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Abstract. In Nearest Rectangle (NR) learning, training instances are
generalized into hyperrectangles and a query is classified according to the
class of its nearest rectangle. The method has not received much atten-
tion since its introduction mainly because, as a hybrid learner, it does not
gain accuracy advantage while sacrificing classification time comparing
to some other interpretable eager learners such as decision trees. In this
paper, we seek for accuracy improvement of NR learning through con-
trolling the generation of rectangles, so that each of them has the right of
inference. Rectangles having the right of inference are compact, conser-
vative, and good for making local decisions. Experiments on benchmark
datasets validate the effectiveness of the proposed approach.

1 Introduction

Nearest Rectangle (NR) learning [9] is a hybrid inductive learning approach, in
which training instances are generalized into axis-parallel hyperrectangles, and
a query is classified according to its nearest rectangle. If a query falls inside
a rectangle, its distance to that rectangle is zero; if the query lies outside a
rectangle, the distance is the (weighted) Euclidean distance from the query to
that rectangle. If the query is equidistant to several rectangles, the smallest of
which is chosen. The rectangles we mention in this paper are isothetic bounding
boxes of the instances they contain, unless otherwise specified.

NR learners belongs to the class of hybrid lazy-eager learning algorithms.
Lazy algorithms such as k-Nearest Neighbor (kNN) classifiers are instance-based
and non-parametric, where the training data are simply stored in memory and
the inductive process is deferred until a query is given. In contrast, eager algo-
rithms such as decision trees, neural networks, and naive Bayes classifiers are
model-based and parametric, where the training data are greedily compiled into
a concise hypothesis (model) and then completely discarded. Obviously, lazy al-
gorithms incur lower computational costs during training but much higher costs
in answering queries also with greater storage requirements, not scaling well
to large datasets. They do not generate interpretable models as some eager al-
gorithms, in particular, decision trees can be directly inspected to understand
the decision surfaces embedded in data even for non-technical end-users. This
ease of comprehension is very appealing in decision support related data mining
activities, where insight and explanations are of critical importance [2].
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Fig. 1. Right of inference.

However, in terms of accuracy, lazy methods can be more advantageous. They
do not lose information since all the training data are retained. They have addi-
tional information to utilize, the query instances, such that local and adaptive
decisions can be made for predictions. On the other hand, eager methods try to
make predictions that are good on average using a single global model.

To compromise on some of the distinguishing characteristics of purely lazy
or eager methods, hybrid lazy-eager algorithms are studied. As an example, NR
learning partially processes the training instances and generalizes them into hy-
perrectangles; these intermediate results are retained and used to answer queries.
Nonetheless, the NR method has not received much attention mainly because it
is considered not accurate enough. The original NR learning algorithm as well
as several improved versions were experimentally compared with kNN [10, 11],
and it was concluded that the NR approach performed well in domains with
axis-parallel decision boundaries; while in other occasions it was significantly
inferior to kNN in terms of accuracy. Comparing to axis-parallel decision trees,
which are essentially rectangle-based, the rectangles induced by NR learners also
offer a level of intuitive interpretability. However, as a hybrid approach, NR is
slower in answering queries; then with similar accuracy, it has no advantage over
decision trees and this line of research discontinued soon after its introduction.

We revisit NR learning, and propose that the major reason accounting for its
loss of accuracy in previous endeavors was that, the generalized rectangles were
not given the right of inference that guarantees the appropriateness of rectangles
in making inferences. In general, rectangles having the right of inference should
be compact, conservative, and good for making local decisions, as illustrated
in Fig. 1. By imposing the right of inference on rectangles, NR classifiers can
potentially be intuitively explanatory, fast, scalable, yet highly accurate, having
many combined appealing properties from decision trees and kNN classifiers.

1.1 Related Work

Decision trees [6] are typical eager learners while kNN classifiers [4] exemplify
the simplest form of lazy learners. [1] identified the distinguishing characteristics
of eager and lazy learners. Both types of learners have their own desirable prop-
erties. To obtain good trade-offs, varied hybrid approaches were proposed, e.g.,
[7] introduced a method combining instance-based and model-based learning.



As a hybrid approach, nearest rectangle learning was first introduced in [9]
under the name of Nested Generalized Exemplar (NGE) theory. In NGE, an
exemplar can be a generalized axis-parallel hyperrectangle or a single training
instance, which is a degenerate (trivial) rectangle. Arbitrary overlapping and
nesting of rectangles of different classes are allowed. [10,11] challenged the ac-
curacy performance of NGE and made several improvement attempts such as
disallowing nesting and/or overlapping, modifying the rectangle construction
heuristic, and weighting features by mutual information. It was concluded that
the major reason leading to the loss of accuracy of NGE was the overlapping of
rectangles of different classes, yet the best improved version was still significantly
inferior to kNN in most of the tested datasets. We notice that, all the above at-
tempts did not pay much attention to the quality of the generated rectangles.
They allowed rectangles to make wild and inappropriate inferences, which would
significantly deteriorate the accuracy performance as illustrated in Fig. 1.

[5] studied cluster description formats, problems and algorithms, which also
involved discriminative summarization of labeled data using hyperrectangles.
But they considered only a two-class problem concerning objects in or not in
the cluster. Moreover, their focus was on description (generalization) instead of
classification (inference); the appropriateness of inference of rectangles was not
an issue, but the conciseness of descriptions, i.e., the number of rectangles.

In the remaining of the paper, Section 2 discusses the concept of right of
inference and its enforcement. Section 3 proposes LearnCovers, an NR learning
heuristic. Section 4 presents empirical results and Section 5 concludes the paper.

2 Right of Inference and its Enforcement

2.1 Right of Inference

Rectangle-based classifiers can provide certain degree of insight and understand-
ing into data and the instance space. In fact, consider a closed rectangular in-
stance space, the leaf nodes of an axis-parallel decision tree correspond to a
set of isothetic rectangles (not bounding boxes) forming a partition of the in-
stance space. The induction of decision trees generalizes the training data and
makes inferences to the entire instance space simultaneously with the disjoint-
ness constraint, striving to achieve good-on-average predictions. Intuitively, if we
separate generalization and inference into two serial phases and allow same-class
rectangles to overlap, we should be able to build classifiers that are more flexible,
adaptive and accurate, with the capacity to make local decisions.

Potentially, NR learning can induce such explanatory, adaptive and accu-
rate classifiers. However, if in the generalization phase, the rectangles are not
constructed in a conservative and compact fashion, they would make wild and
improper inferences, similar to the case of decision trees, as demonstrated in
Fig. 1 (a). It can be inspected that decision trees would make the same decision
for the query in the figure. On the contrary, Fig. 1 (b) illustrates some compact
rectangles for the same training data that are good for making local decisions,
having the so-called right of inference.
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Fig. 2. For Definition 1. Fig. 3. For Theorem 1.

The right of inference of a rectangle can be conceptually defined as the priv-
ilege that the rectangle has to make sound and local inferences. As we have seen,
rectangles having the right of inference should appear compact and saturated.
Then, how to define right of inference in a quantitative manner?

Definition 1. (right of inference) A rectangle r has the right of inference if and
only if for any query q outside of v, dist(q,q") — dist(q,r) < &, where dist(q, q*)
is the Euclidean distance from q to its kth nearest instance in r, dist(q,r) is the
Euclidean distance from q to r, and § is the distance threshold.

The distance from ¢ to r is equivalent to the line dropped perpendicularly
from ¢ to the nearest face, edge, or vertex of r, which is formally defined as
follows, without considering rectangle weighting and feature weighting. Let gy,
be the value of ¢ on the ith feature, where 1 < ¢ < m; let Tiower, s, a0d Tupper, f;
be the lower and upper end values of r on the ith feature, then:

m df; — Tupper, f; when 4f; > Tupper,f;
Z dlfl2 where dlfl = Tower, f; — 4f; when qf, < Tower, f;
i=1 0 otherwise

What is the rationale behind the right of inference thus-defined? Note that,
we always have dist(q,r) < dist(q,q"). If dist(q,q*) — dist(q,r) is too large, the
inference on the class of ¢ from r might be inappropriate, since dist(q,r) would
alter (bring closer) the locality of the instances in r with respect to ¢ in an
intolerable manner; e.g., in Fig. 1 (a), ¢ is very close to the left rectangle, but far
away from the instances in it. In contrast, if dist(q, ¢*) — dist(q,r) is reasonably
small, NR classifiers would behave similarly to kNN, as shown in Fig. 1 (b).

In Definition 1, we only consider queries lying outside of the rectangle r. This
is because some inside query may falsely invalidate a “good” r. In Fig. 2 (a), even
if dist(q,q") — dist(q,r) is rather large, 7 is good because ¢ would not be closer
to other instances/rectangles of different classes, say r’. Recall that overlapping
of rectangles is allowed only if they have the same class label. On the other hand,
for a “bad” r as shown in Fig. 2 (b), not considering ¢ or other queries in r would
not falsely validate r since if ¢ should invalidate r (closer to ), there would be
another ¢’ outside of r that also invalidates . We can easily find such ¢’, say,
somewhere close to r and on the line joining ¢ and 7’.



In Definition 1, it is also reasonable to use the average of distances from
q to its k nearest instances in r for dist(q,q*). k is limited by the number of
instances in 7, and the choice of k can be a legitimate research issue just as in
the case of kNN classification. The distance threshold ¢ has a direct impact on
how closely NR classifiers would behave to kNN. If ¢ is too large, the rectangles
tend to be very large as well making unconstrained inferences. If § is too small,
NR learning would induce too many rectangles and become “lazy”, losing the
desirable properties as a hybrid learner. In the extreme case of § = 0, NR learning
would lose the generalization capacity completely and essentially become 1-NN.

2.2 Enforcing the Right of Inference

It is not straightforward to enforce the right of inference defined in Definition 1
since there are potentially infinite number of queries to examine. In the following,
we discuss some inspiring observations and practical implications.

Theorem 1. If for any query q that is on the surface of a rectangle r, dist(q, ¢")
< 8, where ¢* is the kth nearest instance of q in r, then r has the right of
inference defined in Definition 1 with respect to 0.

Proof. Let p be any query outside of r. Let p¥ be the kth nearest instance of
p in r and ¢ the projected p on the nearest face of r, as depicted in Fig. 3.
According to the definition of point-to-rectangle distance, dist(p, q) = dist(p,r).
We use arc, to denote the intersection of r and the sphere with radius dist(p, p*)
centered at p, and arc, to denote the intersection of r and the sphere with radius
dist(p,p*) — dist(p, q) centered at q. Clearly, arc, C arc,,.

Since p* is the kth nearest instance of p in r, the number of instances in
arcy is less or equal to k if not considering ties. Since arc, and arc, intersect
on only one point, the number of instances in arc, is less or equal to k even
considering ties. That is to say, ¢*, the kth nearest instance of ¢ in r, lies outside
or on the surface of arc,. In other words, dist(q,q") > dist(p,p*) — dist(p,q) =
dist(p, p*) — dist(p,r). Therefore, § > dist(q,q") = § > dist(p, p*) — dist(p,7),
and the conclusion of Theorem 1 follows.

The implication of Theorem 1 is that, we only need to consider queries on the
surface of r to test its right of inference. In the prototype NR learner LearnCov-
ers, to be proposed shortly, a simple recursive testing and bisecting enforcement
heuristic is embedded. For testing, the query pool consists of a constant num-
ber of queries generated according to a ranking scheme that gives high ranks to
queries with high probability of invalidating r. Generally, highly ranked queries
include vertices that are far away from the mean of the instances in r. Certain
positions (say, centers) on long edges or large faces have the next priority to be
inserted in the query pool, and then uncertain (random) positions on the surface
of r. r is validated (passes the test) if it is not invalidated by any query in the
query pool. If r is invalidated, the k-means clustering algorithm with k£ = 2 is
applied to bisect the instances in r, and the newly generated rectangles (bound-
ing boxes of the two sections) are tested separately. This recursive testing and
bisecting process terminates until all the rectangles pass the test.



3 LearnCovers: Learning the “Right” Rectangles

LearnCovers heuristically constructs a set of rectangles with minimized cardinal-
ity and enforced right of inference. The rectangles generalize the given training
instances with 100% accuracy, and same-class rectangles are allowed to overlap.

Algorithm 1 LearnCovers

1. R =0; //R: the set of generated rectangles

2. sort T; //T: the given training set

3. for each t € T { //process each training instance ¢ in the sorted order

4 for each r € R {

5. calculate cost(r,t); //r with smaller cost(r,t) is favored in covering ¢
6. if (r.class != t.class && cost(r,t) == 0)
7
8

validateToclose(r); //r can be closed only after validation
if (r.class == t.class && 7 is not closed && cost(r,t) == 0)

9. extend 7 to cover ¢ and continue to process the next ¢; } //back to line 3
10.  for each r € R { //t was not covered; fetch r in ascending order of cost(r,t)

11. if (r.class == t.class && 7 is not closed && violationCheck(r, R) == no)
12. expand 7 to cover ¢t and continue to process the next ¢; } //back to line 3

13.  insert(R, rnew) }; //t cannot be covered; insert the trivial rectangle rpew to R
14. enforce(R);

The pseudocode is presented in Algorithm 1. R, the rectangle set, is ini-
tialized to be empty (line 1). Instances in the given training set T are sorted
along a selected feature (line 2) and processed in the sorted order. For each
training instance ¢ (line 3), we search through R (line 4) for the best rectangle
to accommodate it. Expanding rectangles would incur covering violations, i.e.,
overlapping of rectangles of different classes, which are not allowed. The best
rectangle to cover t is the one with the smallest covering cost with respect to ¢,
which is defined so that the number of generated rectangles can be minimized.

In line 5, the cost of 7 in covering ¢, cost(r,t), is calculated. cost(r,t) = 0
only if ¢ lies straightly under r, i.e., by simply extending r along the selected
sorting feature, t will be covered by r. If cost(r,t) = 0 and r and ¢ are of different
classes (line 6), r is closed on condition that it can be validated; otherwise, r is
bisected and the two propagated rectangles are inserted into R (line 7). Closed
rectangles will not be considered in the remaining procedures, since they cannot
be used to cover any further instances without causing violations.

If a non-closed r has the same class label as ¢ with cost(r,t) = 0 (line 8), r is
an optimal rectangle to cover t. We can simply stop searching and continue to
process the next instance (line 9). Note that in this case, violation checking is
unnecessary since instances in T are sorted and we only need to extend r along
the sorting feature to cover t.

If ¢ has not been covered by such an optimal r (line 10), we need to search
through R for the best r with the smallest cost(r,t). The rectangles in R will
be considered in the ascending order of cost(r,t), the first available one (line 11)
will be used to cover ¢ and we can continue to process the next instance (line 12).



If there is no such r € R that can cover ¢ without incurring a violation, a
trivial rectangle 7., for ¢ will be constructed and inserted into R (line 13).

Upon reaching line 14, all the training instances in 7" have been processed
and generalized. The enforcement heuristic discussed previously is applied to all
non-closed rectangles in R (closed ones must have been validated), and all the
recursively propagated rectangles will be inserted into R after validation. In the
actual implementation, we have chosen k = 1 for testing the right of inference,
that is, any query ¢ on the surface of r with dist(q,q') > § will invalidate r.

As for the choice of §, we randomly sample a series of queries. For each
query g, we record dif, = dist(q,t,) —dist(q,t,), where t, is the nearest training
instance of ¢ and ¢, is the nearest training instance of ¢ that has a different class
label from t,. If we set 6 = dif,, the resulting NR classifier behaves the same
as 1-NN on ¢ and ¢ will not be assigned a class label other than the one of ¢,.
To see why, let ¢, and T be any two rectangles covering ¢, and £, respectively,

then dist(q, re,) < dist(q,tq) and dist(q,tq) — dist(q,rg;) < 6 if rg is enforced
the right of inference, from which dist(q,r:,) < dist(q,rg) follows. Intuitively,

since the right of inference is enforced on i t, will not be brought close enough
by the rectangular generalization to challenge the locality of ¢, with respect to
q. Note that t, is also brought closer to q by r¢,. After obtaining a series of
dify’s, we use the average value as §. While how to decide ¢ deserves further
investigations, a more practical situation would be, selecting § so as to meet a
given constraint on the maximum number of rectangles allowed.

The proposed NR learner LearnCovers is an extension of Learn2Cover [5], a
discriminative summarization heuristic for labeled data, from 2 class to multi-
class and with the right of inference enforcement mechanism embedded. Some re-
lated issues, such as selecting the sorting feature, handling ties, defining cost(r, t)
and so on, are discussed in [5] with more details.

4 Empirical Results

A series of experiments were conducted to evaluate the accuracy performance of
the proposed NR learner LearnCovers. The notion of rectangle can be extended
to tolerate categorical features but not in this prototype version; thus 20 nu-
merical benchmark datasets without missing values from the UCI repository [3]
were used to run C4.5 [8], 1-NN, kNN and LearnCovers. For kNN, the highest
accuracy was recorded. The datasets were normalized on each feature. For each
of the datasets where cross-validation was needed, the averaged result over 3
runs of stratified 10-fold cross-validation was taken.

In Table 1, “Att”, “Ins” and “Cla” indicate the numbers of attributes, in-
stances and classes respectively for the datasets. The results show that, Learn-
Covers outperforms C4.5 in 19, 1-NN in 12, and kNN in 8 of the 20 datasets. It
has the averaged accuracy of 0.857, significantly higher than C4.5 (0.817), better
than 1-NN (0.843) and comparable to kNN (0.864). Recall that, without consid-
ering the right of inference, but assisted by some other sophisticated techniques
such as rectangle weighting and feature weighting using mutual information, the



Table 1. Accuracy: C4.5, 1-NN, kNN, and LearnCovers (LC)

[ Dataset [Att Ins Cla] C4.5[I-NN[ENN] LC [] Dataset [Att Ins Cla[C4.5[I-NN[kNN] LC |

balance | 4 625 3 [0.758[/0.790(0.900[0.828 pima 8 768 2 [0.737[0.701(0.738]0.752
bupa 6 345 2 [0.655/0.632]0.652(0.672| |satimage | 36 6435 6 [0.850]0.894|0.906]0.878
car 6 1728 4 [0.917/0.917[0.951[0.938| | segment | 19 2310 7 [0.960]0.974[0.974[0.966
ecoli 7 336 8 [0.841]0.806|0.871[0.869 sonar |60 208 2 [0.702]0.865[0.865[0.794
glass |10 214 6 [0.687]0.701]0.712|0.739| [spambase| 57 4601 2 [0.895/0.908[0.908]0.897
iono 34 351 2 [0.900(0.869(0.869|0.937 vehicle | 18 846 4 [0.734(0.696 [0.725(0.709
iris 4 150 3 [0.953[0.953[0.967]|0.973 vowel [10 990 11 [0.788[0.989[0.989]0.973
letter | 16 20000 26 [0.868]0.955[0.955/0.925| [waveform| 21 5000 3 [0.781]0.809[0.833[0.808
new-thyr| 5 215 3 [0.916]0.968[0.968[0.953 wine 13 178 3 [0.936]0.949(0.972[0.977
page-blo| 10 5473 5 [0.965/0.957[0.959[0.971 yeast 8 1484 10 [0.494|0.526[0.574]0.581
Average 0.817]0.843(0.864|0.857

remedies proposed in [10,11] only achieved moderate accuracy improvement on
the original NR learner, remaining “significantly inferior to kNN.

5 Conclusion

In this paper, we revisited NR learning, seeking for its accuracy improvement
through imposing the right of reference on rectangles. Experiments on bench-
mark datasets demonstrated the effectiveness of the proposed approach. For
future work, more effective and efficient testing and enforcement mechanisms
should be investigated. Grounded on the right of inference of rectangles, there
are several interesting directions to further extend NR learning. One is to con-
sider k nearest (weighted) rectangles; another is to consider multiple rectangle
sets (e.g., obtained from LearnCovers with different choices of the sorting fea-
ture), as analogous to decision forests.
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