
Turning Clusters into Patterns: Rectangle-based Discriminative Data Description

Byron J. Gao Martin Ester
School of Computing Science, Simon Fraser University, Canada

bgao@cs.sfu.ca ester@cs.sfu.ca

Abstract

The ultimate goal of data mining is to extract knowledge
from massive data. Knowledge is ideally represented as
human-comprehensible patterns from which end-users can
gain intuitions and insights. Yet not all data mining methods
produce such readily understandable knowledge, e.g., most
clustering algorithms output sets of points as clusters. In
this paper, we perform a systematic study of cluster descrip-
tion that generates interpretable patterns from clusters. We
introduce and analyze novel description formats leading to
more expressive power, motivate and define novel descrip-
tion problems specifying different trade-offs between inter-
pretability and accuracy. We also present effective heuristic
algorithms together with their empirical evaluations.

1. Introduction

The ultimate goal of data mining is to discover useful
knowledge, ideally represented as human-comprehensible
patterns, in large databases. Clustering is one of the major
data mining tasks, grouping objects together into clusters
that exhibit internal cohesion and external isolation. Unfor-
tunately, most clustering methods simply represent clusters
as sets of points and do not generalize them into patterns
that provide interpretability, intuitions, and insights.

So far, the database and data mining literature lacks sys-
tematic study of cluster description that transforms clusters
into human-understandable patterns. For numerical data,
hyper-rectangles generalize multi-dimensional points, and
a standard approach in database systems is to describe a set
of points with a set of isothetic hyper-rectangles [1, 16, 18].
Due to the property of being axis-parallel, such rectangles
can be specified in an intuitive manner; e.g., “3.80≤GPA≤
4.33 and 0.1 ≤ visual acuity ≤ 0.5 and 0 ≤ minutes in gym
per week ≤ 30” intuitively describes a group of “nerds”.

Patterns are models with generalization capacity, as well
as templates that can be used to make or to generate things.
The rectangle-based expressions are interpretable models;
as another practical application, they can also be used as

search conditions in SELECT query statements to retrieve
(generate) cluster contents, supporting query-based iterative
mining [13] and interactive exploration of clusters.

To be understandable, cluster descriptions should appear
short in length and simple in format. Sum of Rectangles
(SOR), simply taking the union of a set of rectangles, has
been the canonical format for cluster descriptions in the
database literature. However, this relatively restricted for-
mat may produce unnecessarily lengthy descriptions. We
introduce two novel description formats, leading to more
expressive power yet still simple enough to be intuitively
understandable. The SOR− format describes a cluster as
the difference of its bounding box and a SOR description
of the non-cluster points within the box. The kSOR± for-
mat allows describing different parts of a cluster separately,
using either SOR or SOR− descriptions. We prove that
the kSOR±-based description language is equivalently ex-
pressive to the (most general) propositional language [18].

Meanwhile, cluster descriptions should cover cluster
contents accurately, which conflicts with the goal of min-
imizing description length. The Pareto front for the bicrite-
ria problem of optimizing description accuracy and length,
as illustrated in Figure 3, offers the best trade-offs between
accuracy and interpretability for a given format. To solve
the bicriteria problem, we introduce the novel Maximum
Description Accuracy (MDA) problem with the objective
of maximizing description accuracy at a given description
length. The optimal solutions to the MDA problems with
different length specifications up to a maximal length con-
stitute the Pareto front. The maximal length to specify (20
in Figure 3) is determined by the optimal solution to the
Minimum Description Length (MDL) problem, which aims
at finding some shortest perfectly accurate description that
covers a cluster completely and exclusively. Previous re-
search only considered the MDL problem; however, per-
fectly accurate descriptions can become very lengthy and
hard to interpret for arbitrary shape clusters. The MDA
problem allows trading accuracy for interpretability so that
users can zoom in and out to view the clusters.

The description problems are NP-hard. We present
heuristic algorithms Learn2Cover for the MDL problem to

approximate the maximal length, and starting from which
DesTree for the MDA problems to iteratively build the so-
called description trees approximating the Pareto front. The
resulting descriptions, in the format of SOR or SOR−, can
be transformed into shorter kSOR± descriptions with at
least the same accuracy by FindClans, taking advantage of
the exceeding expressive power of kSOR± descriptions.

Contributions. (1) Introduction and analysis of novel de-
scription formats, SOR− and kSOR±, providing enhanced
expressive power. (2) Definition and investigation of a novel
description problem, MDA, allowing trading accuracy for
interpretability. (3) Presentation and evaluation of effec-
tive description heuristics, Learn2Cover, DesTree and Find-
Clans, approximating the Pareto front.

Related work. [1] studies grid data and defines a cluster
as a set of connected dense cells. Their proposed Greedy
Growth heuristic constructs an exact covering of a cluster
with maximal isothetic rectangles. In the heuristic, a yet-
uncovered dense cell is arbitrarily chosen to grow as much
as possible along an arbitrarily chosen dimension and con-
tinue with other dimensions until a hyper-rectangle is ob-
tained. A greedy approach is then used to remove redun-
dancy from the set of obtained rectangles. This special case
of cluster description is related to the problem of cover-
ing rectilinear polygons with axis-parallel rectangles [11],
which is NP-complete [17], no polynomial time approxima-
tion scheme [3], and usually studied in 2-dimensional space
in the computational geometry community (e.g., [15]).

[16] also studies grid data but generalizes the description
problem studied in [1] by allowing covering some “don’t
care” cells to reduce the cardinality of the set of rectangles.
Their proposed Algorithm BP bases on Greedy Growth to
generate the initial set of rectangles, then performs greedy
pairwise merges of rectangles without covering undesired
cells and with limited “don’t care” cells for use.

Greedy Growth and BP explicitly work on cluster de-
scription. However, despite the grid data limitation, they
address the MDL problem solely while our focus is on the
more useful and practical MDA problem. In addition, they
only use the SOR format while we study and apply novel
formats with more expressive power.

Similar to [1] and [16], [18] is motivated by database
applications too but with a focus on the theoretical formula-
tion and analysis of concise descriptions. [18] also formally
defines the general MDL problem for given language (L-
MDL) and proves its NP-completeness. As the initial work
of this study, [9] discusses cluster description formats, prob-
lems and algorithms at the introductory level. [10] extends
the description problem to the classification problem.

Axis-parallel decision trees [5] can be related to clus-
ter description technically as they provide feasible solutions
to the MDL and MDA problems even if with different ob-

jectives. Consider a closed rectangular instance space, the
leaf nodes of a decision tree correspond to a set of isothetic
rectangles forming a partition of the training data (and the
instance space). Stipulating rectangles to be disjoint, deci-
sion tree methods can be considered addressing a partition-
ing problem (with the additional constraint of partitioning
the instance space) while cluster description is essentially a
covering problem allowing overlapping. Partitioning prob-
lems are “easier” than covering problems in the sense that
they have a smaller search space. Algorithms for a parti-
tioning problem usually work too for the associated cov-
ering problem but typically generate larger covers. In de-
cision tree induction, the preference for shorter trees co-
incides with the preference for shorter description length
in the MDL problem. As in the MDA problem, decision
tree pruning allows trading accuracy (on training data) for
shorter trees, and the technique can be applied to generate
feasible solutions for the MDA problems.

Indirectly related work in the theory community exists.
[6] studies the red blue set cover problem. Given a set of
red and blue elements and a family which is a subset of
the power set of the element set, find a subfamily of given
cardinality that covers all the blue elements and the min-
imum number of red elements. [7] studies the maximum
box problem. Given two finite sets of points, find a hyper-
rectangle that covers the maximum number of points from
one designated set and none from the other. Both problems
are NP-hard and related to the MDA problem (with preci-
sion at fixed recall of 1 and recall at fixed precision of 1
as the accuracy measures respectively, see §3.1), except that
the former is given an alphabet (family) and restricted to the
SOR format, and the latter is limited to use one rectangle.

The above discussed research more or less roots in the
classical minimum set cover and maximum coverage prob-
lems. The former attempts to select as few as possible sub-
sets from a given family such that each element in any sub-
set of the family is covered; the latter, a close relative, at-
tempts to select k subsets from the family such that their
union has the maximum cardinality. The simple greedy al-
gorithm, iteratively picking the subset that covers the maxi-
mum number of uncovered elements, approximates the two
NP-hard problems within (1+ln n) [14] and (1− 1

e) [12] re-
spectively. The ratios are optimal unless NP is constrained
in quasi-polynomial time [8]. The minimum set cover and
maximum coverage problems are related to the MDL and
MDA (with recall at fixed precision of 1 as the accuracy
measure) problems respectively except that they are given
an alphabet (family) and restricted to the SOR format.

Organization of the paper. In Section 2 we introduce and
analyze the description formats. In Section 3 we formalize
the description problems. We present heuristic algorithms
in Section 4, report empirical evaluations in Section 5, and
conclude the paper in Section 6.

2. Alphabets, formats, and languages

In this section, we study alphabets, formats, and lan-
guages for cluster descriptions in depth so as to gain insights
into the description problems with different given formats.

2.1. Preliminaries

Given a finite set of multi-dimensional points U as the
universe, and a set of isothetic hyper-rectangles Σ as the
alphabet, each of which is a symbol and subset of U con-
taining points covered by the corresponding rectangle. A
description format F allows certain Boolean set expressions
over the alphabet. All such expressions constitute the de-
scription language L with each expression E ∈ L being a
possible description for a given subset C ⊆ U . The vocab-
ulary for E, VE , is the set of symbols in E. We summarize
the notations used and to be used for easy lookup.

D: data space; D = D1 ×D2 × ...×Dd

U : data set; U ⊆ D
R: rectangle or the set of points it covers; R ⊆ U
Σ: alphabet; a set of symbols with each as a rectangle
VE : vocabulary of expression E; set of symbols used in E
||E||: length of expression E; ||E|| = |VE |
Bu: bounding box for u; u is a set of points or rectangles
C: set of points in a given cluster; C ⊆ U
C−: set of points in BC but not in C; C− = BC − C
EF,Σ : expression in format F with vocabulary in Σ
LF,Σ : language comprising all EF,Σ expressions

Note that R (E) is overloaded to denote a rectangle (ex-
pression) or the set of points it covers (describes). The dis-
tinction should be made clear by the context. Σ is often left
unspecified in EF,Σ and LF,Σ when assuming some default
alphabet (to be discussed shortly). “ + ”, “ · ”, “ – ” and “¬ ”
are used to denote Boolean set operators union, intersection,
difference and complement.

Two descriptions E1 and E2 are equivalent, denoted by
E1 = E2, if they cover the same set of points. Logical
equivalence implies equivalence but not vice versa.
||E|| indicates the interpretability of E for a given for-

mat. There are two simple ways of defining ||E||, absolute
length and relative length. Absolute length is the total num-
ber of occurrences of symbols in E; relative length is the
cardinality of VE . Neither alone captures the interpretability
of E perfectly. The former overestimates the repeated sym-
bols; the latter underestimates the repeated symbols. The
two converge if the repeated symbols are few, which we ex-
pect to be the case for cluster descriptions. We define ||E||
to be the relative length of E for the ease of analysis.

Description accuracy is another important measure for
the goodness of E, which we will discuss in more details in
section 3. For the use of this section, we conservatively de-
fine the “more accurate than” relationship for descriptions.

A description for C is more accurate than the other if it cov-
ers more points from C and less points from C−.

Definition 2.1 (more accurate than) Given E1 and E2 as
descriptions for a cluster C, we say E1 is more accurate
than E2, denoted by E1 ≥accu E2, if |E1 · C| ≥ |E2 · C|
and |E1 · C−| ≤ |E2 · C−|.

(E1·C ⊇ E2·C)∧(E1·C− ⊆ E2·C−) ⇒ E1 ≥accu E2.
A description problem, viewed as searching, is to search

good descriptions that optimize some objective function in
a given description language. A more general description
language implies more expressive power. Language L1 is
more general than language L2 if L1 ⊇ L2. To character-
ize expressive power more precisely, we define the “more
expressive than” relationship for languages. L1 is more ex-
pressive than L2 if for any description of cluster C in L2,
there is a shorter and more accurate description in L1.

Definition 2.2 (more expressive than) Given two descrip-
tion languages L1, L2 and a cluster C, we say L1 is more
expressive than L2, denoted by L1 ≥exp L2, if for any de-
scription E2 ∈ L2, there exists some description E1 ∈ L1

with ||E1|| ≤ ||E2|| and E1 ≥accu E2 with respect to C.
Also, L1 =exp L2 if (L1 ≥exp L2) ∧ (L2 ≥exp L1).

A more expressive language is guaranteed to contain
“better” expressions with respect to length and accuracy.
Certainly, L1 ⊇ L2 ⇒ L1 ≥exp L2. Yet to restrict the
search space, we do not want languages to be unnecessarily
general. This concern carries on through the following dis-
cussions on alphabets and formats, by which languages are
specified.

2.2. Description alphabets

Unlike the set cover problem, alphabet Σ is not explicitly
given in cluster description. Assuming given Σ, a descrip-
tion problem, MDA or MDL, can be considered searching
through a given language L for the optimal expression. We
call such problems L-problems; in particular, L-MDA or L-
MDL. The L-problems, to be detailed shortly, are variants
of the set cover problem. We brief alphabets mainly for the
purpose of gaining insights into the description problems by
relating their L-problems to the classical set cover problem.

Σ is potentially an infinite set since for a set of points,
there are an infinite number of covering rectangles with
each being a candidate symbol. A simple finite alphabet
can be defined as the set of bounding boxes for the subsets
of BC , i.e., Σmost = {BS |S ⊆ BC}. The alphabet is fi-
nite since there is a unique bounding box for a set of points.
Σmost is the most general alphabet relevant to the task of
describing C; however, it can be unnecessarily general for
some L-problem with a mismatched format. It is desirable
to have some most specific sufficiently general alphabets.

Let f (L-p) denote the feasible region of an L-problem L-
p; certainly, f (L-p) ⊆ L. We say Σ is sufficiently general
for LF,Σ-p if LF,Σ ≥exp f (LF,Σmost -p), which roughly
means Σ does not lose to Σmost if used in the L-p case.
On top of being sufficiently general, Σ is most specific if
removing any element from it, Σ would not be sufficiently
general anymore. In the following, we define some alpha-
bets with this desireable property.

Σpure = {BS |BS · C− = ∅ ∧ S ⊆ C ∧ S 6= ∅}
Σ−

pure = {BS |BS · C = ∅ ∧ S ⊆ C− ∧ S 6= ∅}
Σmix = {BS |S ⊆ C ∧ S 6= ∅}
Σ−

mix = {BS |S ⊆ C− ∧ S 6= ∅}

Σpure (Σ−
pure) contains pure rectangles covering points

from C (C−) only. Symbols in Σmix (Σ−
mix), however, can

be mixed allowing points from C and C− to co-exist. Ap-
parently, Σpure ⊆ Σmix ⊆ Σmost and Σ−

pure ⊆ Σ−
mix ⊆

Σmost. Multiple subsets may match to the same bounding
box, e.g., B13 = B123 in Figure 1, where B13 is short for
B{1,3} and so on. The figure illustrates Σpure and Σmix.

Examples of some L-problems with matching alpha-
bet and format are LSOR,Σpure-MDL, LSOR−,Σ−pure

-MDL,
LSOR,Σmix-MDA and LSOR−,Σ−

mix
-MDA. In addition, we

define Σk = Σmix + Σ−
pure, then LkSOR±,Σk

-MDL and
LkSOR±,Σk

-MDA are also such examples. Due to the page
limit, we omit further explanations.

Such a desirable Σ is assumed given by default if it is left
unspecified in EF,Σ or LF,Σ . Although these default alpha-
bets are made specific, they can still be prohibitively large
(e.g., O(|2C |) and not scalable to real problems. Therefore,
it is practically infeasible to generate Σ and apply existing
set cover approximations on description problems.

2.3. Description formats and languages

We require descriptions to be interpretable. For descrip-
tions to be interpretable, the description format has to have a
simple and clean structure. Sum of Rectangles (SOR), de-
noting the union of a set of rectangles, serves this purpose
well and has been the canonical format for cluster descrip-
tions in the literature (e.g., [1, 16]). For better interpretabil-
ity, we also want descriptions to be as short as possible. To
minimize the description length of SOR descriptions has
been the common description problem.

Nevertheless, there is a trade-off between our prefer-
ences for simpler formats and shorter description length.
Simple formats such as SOR may restrict the search space
too much leading to languages with low expressive power.
On the other hand, if a description format allows arbitrary
Boolean operations over a given alphabet, we certainly have
the most general and expressive language containing the
shortest descriptions, but such descriptions are likely hard to

 B13

 B123

 C = {1, 2, 3} C– = {4}

pure = {B1, B2, B3, B23}

mix = {B1, B2, B3, B12, B13, B23}

B23

B12

3

1

4

2

Figure 1. Alphabets.

 SOR: 5 SOR
–: 4 kSOR

±: 3

 EkSOR±(C) = ESOR(C1) + ESOR–(C2)

 = BC1
+ (BC2

 – R1’)

C1

C2

 R1’

Figure 2. Formats.

comprehend due to their complexity in format despite their
succinctness in length. Moreover, not well-structured com-
plex formats bring difficulties in manipulation of symbols
and design of efficient and effective searching strategies.

Clearly, we require description languages with high ex-
pressive power yet in intuitively understandable formats.
In the following, we explore several alternative description
formats beyond SOR, in particular, SOR− and kSOR±.

While SOR takes the form of R1 + R2 + ... + Rl, a
SOR− description, in describing C, takes the set difference
between BC and a SOR description for C−.

Definition 2.3 (SOR− description) Given a cluster C, a
SOR− description for C, ESOR−(C), is a Boolean expres-
sion in the form of BC −ESOR(C−), where ESOR(C−) is
a SOR description for C−.

In addition, a SOR± description for C, ESOR±(C),
is an expression in the form of either ESOR(C) or
ESOR−(C). Clearly, LSOR± ⊇ LSOR and LSOR± ≥exp

LSOR. In describing a cluster C, SOR and SOR− descrip-
tions together nicely cover two situations where C is easier
to describe or C− is easier to describe. Different data distri-
butions, which are usually not known in advance, favor dif-
ferent formats. In Figure 2, consider C2 as a single cluster
to be described with perfect accuracy, certainly SOR− de-
scriptions are favored. The shortest ESOR(C2) has length
4 whereas the shortest ESOR−(C2) has length 2.

SOR− descriptions have a structure as simple and clean
as SOR descriptions. In addition, the added BC draws a
big picture of cluster C and contributes to interpretability
in a positive way. The two formats together also allow us
to view C from two different angles. Note that the special
rectangle BC is required for the format, it is not included in
the default alphabets either counted in ||E|| for simplicity.

SOR± descriptions generally serve well for the purpose
of describing compact and distinctive clusters. Neverthe-
less, arbitrary shape clusters are not uncommon and for such
applications, we may want to further increase the expressive
power of languages by allowing less restrictive formats. For
example, if some parts of cluster C favor SOR and some

other parts favor SOR−, then SOR± is too restrictive to
consider different parts separately. Instead, it can only pro-
vide a global treatment for C. To overcome this disadvan-
tage, we introduce kSOR± descriptions.

Definition 2.4 (kSOR± description) Given a cluster C, a
kSOR± description for C, EkSOR±(C), is a Boolean ex-
pression in the form of ESOR±(C1) + ESOR±(C2) + ... +
ESOR±(Ck), where

⋃k
i=1 Ci = C.

Clearly, kSOR± descriptions generalize SOR± de-
scriptions by allowing different parts of C to be described
separately; and the latter one is a special case of the for-
mer one with k = 1. In Figure 2, C1 favors SOR whereas
C2 favors SOR−. The shortest ESOR(C) and ESOR−(C)
have length 5 and 4 respectively. kSOR± is able to provide
local treatments for C1 and C2 separately and the shortest
EkSOR±(C) has length 3. In many situations kSOR± can
be found much more effective than other simpler formats;
but how expressive is LkSOR± precisely? In the following,
we compare it with the propositional language, the most
general description language we consider (as in [18]).

Definition 2.5 (propositional language) Given Σ as the al-
phabet, LP,Σ is the propositional language comprising ex-
pressions allowing usual set operations of union, intersec-
tion and difference over Σ.

Theorem 2.6 LkSOR±,Σk
=exp LP,Σk

Proof LP,Σk
⊇ LkSOR±,Σk

⇒ LP,Σk
≥exp LkSOR±,Σk

;
we only need to prove LkSOR±,Σk

≥exp LP,Σk
.

Consider any E ∈ LP,Σk
. Since E can be re-written

as EDNF in disjunctive normal form with the same set of
vocabulary, thus ||E|| = ||EDNF || and E = EDNF . Each
disjunct in EDNF is a conjunction of literals and each literal
takes the form of R or ¬R where R ∈ Σk. Consider any dis-
junct Ej in EDNF , since axis-parallel rectangles are inter-
section closed, Ej can be re-written as E′

j , which takes one
of the following three forms: (1) E′

j = R0; (2) E′
j = R0 ·

¬Rx· ¬Ry · ... · ¬Rz; (3) E′
j = ¬Rx · ¬Ry · ... · ¬Rz . In all

the three cases ||E′
j || ≤ ||Ej || and E′

j = Ej .
For case 3, due to the generalized De Morgan’s law,

E′
j = ¬Rx · ¬Ry · ... · ¬Rz = ¬(Rx + Ry + ... + Rz) =

BC −(Rx + Ry + ... + Rz), which is a SOR− description.
For case 1 and 2, we suppose R0 ∈ Σk. Then for case 1,

E′
j is a SOR description. For case 2, due to the generalized

De Morgan’s law, E′
j = R0 · ¬(Rx + Ry + ... + Rz) =

R0− (Rx + Ry + ... + Rz), which is a SOR− description.
Then, Ej can be re-written as an equivalent SOR± de-

scription with length≤ ||Ej ||. We do this for every disjunct
of EDNF , then E can be re-written as a kSOR± descrip-
tion E′ ∈ LkSOR±,Σk

with ||E′|| ≤ ||E|| and E′ = E,
which implies LkSOR±,Σk

≥exp LP,Σk
.

Note that for case 1 and 2, we have supposed R0 ∈ Σk,
which may not hold since Σk is not intersection closed. As
a simple counter-example, the intersection of two bounding
boxes may not be a bounding box. However, we note that
for the two cases, the purpose of E′

j is to describe R0 ·C =
C0 ⊆ C, thus R′0 = BC0 ∈ Σk. As expressions of length 1
describing C0, R′0 ≥accu R0 because (R′0 ·C0 = R0 ·C0)∧
(R′0 ·C−0 ⊆ R0 ·C−0). We replace R0 with R′0 in E′

j to get
E′′

j , then E′′
j ≥accu E′

j and ||E′′
j || = ||E′

j ||. Then, Ej can
be re-written as a more accurate SOR± description with
length ≤ ||Ej ||. Wo do this for every disjoint of EDNF ,
then E can be re-written as a kSOR± description E′′ ∈
LkSOR±,Σk

with ||E′′|| ≤ ||E|| and E′′ ≥accu E, which
implies LkSOR±,Σk

≥exp LP,Σk
.

Theorem 2.6 does not hold if description length ||E|| is
defined as the absolute length, in which case E = (R1 +
R2)−R3 in LP has length 3 but the equivalent E′ = (R1−
R3) + (R2 − R3) in LkSOR± has length 4. Nevertheless,
the general conclusion persists, that is, LkSOR± is a very
expressive language close or equal to LP .

Despite its exceptional expressive power, the kSOR±

format is very simple and conceptually clear, allowing only
one level of nesting as the SOR− format. It is also well-
structured to ease the design of searching strategies.

Assuming some given default alphabet, previous re-
search studied cluster description as searching the shortest
expression in LSOR,Σpure , the simplest and least expressive
language we discussed in this section. We study the same
problem but considering other more expressive languages
LSOR± and LkSOR± , and our main focus is on the problem
of finding the best trade-offs between accuracy and inter-
pretability, as to be introduced in the following section.

3. Cluster description problems

A description problem is to find a description for a clus-
ter in a given format that optimizes some objective. In this
section, we introduce cluster description problems with dif-
ferent objective measures.

3.1. Objective measures

We want to describe a given cluster C with good inter-
pretability and accuracy. Simple formats and shorter de-
scriptions lead to improved interpretability. We have stud-
ied alternative description formats that are intuitively com-
prehensible. Within a given description format, description
length is the proper objective measure for interpretability.

In addition to interpretability, the objective of minimiz-
ing description length can also be motivated from a “data
compression” point of view. There are many situations
when we need to retrieve the original cluster records; e.g., to

send promotion brochures to a targeted class of customers,
to perform statistical analysis, or in a query-based itera-
tive mining environment as advocated by [13], to resume
the mining process from stored temporary or partial results.
Cluster descriptions provide a neat and standalone way of
“storing and retrieving” cluster contents.

In DBMS systems, an isothetic rectangle can be spec-
ified by a Boolean search condition such as 1 ≤ D1 ≤
10∧ ...∧5 ≤ Dd ≤ 50. A cluster description is then a com-
pound search condition for the points in the cluster, which
can be used in the WHERE clause of a SELECT query state-
ment to retrieve the cluster contents entirely. In this sce-
nario, the cluster description process resembles encoding
and the cluster retrieval process resembles decoding. The
compression ratio for cluster description E can be roughly
defined as |E| / (||E|| × 2), as each rectangle takes twice
as much space as each point. The goal of large compres-
sion ratio leads to the objective of minimizing description
length. Meanwhile, shorter length also speeds up the re-
trieval process by saving condition checking time [18].

Accuracy is another important measure for the good-
ness of cluster descriptions. An accurate description should
cover many points in the cluster and few points not in the
cluster. To precisely characterize description accuracy, we
borrow some notations from the information retrieval com-
munity [2] and define recall and precision for a description
E of cluster C.

recall = |E · C| / |C|
precision = |E · C| / |E|

If we only consider recall, the bounding box BC could
make a perfectly accurate description; if we only consider
precision, any single point in C would do the same. The
F -measure considers both recall and precision and is the
harmonic mean of the two.

f =
2× recall× precision

recall + precision

A perfectly accurate description with f = 1 has recall =
1 and precision = 1. In a perfectly accurate SOR or SOR−

description, all rectangles are pure in the sense that they
contain same-class points only.

The F -measure does not fit situations where users want
to specify constraints on either recall or precision. We in-
troduce two additional measures to provide this flexibility.
The first is recall at fixed precision; often, we want to fix
precision at 1. The second is precision at fixed recall; of-
ten, we want to fix recall at 1. The measures can be found
useful in many situations. If we can afford to lose points
in C much more than to include points in C−, then we can
choose recall at fixed precision of 1 to sacrifice recall and
protect precision as in the maximum box problem [7]; in the
opposite situation, we can choose precision at fixed recall of
1 as in the red blue set cover problem [6].

6 0.79 0.68

7 0.82 0.73

8 0.85 0.77

9 0.87 0.8

10 0.9 0.82

11 0.915 0.84

12 0.925 0.86

13 0.937 0.87

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Length

A
c
c
u

ra
c
y

feasible region of MDL

Pareto front

approximation to Pareto front

feasible region of the bicriteria problem =

union of feasible regions of MDA problems

Figure 3. Accuracy vs. length.

3.2. MDA problem and MDL problem

Description length and accuracy are two conflicting ob-
jective measures that cannot be optimized simultaneously.
The Pareto front for the bicriteria problem, as illustrated in
Figure 3, offers the best trade-offs between accuracy and
interpretability for a given format. To solve the bicriteria
problem and obtain the best trade-offs, we introduce the
novel Maximum Description Accuracy (MDA) problem.

Definition 3.1 (Maximum Description Accuracy problem)
Given a cluster C, a description format F , an integer l,
and an accuracy measure, find a Boolean expression E in
format F with ||E|| ≤ l such that the accuracy measure is
maximized.

The optimal solutions to the MDA problems with differ-
ent length specifications up to a maximal length constitute
the Pareto front. The vertical lines in Figure 3 illustrate
the feasible regions of the MDA problems, whose union is
the feasible region of the bicriteria problem. The maximal
length is the length of some shortest description with perfect
accuracy, which is 20 in Figure 3. It is pointless to spec-
ify larger lengths as the best accuracy has been achieved.
To determine this maximal length, we define the Minimum
Description Length (MDL) problem, whose objective is to
find some shortest description that covers a given cluster
completely and exclusively, i.e., with f = 1.

Definition 3.2 (Minimum Description Length problem)
Given a cluster C and a description format F , find a
Boolean expression E in format F with minimum length
such that (E · C = C) ∧ (E · C− = ∅).

The optimal solution to the MDL problem gives the max-
imal length to specify in solving the MDA problems. The
feasible region of the MDL problem is also illustrated in
Figure 3. Previous research only considered the MDL prob-
lem with SOR as the description format. However, in prac-
tice, perfectly accurate descriptions can become lengthy and
hard to interpret for arbitrary shape clusters. The MDA
problem allows trading accuracy for interpretability so that
users can zoom in and out to view the clusters. From a “data

compression” point of view, description requiring perfect
accuracy resembles lossless compression while description
allowing lower accuracy resembles lossy compression.

Assuming some given default alphabets as previously
discussed, the L-problems, easier than their counterparts,
can be related to some variants of the set cover problem. In
particular, LSOR,Σpure -MDL corresponds to the minimum
set cover problem, which is known to be NP-hard. Other L-
MDL problems are harder in the sense that they have larger
search spaces with more general languages.

Given the recall at fixed precision of 1 accuracy measure,
the LSOR,Σpure -MDA problem corresponds to the maxi-
mum coverage problem, which is known to be NP-hard.
Given the precision at fixed recall of 1 accuracy measure,
the LSOR,Σpure-MDA problem corresponds to the red blue
set cover problem, which is also NP-hard [6]. Given the
F -measure, the decision version of the LSOR,Σpure -MDA
problem is reducible to the decision problem of either of
the two. Other L-MDA problems are harder in the sense
that they have larger search spaces.

As we have seen, the cluster description problems, with
different format and accuracy measure specifications as dis-
cussed, are all NP-hard. We present efficient and effective
heuristic algorithms for these problems in the next section.

4. Description algorithms

In this section, we present three heuristic algorithms.
Learn2Cover solves the MDL problem approximating the
maximal length. Starting with the output of Learn2Cover,
DesTree iteratively builds the so-called description tree for
the MDA problems approximating the Pareto front. Find-
Clans transforms the output descriptions from DesTree into
shorter kSOR± descriptions without reducing the accuracy.

4.1. Learn2Cover

Given a cluster C, Learn2Cover returns a description E
for C in either SOR or SOR− format with f = 1. For
this purpose, it suffices to learn a set of pure rectangles <
covering C and a set of pure rectangles <− covering C−

completely. Learn2Cover is carefully designed such that <
and <− are learned simultaneously in a single run; besides,
the extra learning of <− does not come as a cost but rather
a boost to the running time.

Sketch of Learn2Cover. To better explain the main ideas,
we give the pseudocode for the simplified Learn2Cover and
its major procedure cover() in the following.

In preprocessing(), the bounding box BC is determined;
the points in BC are normalized against BC and sorted
along a selected dimension Ds. Ties are broken arbitrarily.

Algorithm: Learn2Cover
preprocessing(); // sort BC along Ds1

foreach (ox ∈ BC) { // processed in sorted order2

if (ox ∈ C)3

cover(<, ox, <−);4

else5

cover(<−, ox, <); }6

Procedure: cover(<, ox, <−)
foreach (R ∈ <−) {1

if (cost(R, ox) == 0)2

close R; }3

foreach (R ∈ < && R is not closed) {4

if (cost(R, ox) == 0) {5

extend R to cover ox;6

return; }}7

foreach (R ∈ <) { // processed in ascending order of cost8

if (no violation against <−) {9

expand R to cover ox;10

return; }}11

insert(<, Rnew); // ox was not covered. Rnew = ox12

At the moment we suppose there are no mixed ties involv-
ing points from different classes. In general, the choice of
Ds does not have a significant impact if the data is not ab-
normally sparse; thus Ds can be arbitrarily chosen. Never-
theless, Learn2Cover offers an option to choose Ds with the
maximum variance, which makes the algorithm more robust
against some rare, malicious cases such as large mixed tie
groups. Learn2Cover is deterministic once Ds is chosen.

Initially < = ∅ and <− = ∅. Let ox be the next point from
BC in the sorted order to be processed. cover(<, ox, <−)
or cover(<−, ox, <) is called upon depending on ox ∈ C
or C−. The two situations are symmetric.

Suppose ox ∈ C, procedure cover(<, ox, <−) chooses
a non-closed R ∈ < covering no points covered by rec-
tangles in <− and with the minimum covering cost with
respect to ox to expand and cover ox. Otherwise, a new
rectangle Rnew minimally covering ox will be created and
added to < (line 12). A rectangle is closed if it cannot
be expanded to cover any further point without causing a
covering violation, i.e., covering points from the other
class (lines 1, 2, 3). Violation checking can be expensive;
therefore, we always calculate cost(R, ox) first. If there is
a non-closed R with cost(R, ox) = 0, we need to extend R
only along Ds to cover ox, in which case violation check-
ing is unnecessary (lines 4, 5, 6, 7). Otherwise rectangles
are considered in ascending order of cost(R, ox) for viola-
tion checking. The first qualified rectangle will be used to
cover ox (lines 8, 9, 10, 11). In the following we discuss
covering cost and covering violation in more details.

Ds

(b) Demonstration run (a) Choice of rectangles

R3

R1

R2

ox

R1

R2

R3

R4

R5

R6

 A

 B

Figure 4. Learn2Cover.

Covering cost and choice of rectangles. The behavior
of Learn2Cover largely depends on how the covering cost
cost(R, ox) is defined, i.e., the cost of R to cover point ox.
This cost should estimate the reduction of the potential of
R to cover further points after ox. Intuitively, we want to
choose R with the minimum increased volume, so that rec-
tangles can keep maximal potential for future expansions
without incurring covering violations.

Yet there are more issues to be concerned beyond this
basic principle. First, when calculating the increased vol-
ume for R, we should not consider Ds. Since points are
sorted on Ds and processed in the sorted order, the exten-
sion of R along Ds is the distance it has to travel to cover
further points after ox. To keep R short on Ds does not help
to keep its potential for future expansions. In Figure 4(a),
if we considered Ds, R1 would have the biggest increased
volume and not be chosen to cover ox. But this saved space
would be part of the expanded R1 in covering any point af-
ter ox, and whether R1 had been expanded already to cover
ox or not would not make a difference. This suggests that
the increased volume of R1 with respect to ox should be 0,
ignoring Ds in the calculation.

Second, if the expanded R has a length of 0 or close to 0
in any dimension, its volume and increased volume will be
0 or close to 0, which makes R a favorable choice. But R
may have traveled far along some other dimensions to cover
ox; its expansion potential would thus be limited. In Figure
4(a), both R1 and R3 require the same increased volume of
0 to cover ox since R1 has to be extended only along Ds

and R3 has a length of 0 in one of its dimensions. However,
R3 has to travel far along some dimensions other than Ds

whereas R1 does not. Moreover, R2 does not have the in-
creased volume of 0, but it seems not to be a worse choice
than R3 because ox is more local to R2 than R3. Therefore,
cost needs to fix the illusion of 0 increased volume and take
into account the locality of rectangles.

In the following, we propose a definition for cost(R, ox)
with these issues in consideration. Let lj(R) denote the
length of rectangle R along dimension Dj , and R′ denote
the expanded R in covering ox.

vol(R) =
∏

j=1..d,j 6=s lj(R)

aveIncV ol(R, ox) = (vol(R′)− vol(R))1/(d−1)

dist(R, ox) = (
∑

j=1..d,j 6=s |lj(R′)− lj(R)|2)1/2

cost(R, ox) = aveIncV ol(R, ox) + dist(R, ox)

Ds is ignored if we project R and ox onto the sub-
space D\Ds. vol(R) is the volume of the projected R;
aveIncV ol can be viewed as the increased volume aver-
aged on each dimension; dist is precisely the Euclidean dis-
tance from the projected ox to the projected R. cost is the
sum of aveIncV ol and dist, i.e., we assign equal weights
to both components of cost. According to this definition of
cost(R, ox), the choices in Figure 4(a) would be R1, R2,
and R3 in priority order.

Sometimes there are no good rectangles available, in
which case forcing greedy expansions may deteriorate the
overall performance. Learn2Cover provides an expansion
control parameter to limit the maximum distance each di-
mension can travel at each expansion. Since data is normal-
ized, the default choice of 0.5 means that each expansion
cannot exceed half of the span of BC in each dimension.
The parameter is user-specified but not sensitive. Without
expansion control, Learn2Cover works generally well; but it
may help in cases of extremely sparse or malicious datasets.

Figure 4(b) is a real run of Learn2Cover on a toy dataset.
Dark and light points denote points in C and C− respec-
tively. Rectangles are numbered in ascending order of their
creation time. Note that on processing A, a better choice of
R3 was made while R4 was also available. R3 had cost of
0 with Ds ignored. If R4 had been chosen to cover A, it
would have been closed before covering B.

Covering violation and correctness. Learn2Cover is re-
quired to output pure rectangles, any covering of inter-class
points will be considered as a violation.

BP considers all inter-class points in violation checking.
In Learn2Cover, since points are processed in the sorted or-
der, the only points that could lead to violations in the ex-
pansion of Ri ∈ < (<−) are currently processed points in
Rj ∈ <− (<) that overlaps with the expanded Ri. Thus
< and <−, the sets of rectangles to be learned, also ex-
ist to help each other in violation checking to dramatically
reduce the number of points in consideration. A simple aux-
iliary data structure is maintained to avoid the possible per-
formance deterioration in the presence of extremely dense
and big rectangles. We omit the details due to the page limit.

Learn2Cover outputs pure rectangle collections < and
<− covering every point in C and C− respectively. We
examine procedure cover() to argue the correctness. From
the definition of cost, cost(R, ox) = 0 if and only if the
projected ox is in the projected R. In such case, if R ∈ <
(<−) and ox ∈ C−(C), R will not be able to cover any

further point without covering ox, which causes a violation
and R will thus be closed (line 3). If R ∈ < (<−) and
ox ∈ C (C−), R can be extended along Ds to cover ox

as (line 6) without causing any violation. If there existed
o′ causing a violation, o′ must have been processed before
ox with cost(R, o′) = 0, which would have caused R to
be closed. In line 10, R is expanded to cover ox after vi-
olation checking. In line 12, Rnew is a degenerate rectan-
gle covering only one point ox. Thus, upon completion of
Learn2Cover, each ox ∈ BC is covered without violation.

In the sketch of Learn2Cover, we have assumed there
were no mixed ties involving points from different classes.
This case may happen and even frequently on grid data.
Mixed tying points may cause covering violation to one
another. Learn2Cover identifies mixed tie groups in the
preprocessing() step, and then some extra checking is per-
formed on processing ox belonging to a mixed tie group.

4.2. DesTree

The MDA problem is to find a description E with a user-
specified length l for cluster C maximizing a given accu-
racy measure. Our algorithm DesTree takes the output from
Learn2Cover, < or <− whose cardinality approximates the
maximal length, iteratively builds a so-called description
tree approximating the Pareto front.

Description trees are tree structures resembling dendro-
grams to provide overviews on alternative trade-off descrip-
tions of different lengths. Accordingly, DesTree resembles
agglomerative hierarchical clustering to iteratively merge
child nodes into parent nodes until a single node is left.
Each node in a description tree represents a rectangle; and
a normal merge operation produces a parent node that is the
bounding box of its child nodes. The tree grows bottom-up
along a series of merge operations.

Each horizontal cut in the tree defines a set of rectangles.
For the so-called C-description tree, a cut set constitutes the
vocabulary for a SOR description of C; for the so-called
C−-description tree, a cut set constitutes the vocabulary for
a SOR description of C− leading to a SOR− description
of C. The cardinality of a cut set, the description length,
equals to the number of links being cut. Each cut offers an
alternative trade-off between description length and accu-
racy. The higher in the tree we cut, the shorter the length
and the lower the accuracy.

Consider a SOR (SOR−) description, merging two rec-
tangles into their bounding box may cause precision (recall)
to decrease; removing a rectangle may cause recall (preci-
sion) to decrease. Both operations trade the accuracy mea-
sure, say f , for shorter length and we want to consider both.
To integrate the removal operation in building description
trees, we add a symbolic node, the empty set ∅, into the leaf
nodes and define the merge operator as follows.

cut1 = {R5, R3, R4}

cut2 = {R5, R3}

cut0 = R (R–)

input: R (R–)R1 R2 R3 R4 Φ

R5

R6

Φ

Φ

Figure 5. Description tree.

Definition 4.1 (merge) Ri merge Rj = Rparent =
(1) bounding box for Ri and Rj if Ri 6= ∅ and Rj 6= ∅;
(2) ∅ otherwise

DesTree is a greedy approach starting from the input
leaf nodes, a set of pure rectangles < or <− generated
by Learn2Cover, building the tree in a bottom-up fashion.
Pairwise merge operations are performed iteratively, and
the merging criterion is the biggest resulting accuracy mea-
sure. The C-description tree and C−-description tree are
built separately in the same fashion.

Figure 5 exemplifies a description tree. R1 ∼ R4 are the
input rectangles. R1 and R2 are chosen for the first merge
to give R5. The second merge of R4 and ∅ results in the
removal of R4. R6, the parent node of R5 and R3, merges
with ∅ to give the symbolic root. The lowest cut cut0 is < or
<−. Each cut corresponds to a SOR or SOR− description.
Take cut2 as an example. For a C-description tree, cut2
corresponds to ESOR(C) = R5 +R3; for a C−-description
tree, it corresponds to ESOR−(C) = BC − (R5 +R3). De-
scription trees are not necessarily binary. A merge could
result in more rectangles fully contained in the parent rec-
tangle. Nonetheless, the merging criterion discourages
branchy trees and Figure 5 is a typical example.

The merging process can be simplified for some accu-
racy measures. Given recall at fixed precision of 1, for the
C-description tree, only merge operation (2) (the removal
operation) needs to be considered, and the root is always ∅;
for the C−-description tree, only merge operation (1) (the
normal merge operation) needs to be considered, and the
root is always BC− . For both cases, precision is guaranteed
to be 1 and recall reduces along the merging process.

Given precision at fixed recall of 1, for the C-description
tree, only merge operation (1) needs to be considered, and
the root is always BC ; for the C−-description tree, only
merge operation (2) needs to be considered, and the root is
always ∅. For both cases, recall is guaranteed to be 1 and
precision reduces along the merging process.

We can easily prove the accuracy measure, recall at fixed
precision of 1 or precision at fixed recall of 1, reduces
monotonically along the merging process in DesTree. With
respect to the F -measure, though evident in experiments, it
is non-trivial to construct a proof of the same property.

4.3. FindClans

FindClans takes as input a cut (denoted by T in the
following) from a description tree representing a SOR or
SOR− description, outputs a kSOR± description with
shorter length and equal or better accuracy.

The algorithm is based on the concept of clan. Let
SORV be a SOR description with vocabulary V , e.g.,
SORV = R1 + R2 for V = {R1, R2}. Intuitively, a clan
N ⊆ T is a group of rectangles that dominate (densely pop-
ulate) a local region, so that by replacing them as a whole,
SORN can be rewritten as a shorter and more accurate
SOR− description for the targeted points in the region.

Definition 4.2 (clan) Given T as a cut from a C (C−) -
description tree, N ⊆ T is a clan if |N | − |N ′| > 1 and
BN − SORN ′ ≥accu SORN in describing SORN · C
(SORN ·C−), where BN is the bounding box of N and N ′

a set of rectangles associated with N called the replacement
of N . We also refer to |N | − |N ′| − 1 as N.score.

Note that the purpose of SORN is to describe SORN ·
C (SORN · C−) if T is from a C (C−) -description tree.
N.score is the possible length reduction offered by a single
clan N since SORN will be replaced by BN − SORN ′ .
Two clans N1 and N2 are disjoint if N1 ∩N2 = ∅. For a set
of mutually disjoint clans, Clans, the total length reduction
is at least

∑
Ni.score where Ni ∈ Clans.

Figure 6 uses the example in Figure 2 and illustrates how
a clan can help to rewrite a SOR description represented by
T into a shorter kSOR± description.

Suppose we have found Clans for T and T is from a
C-description tree, it is straightforward to rewrite the input
SOR description ESOR(C) = SORT into a kSOR± de-
scription as illustrated in Figure 6. For each N ∈ Clans,
we simply replace SORN in SORT by the shorter and
more accurate (BN − SORN ′).

If T is from a C−-description tree, the input SOR− de-
scription is ESOR−(C) = BC − SORT . For each N ∈
Clans, we replace SORN in SORT by BN and add back
SORN ′ . As an example, let ESOR−(C) = BC−SORT =
BC − (R1 +R2 +R3 +R4 +R5). Suppose we have a clan
N = {R2, R3, R4, R5} with replacement N ′ = {R′1}, then
EkSOR±(C) = BC−(R1+BN)+R′1. The length reduction
= T.score = 4−1−1 = ||ESOR−(C)||−||EkSOR±(C)|| =
6 − 4 = 2. It is easy to verify that after all such replace-
ments, the resulting EkSOR±(C) is shorter and more ac-
curate than ESOR(C) or ESOR−(C) with respect to any
accuracy measure we discussed.

All we need is to find Clans. To simplify the task,
we define N ′, the replacement of N , to contain each rec-
tangle R ∈ <− (<) overlapping with BN if T is from
a C (C−) -description tree. Then, it is guaranteed that
BN − SORN ′ ≥accu SORN in describing SORN · C

R1

R = {R1, R2, R3, R4, R5}

R
– = {R1’, R2’, R3’}

T = R = {R1, R2, R3, R4, R5}

ESOR(C) = R1 + R2 + R3 + R4 + R5

N = {R2, R3, R4, R5} ⊆ T

N’ = {R1’}

BN = bounding box for N

N.score = |N| – |N’| – 1 = 4 – 1 – 1 = 2

EkSOR±(C) = R1 + (BN − R1’)

length reduction = ||EkSOR±(C)|| – ||ESOR(C)|| = 2

 R1’

R2 R3

 R5

 R4

R3’R2’

Figure 6. Clan helps in length reduction.

(SORN ·C−) since N ′ contains pure rectangles completely
covering BN ·C− (BN ·C). Thus given a candidate clan N ,
N ′ is uniquely determined and N is a clan if |N |−|N ′| > 1.

Algorithm Findclans, as presented in the following, con-
tinues to call procedure findAClan() to find a clan N in
the updated T and insert it into Clans. findAClan() first
checks each pair of rectangles in T and finds theN with
the highest score. bestN is used to keep track of the best
stage of theN , which continues to grow greedily one more
R ∈ (T − theN) at a time resulting in the largest score
increase, until no more rectangles available. bestN is re-
turned if it is a clan; otherwise, NULL.

Algorithm: FindClans (T)
Clans ← ∅;1

N ← findAClan(T);2

while (N ! = NULL) {3

insert(Clans, N);4

T ← T −N ;5

N ← findAClan(T); }6

return Clans;7

Procedure: findAClan(T)
find theN ; // consider each pair in T1

bestN ← theN ;2

while (theN ⊆ T) {3

grow theN ; // consider each R ∈ (T − theN)4

if (theN.score > bestN.score)5

bestN ← theN ; }6

if (bestN.score ≥ 1)7

return bestN ;8

else9

return NULL;10

5. Experimental results

We experimentally evaluated and compared our meth-
ods against CART (Salford Systems, Version 5.0) and
BP [16]. While decision tree classifiers, as argued in re-
lated work, can be applied to the MDA and MDL problems,

BP addresses the MDL problem only. We implemented
Learn2Cover, DesTree, FindClans, and BP. For BP, we also
implemented Greedy Growth and a synthetic grid data gen-
erator. To make our experiments reproducible, real datasets
from the UCI repository [4] with numerical attributes and
without missing values were used, where data records with
the same class label were treated as a cluster. Note that, in
the broad sense, a cluster can be used to represent an arbi-
trary class of labeled data that require discriminative gen-
eralization. The notion of rectangle can be extended (but
not implemented in this version) to tolerate categorical at-
tributes; e.g., to use sets instead of intervals. Rectangles do
not provide generalization on the categorical attributes.

5.1. Comparisons with CART

To approximate the Pareto front, our approach starts with
applying Learn2Cover for the MDL problem, then DesTree
for the MDA problems to build description trees. Decision
tree classifiers provide feasible solutions to both the MDL
and MDA problems. We compared Learn2Cover and De-
sTree with CART on UCI datasets. In each experiment we
described one class of points C, considering all points from
other classes within BC , the bounding box for C, as C−.

Learn2Cover vs. CART. In each experiment, BC was
fed to Learn2Cover and CART. The CART parameters were
set such that a complete tree without misclassifications
could be built. The entropy method was used for tree splits.

Table 1. Learn2Cover vs. CART.
dataset cls dim |C| |C−| Learn2Cover CART FindClans
wine 2 13 71 12 2 / 1 5 / 5 –0
iono g 34 225 11 3 / 2 7 / 6 –0
iris vir 4 50 18 3 / 3 5 / 5 –0

blocks 4 10 88 1588 31 / 12 35 / 20 –6
blocks 2 10 329 4974 26 / 19 48 / 49 –7
yeast cyt 8 463 783 69 / 97 144 / 174 –13
yeast nuc 8 429 939 74 / 87 164 / 170 –16

abalone I 8 1342 2549 165 / 179 313 / 317 –37
abalone F 8 1307 2693 214 / 259 454 / 449 –62
abalone M 8 1528 2626 251 / 278 510 / 488 –54

For each dataset, Table 1 presents the class label, the di-
mensionality, the cardinalities of C and C−, and the results.
For Learn2Cover and CART, a/b denotes the cardinalities
of the two sets of rectangles covering C and C− respec-
tively. For CART, a and b correspond to the numbers of
leaf nodes of the two classes. For Learn2Cover, they corre-
spond to |<| and |<−|. The smallest a or b is highlighted in
bold font. We observe that, on average, Learn2Cover needs
only half of the description length required by CART. Re-
sults from other UCI datasets as well as synthetic datasets
are not presented. However, the above observation holds
consistently through all the experiments.

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

l

f

yeast(cyt) DesTree

blocks(2) DesTree

yeast(cyt) CART

blocks(2) CART

Figure 7. DesTree vs. CART.

The output of Learn2Cover was further fed into Find-
Clans for additional length reduction. In Table 1, −c de-
notes the additional reduction achieved by FindClans com-
paring to the shortest length (in bold font). The effective-
ness of FindClans depends on the size and distribution of
the input data; bigger and more complex datasets are likely
to exhibit more clans, leading to more length reduction. We
observe that, FindClans further reduces the shortest descrip-
tion length by about 20% on average and up to 50%.

DesTree vs. CART. In each experiment, DesTree took
as input < or <− returned by Learn2Cover. For CART, the
complete tree without misclassifications was pruned step by
step. In each step, the misclassifications for both classes
were counted to calculate the F -measure. The number
of rectangles covering the target class C or C− was also
recorded as the description length.

Figure 7 demonstrates the results of DesTree (C-
description tree) and CART (target class C), for clarity, on
only two of the UCI datasets used in Table 1. f and l denote
the F -measure and description length respectively. As ex-
pected, for both methods, f decreases monotonically with
decreasing l. However, the DesTree results clearly domi-
nate the ones from CART. For each l, DesTree achieves a
significantly higher f , and each f a significantly smaller
l. Again, this observation holds consistently for all other
experiments not presented, including ones on other UCI
datasets and synthetic datasets, as well as C−-description
tree experiments on both data types.

5.2. Comparisons with BP

While the focus of our study is on the MDA problem,
BP addresses the MDL problem only. In this series of ex-
periments, we compared Learn2Cover with BP on synthetic
datasets as BP works on grid data. Our data generator fol-
lows exactly what [16] does for BP. It takes as input the
dimensionality, the number of intervals of each dimension,
and the density. Dense cells are randomly generated in a
grid with specified density, then one of them is randomly
selected to grow a connected dense cell set as cluster C, the
rest of the dense cells in BC constitute C−.

In our experiments with BP, we did not limit the number
of “don’t care” cells for use and allowed BP to find the best
possible results. Since BP only generates one set of rectan-
gles, we used < from Learn2Cover for the comparison. We
studied the averaged percentage length reduction compared
to BP for varying dataset size and dimensionality. We ob-
served that in all cases Learn2Cover clearly outperformed
BP, gaining 20% to 50% length reduction. As a general ten-
dency, the reduction increased with increasing complexity
of data. FindClans further improved the results, gaining an
additional 25% length reduction on average.

BP starts with the maximal rectangles generated by
Greedy Growth in a greedy manner. The “don’t care” cells
may come too late to be helpful, as illustrated in Figure 8.

-1

4

7

2

5

8

3

6

-9

C: {3, 4, 5, 6, 7}; C–: {-1, -9}; “don’t care” cells: 2, 8

Greedy Growth: R47 + R456 + R36

BP: the same as Greedy Growth since any pairwise merge

of rectangles would cause a violation covering -1 or -9

Learn2Cover: R2356 + R4578

Figure 8. A typical case in BP.

Runtime was not a major concern of this study. We did
not integrate the X-tree index, on which BP relies to reduce
the violation checking time. Without indexing for both, we
observed that Learn2Cover ran faster than BP by one to two
orders of magnitude. Recall that Learn2Cover can signifi-
cantly reduce the number of points in consideration for vi-
olation checking. If we assume constant number of rectan-
gles, Learn2Cover has a worst case runtime of O(|BC |2).

DesTree and FindClans also have quadratic worst case
runtime in the number of input rectangles, O(|<|2) or
O(|<−|2) for DesTree and O(|T |2) for FindClans respec-
tively. In particular, for DesTree, the accuracy calculation
results of all possible pairwise merges of rectangles can be
reused in each iteration, recalculation is needed only for
the resulting parent rectangle, which takes linear time. For
FindClans, in each call of procedure findAClan(), the results
from “find theN” (line 1) can be reused.

6. Conclusions

In this paper, we systematically studied rectangle-based
discriminative data generalization in the context of cluster
description, which transforms clusters into patterns and pro-
vides the possibility of obtaining human-comprehensible
knowledge from clusters. In particular, we introduced and
analyzed novel description formats, SOR− and kSOR±,
providing enhanced expressive power; we defined the novel
Maximum Description Accuracy (MDA) problem, allowing
users to specify different trade-offs between interpretabil-
ity and accuracy; we also presented heuristic algorithms to-
gether with their experimental evaluations.

The concept of cluster in our study, in the narrow sense,
is the output from clustering algorithms. Our study is mo-
tivated from and can find most applications in describing
such clusters. In the broad sense, a cluster can be used to
represent an arbitrary class of labeled data that require dis-
criminative generalization.

Last but not least, cluster descriptions are patterns which
can be stored as tuples in a relational table, so that a cluster-
ing and its associated clusters become queriable data min-
ing objects. Therefore, this research can serve as a first
step for integrating clustering into the framework of induc-
tive databases [13], a paradigm for query-based “second-
generation” database mining systems.

References

[1] R. Agrawal, J. Gehrke, D.Gunopulos, and P.Paghavan. Au-
tomatic subspace clustering of high dimensional data for
data mining applications. In SIGMOD, 1998.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley-Longman: Harlow, UK, 1999.

[3] P. Berman and B. Dasgupta. Approximating rectilinear poly-
gon cover problems. In Algorithmica, 1997.

[4] C. Blake and C. Merz. UCI repository of machine learning
databases. 1998.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. Wadsworth, 1984.

[6] R. Carr, S. Doddi, G. Konjevod, and M. Marathe. On the
red-blue set cover problem. In SODA, 2000.

[7] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and B. Sime-
one. The maximum box problem and its application to data
analysis. In Comput. Optim. Appl., volume 23, pages 285–
298, 2002.

[8] U. Feige. A threshold of lnn for approximating set cover. In
Journal of the ACM, volume 45(4), pages 634–652, 1998.

[9] B. Gao and M. Ester. Cluster description formats, problems,
and algorithms. In SDM, 2006.

[10] B. Gao and M. Ester. Right of inference: Nearest rectangle
learning revisited. In ECML, 2006.

[11] M. Garey and D. Johnson. Computers and Intractability:
A guide to the Theory of NP-completeness. W.H. Freeman:
New York, 1979.

[12] D. S. Hochbaum. Approximation algorithms for NP-hard
problems. PWS Publishing Company: Boston, 1997.

[13] T. Imielinski and H. Mannila. A database perspective on
knowledge discovery. In Communications of the ACM, vol-
ume 39(11), pages 58–64, 1996.

[14] D. Johnson. Approximation algorithms for combinatorial
problems. In J. Comput. System Sci., 1974.

[15] V. A. Kumar and H. Ramesh. Covering rectilinear polygons
with axis-parallel rectangles. In STOC, 1999.

[16] L. Lakshmanan, R. Ng, C. Wang, X. Zhou, and T. John-
son. The generalized MDL approach for summarization. In
VLDB, 2002.

[17] W. Masek. Some NP-complete set covering problems. man-
uscript, MIT, Cambridge, MA, 1979.

[18] A. Mendelzon and K. Pu. Concise descriptions of subsets of
structured sets. In PODS, 2003.

