KiWi scales nicely with respect to n and m.

5. CONCLUSIONS
Accepted as a biologically meaningful subspace cluster

model, order-preserving submatrixes (OPSMs) capture the
general tendency of gene expressions across a subset of con-
ditions. Biologists are particularly interested in OPSMs
consisting of a small number of genes sharing expression
patterns over many conditions, which we call twig clusters.
Most existing methods fail to discover those twig clusters in
massive datasets due to the explosive computational costs.
In this paper, we introduced the KiWi framework for mining
significant OPSM subspace clusters in massive gene expres-
sion data, focusing on twig clusters. KiWi exploits two pa-
rameters k and w to perform a biased testing on a bounded
number of candidates, keeping only highly promising seeds
that will likely lead to significant clusters and twig clus-
ters. Our extensive experiments on real and synthetic data
demonstrated that KiWi scales well to massive datasets and
can discover numerous biologically meaningful OPSM sub-
space clusters that cannot be mined using existing methods.

The concept of twig clusters and the KiWi framework are
not limited to OPSM mining, but applicable to sequential
pattern mining in general for dense and massive datasets.

(a) Runtime vs. k (b) Runtime vs. w

 n = 100000, m = 1000, w = 100 n = 100000, m = 1000, k = 5000

(c) Runtime vs. n (d) Runtime vs. m

 m = 1000, k = 5000, w = 100 n = 20000, k = 5000

0

20

40

60

80

100

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

k

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

0

20

40

60

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
0
0
0
0
0

n (number of rows)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

0

200

400

600

800

1000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

w

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

0

20

40

60

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

m (number of columns)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

w = 200

w = 100

w = 50

Figure 5: Runtime.

6. REFERENCES
[1] R. Agrawal, et al., Automatic subspace clustering of high

dimensional data for data mining applications. SIGMOD, 1998.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. ICDE,
1995.

[3] R. Albert. Scale-free networks in cell biology. Journal of Cell
Science, 118:4947–4957, 2005.

[4] M. Ashburner, et al., Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nat Genet,
25(1):25–29, 2000.

[5] T. Barrett, et al., NCBI GEO: mining millions of expression
profiles–database and tools. Nucleic Acids Res.,
33:D562–D566, 2005.

[6] A. Ben-Dor, et al., Discovering local structure in gene
expression data: The order-preserving submatrix problem.
Journal of Computational Biology, 10(3-4):373–384, 2003.

[7] Y. Cheng and G. Church. Biclustering of expression data. In
ISMB, 2000.

[8] B. Gao, et al., Discovering significant OPSM subspace clusters
in massive gene expression data. Technical Report, TR
2006–18, Simon Fraser University, 2006.

[9] O. Griffith, et al., Assessment and integration of publicly
available SAGE, cDNA microarray, and oligonucleotide
microarray expression data for global coexpression analyses.
Genomics, 86:476–488, 2005.

[10] I. Hedenfalk, et al., Gene-expression profiles in hereditary
breast cancer. NEJM, 344:539–548, 2001.

[11] S. Ho Sui, et al., oPOSSUM: identification of over-represented
transcription factor binding sites in coexpressed genes. Nucleic
Acids Res., 33(10):3154–64, 2005.

[12] J. Liu and W. Wang. OP-cluster: clustering by tendency in
high dimensional space. ICDM, 2003.

[13] J. Pei, et al., Mining sequential patterns by pattern-growth:
the PrefixSpan approach. TKDE, 16(10):1424–1440, 2004.

[14] R. Rymon. Search through systematic set enumeration. KR,
pages 539–550, 1992.

[15] G. Sherlock, et al., The stanford microarray database. Nucleic
Acids Res., 29(1):152–155, 2001.

[16] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. EDBT, 1996.

[17] A. Su, et al., Large-scale analysis of the human and mouse
transcriptomes. PNAS, 99(7):4465–4470, 2002.

[18] H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern
similarity in large data sets. SIGMOD, 2002.

[19] B. Zeeberg, et al., High-Throughput GoMiner, an
‘industrial-strength’ integrative gene ontology tool for
interpretation of multiple-microarray experiments, with
application to studies of common variable immune deficiency
(CVID). BMC Bioinformatics, 6:168, 2005.

