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Abstract

This paper explores the possibility of recovering a lost
color channel from an RGB image, based on the information
present in the remaining two color channels, as well as on a
priori knowledge about the statistics of sensor responses in a
given environment. Different regression and neural network
recovery methods are compared and the results show that
even simple linear techniques suffice to obtain a good
approximation of the original color channel.

Remote sensing and other visualization applications can
benefit from these methods. Desaturated colors and skin
tones are faithfully restored, which is important for the
compression of still images and video signals.

Introduction

Missing camera sensors lead to loss of information in
acquired images. If the sensor failure is localized to a set of
pixels, the image can be restored with a high degree of
accuracy, based on local information from the neighboring
pixels [1] [2]. However, it can happen that a whole color
channel may fail, in which case the image cannot be
recovered accurately. From a visualization perspective, the
issue in this extreme case is to minimize the perceptual
distortions caused by the missing sensor. Losing all
information present in a color channel of an RGB image
strongly degrades the image quality and gives the image a
strong color cast (e.g. if G, the green channel is lost, the
image will look purple because of the remaining R and B
components). In the RGB color space, the image gamut is
located in a plane defined by the remaining two color
channels.

The loss of a whole color channel could be caused by
sensor failure, an image transmission problem or because the
camera is dichromatic in the first place. As shown in [3], the
Mars Orbiter Camera (MOC) has only two narrow-band
sensors, in red and blue wavelengths. To visualize images
acquired with this camera, the green channel is synthesized
by averaging the red and blue channels. In this case, the

recovered colors are used only for visualization purposes;
they do not correspond to the ‘true’ colors that can be seen
on Mars, not only because of the uncertainty introduced by
synthesizing the green channel, but also because the camera
was not calibrated for human observers. The issue of image
reproduction [4][5] introduced by the relationship between
camera sensor responses and visual perception (as partially
determined by the eye sensitivity curves) will not be
addressed in this paper.

In the general case, where statistics about the likelihood
of surfaces and illuminants is not known, synthesizing the
lost channel by simple averaging is the obvious choice.
However, if one takes into account a priori knowledge about
the scenes that are being taken with the camera, there are
better methods than simple averaging. Some of these
methods, based on knowledge about the statistics of ‘the
world’ (defined as the environment in which the camera is
used) will be explored in the following sections.

The uncertainty in the recovery of the lost channel is
also reduced due to the fact that the set of all possible
camera responses is limited. This happens because the RGB
values produced by the camera are correlated, due to
overlapping and broadband sensors (as encountered in most
CCD cameras) and to the low dimensionality of the received
color signal.

The RGB camera responses are obtained by integrating
the color signal with the camera sensor sensitivity functions.

The color signal C is defined as the product between the
spectrum of the illumination I(λ) and the spectral reflectance
S(λ):

( ) ( ) ( )λλλ SIC ⋅= (1)

Previous studies have shown that common light sources,
such as daylights [6], and surface reflectances [7] can be
modeled with three dimensional basis functions. Thus, RGB
triplets like (255,0,0) are highly unlikely.



Recovery Methods

To simplify the presentation, the following methods will
assume that the green channel is to be recovered, based on
the remaining red and blue channels. In case of differences
in the recovery method, based on which color channel is
missing, all three recovery cases will be discussed.

Averaging
This method works in the absence of any knowledge

about the world. If the green channel is lost, it is computed
by averaging the two remaining channels; if either the red or
blue channels are to be recovered, they are linearly
extrapolated from the other two, as shown in Figure 1.

Figure 1. Color channel recovery by averaging

Linear Regression
This least-square regression maps the R and B color

channels into G, such that it minimizes the residual squared
error for the calibration data. The goal is to find a
transformation matrix M, such that:

[ ] MBRG ⋅≅ (2)

where R,G and B are column vectors containing the
camera responses for the respective color channels. In this
case, M is given by:

[ ] GBRM ⋅= ∗ (3)

where the * operator denotes the pseudo-inverse. In
fact, M is a 2x1 matrix that assigns global weights to the R
and B vectors. M is computed on a calibration data set and
is then tested on a different data set.

Polynomial Regression
This method adds polynomial terms to the calibration

data. For the experiments shown in the next sections, the
transformation matrix M is computed as described above,
such that it minimizes the least-square error of the following
equation:

[ ]MGRGRGRG ⋅⋅≅ 22 (4)

A major disadvantage of this method is that, due to its
non-linear form, it is sensitive to the magnitude of the pixel
brightness. In the case of linear regression, the lost color is
computed as a weighted average between the remaining two
colors. Thus the chromaticity of a recovered RGB pixel does
not depend on its brightness. Polynomial regression, on the
other hand, introduces non-linear terms and thus makes the
recovery dependent on the absolute pixel brightness.

Neural Networks
The neural network method was implemented in order

to capture possible non-linear complex relationships
between R, B and the lost G channel. The neural network
used in the experiments is a Perceptron [8] with two hidden
layers, as shown in Figure 2.

Figure 2. Multi-layer Perceptron

The two inputs to the network correspond to the red and
blue channel and the output corresponds to the green
channel. The first hidden layer contains nine neurons and the
second one contains four. In a first phase, the neural network
is trained by Backpropagation [8] to estimate the green
channel from the red and blue inputs. The training set
contains a large set of RGB values corresponding to normal
camera outputs. After training, the network is tested on a
different data set. It is presented with the R and B values and
it produces an estimate of G. For a particular RGB triplet,
the estimation error is defined as the absolute value of the
difference between the network estimate and the correct
answer. The average estimation error on a given test set is
taken as a measure of the neural network performance.

Experiments

Experimental Setup
The recovery methods described above were tested on

synthesized data as well as on real images. Each experiment
consists of a training (or calibration) phase, during which the
regression matrices and neural network parameters are
computed, and a test phase, during which each method is
tested on a different data set. All methods are compared
against each other and against a ‘do-nothing’ method. This
is in fact a pseudo-method: it assumes that the estimate of
the recovered channel is actually zero. Thus, the average
error for this method is equal to the average brightness of
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that particular lost channel. This provides a comparison of
the other methods with a worst case scenario, where nothing
is done to improve the image quality.

All RGB values are scaled in the range of 0 to 1. The
errors  computed in the RGB color space, are in the same
range. To provide a correlation with the magnitude of errors
perceived by a human observer, the errors are also reported
in the perceptually uniform CIE Lab space. The conversion
from the RGB space to the Lab space is done in two steps.
The first step is done within the sRGB framework [9]: it is
assumed that all images are in sRGB format and that they
are displayed on a sRGB compliant monitor. sRGB values
are converted into CIE XYZ coordinates. The second step
involves the transformation from the XYZ space to Lab.

Thus the errors in Lab space are relative to what a
human observer sees on a standard sRGB monitor. It must
be noticed that the algorithms were calibrated and thus
optimized for the RGB color space and not for the Lab
space. Because the transformation from the RGB to the Lab
color space is non-linear, equal errors in the RGB space will
yield errors with different magnitudes in the Lab space.

Experiments Done on Synthesized Data
Working with synthetic data has the advantage of a

perfectly controlled environment. Moreover, an arbitrarily
large number of images can be generated, such that, when
testing the algorithms, the results are stable.

This experimental setup illustrates the performance of
the recovery methods under ideal conditions.

For any RGB triplet, its values for the three color
channels are computed from a randomly selected surface
reflectance Sj, the spectral distribution of an illuminant Ek
and by the spectral sensitivities of camera sensors for that
color channel ρG, according to the following equation:

G
i

j
i

i

k
i SEG ρ⋅⋅= ∑  (5)

The index i is over the wavelength domain, in the range
of 380nm to 780nm. Two identical experiments were
performed with sensor sensitivities functions from two
digital cameras: SONY DXC-930 and Kodak DCS-460. For
each experiment, the data was generated from 34 illuminant
power spectra, 260 surface reflectances and a set of sensors.

The whole data set, composed of 8,840 RGB triplets
was divided into two equal parts, one used for training and
one for testing. The recovery methods were calibrated and
tested for each set of sensors, for all of the R, G and B
channels. The following two tables present the recovery
errors obtained on the test sets, for both sets of sensors. The
average errors in the RGB and Lab space are µRGB and µLab.

Table 1. Recovery Errors for the Kodak DCS Sensors
Lost
Channel:

R G B

Method µRGB µLab µRGB µLab µRGB µLab

Do-nothing 0.359 50.83 0.334 128.3 0.269 70.09
Average 0.107 13.93 0.076 21.16 0.108 17.79
Linear 0.104 11.28 0.073 20.60 0.060 11.28

Regression
Polynomial
Regression

0.097 13.49 0.065 18.48 0.060 10.93

Neural
Network

0.097 13.49 0.069 20.29 0.058 10.94

Table 2. Recovery Errors for the SONY DXC Sensors
Lost
Channel:

R G B

Method µRGB µLab µRGB µLab µRGB µLab

Do-nothing 0.241 76.74 0.184 104.4 0.241 76.74
Average 0.159 32.41 0.073 30.92 0.159 36.55
Linear
Regression

0.145 32.41 0.053 24.29 0.145 43.05

Polynomial
Regression

0.144 32.99 0.052 23.96 0.138 34.54

Neural
Network

0.138 31.30 0.052 23.80 0.137 31.48

The results, in RGB as well as in Lab space, are better
for the Kodak than for the SONY sensors. This is due to the
fact that the Kodak sensors are broad and overlapping while
the SONY sensors are quite sharp. Because of this, the
SONY camera can produce a larger gamut of RGB values,
which in turn increases the uncertainty associated with the
recovery of a particular color channel.

Including implicit knowledge about possible RGB
values improved the recovery methods that were calibrated,
relative to the simple averaging method. However, since all
surfaces and illuminants were selected at random and thus
they are equally probable, the improvement the other
methods over averaging was not large, with the notable
exception of the B recovery for the Kodak sensors (see
Table 1).

Experiments done on Real Images
Experimenting on real data has the disadvantages that

the number of images is not very large and that image
artifacts, such as noise or flare, corrupt the sensor responses.
On the other hand, working on real data permits the
extraction of statistical information about the distribution of
RGB triplets in the world.

In this experiment, the recovery methods were
calibrated on RGBs taken from 46 images that were
acquired with a Kodak DCS-460 camera. The test was done
on a different set of RGBs taken from other 42 images,
taken with the same camera. All images were linearized, to
compensate for the built-in gamma correction of the camera
and were resampled, to reduce the noise.

A total of 118,223 RGBs were used for calibration and
96,688 RGBs were used for testing. The recovery methods
were also compared against the neural network trained on
synthetic data, generated with the Kodak sensors. The
results are presented in Table 3.



Table 3. Recovery Errors for Real Data
Lost
Channel:

R G B

Method µRGB µLab µRGB µLab µRGB µLab

Do-nothing 0.212 28.73 0.209 68.04 0.205 54.58
Average 0.082 9.54 0.042 9.91 0.074 12.72
Linear
Regression

0.071 8.81 0.042 9.72 0.057 10.05

Polynomial
Regression

0.069 8.37 0.042 9.95 0.055 9.71

Synthetic
Network

0.084 10.54 0.055 12.52 0.069 12.32

Real
Network

0.073 8.76 0.051 11.53 0.056 9.86

All errors are smaller than the ones reported for tests
done on synthetic data. One reason for this is that image
recovery is more accurate on desaturated RGBs and,
statistically, this type of RGB triplets is more frequent than
saturated RGBs in real images. Figure 4 shows the
relationship between  recovery error and pixel saturation.
The average recovery error is plotted against the pixel
saturation, defined as the distance from white in the rg-
chromaticity space. The rg-chromaticity space is a
normalized RGB space, in which the coordinates are:
r=R/(R+G+B) and g=G/(R+G+B).

Figure 3. Recovery error as a function of saturation

Moreover, the recovery methods that take into account
the statistics of the world perform better than the simple
averaging method. The neural network that was trained on
synthetic data performed worse than the other recovery
methods because it was trained on a different, equally
probable distribution of RGB triplets.

Experiments of Color Recovery of Face Images
As noted before, desaturated colors (such as skin, for

example) are recovered with more accuracy than saturated
ones. Based on this observation, a separate test was done on
images containing only human faces. Eight images, taken
with a DCS camera under different illuminants, were tested

using the methods calibrated for the previous test (i.e. on
real data). Table 4 shows the results of the recovery.

Table 4. Recovery Errors for Human Faces
Lost
Channel:

R G B

Method µRGB µLab µRGB µLab µRGB µLab

Do-nothing 0.751 51.53 0.559 92.67 0.505 75.11
Linear
Regression

0.154 8.16 0.05 6.14 0.053 4.85

Implications for Image Compression
As shown in the previous experiment, the appearance of

human faces and skin color in particular is faithfully
recovered. This aspect could have implications for the
transmission of still or video images (such as video-
conferencing) in which the fidelity of the color tone of
human faces is considered to be more important than the rest
of the image, and in which spatial resolution is also
important. Temporary bandwidth limitations can be partially
compensated by transmitting dichromatic images instead of
trichromatic ones.

The following chart shows relative file sizes obtained
by JPG compression of images with all three RGB channels
present and images where one of the color channels (G in
this experiment) was set to zero:

imageoriginalofSize
imagecdichromatiofSize

Ratio = (6)

The compression ratios are expressed as a function of
the quality factor. A quality factor of 100 corresponds to
loss-less compression.

Figure 4. Compression Ratios

Conclusion

This paper explored the possibility of recovering a lost
color channel from an RGB image, based on the information
present in the remaining two color channels, as well as on a
priori knowledge about the statistics of sensor responses in a
given environment.
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A camera’s sensors determine the size of the RGB
gamut that can be obtained using that camera. Using this
information, as well as samples of possible illuminants and
surface reflection functions improves the simple averaging
approach to color channel recovery.

Using statistics about the environment and calibrating
the recovery methods relative to camera responses in a given
viewing context further improves the recovery of the missing
color channel. From the experiments that were performed it
seems that a neural network approach does not improve
much the accuracy of recovery over a less complex method,
such as linear regression.

Desaturated colors are recovered more faithfully than
saturated ones. This has implications in the tone fidelity of
faces –and skin in general– and can lead to additional image
compression.

Remote guided vehicles as well as remote sensing
applications can benefit from the redundancy introduced by
this visualization technique.
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