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ABSTRACT 

 
A new color correction method is introduced which 
predicts how changing the color of the scene illuminant 
will  affect a camera’s RGB response.  Like diagonal 
transformation color correction methods, the new method 
requires only 3-parameters. It therefore requires only the 
RGB color of the two i lluminants be known.  The method 
models the 9-parameters of a 3-by-3 linear 
transformation using a 3-dimensional l inear model 
composed of 3 basis transformations.  Experiments show 
that the method works better than the standard diagonal 
model unless the camera sensors are very sharply peaked, 
in which case the performance is essentially unchanged. 

 

1. INTRODUCTION 
 
A color image taken under an il luminant that differs in 
spectral composition and color from the illuminant for 
which a digital sti ll camera is designed may have an 
objectionable color cast. Generally, the task of color 
balancing the image to eliminate the color cast can be 
subdivided into stages: (a) estimating the scene 
illumination, and (b) correcting the image colors based 
on the estimated il luminant. In this paper we address the 
latter, color-correction stage. 

We present a new 3-parameter method of color 
correcting digital stil l camera images in order to 
compensate for the changes in image white point caused 
by changes in the illumination.  This method is an 
extension of our previous work [6] on modeling the 
human chromatic adaptation transform.  

One standard way to adjust the white point is to 
apply a diagonal transformation to the camera RGB, 
which applies an independent scaling to each of the R, G 
and B signals separately. It is often referred to as the von 
Kries method [7] since von Kries proposed independent 
scaling of the cone signals as a model of human 
chromatic adaptation. 

In some cases the diagonal model can be improved 
by introducing a sensor sharpening transform [5] prior to 

the diagonal transformation.  A sharpening transform is 
tuned to a particular i lluminant pair and is not 
guaranteed to improve the results in all cases [2]. 

Another alternative is to use a full 9-parameter 3-by-
3 linear transformation mapping RGB under one 
i lluminant to the RGB under a second.  The problem 
with this method is that usually there is insufficient 
information available to determine the 9 matrix entries. 
Typically all that is known are the RGB values of a 
‘white’  surface under the two illuminants. Such 
measurements provide only 3 equations for the 9 
unknowns.  Of course, for the case of a diagonal 
transform this suffices since there are only 3 unknowns, 
which are determined by the ratios of the signals from 
the white under the two il luminants for each of the color 
channels taken separately. 

Following on our results for the chromatic 
adaptation transforms [6], we consider here whether or 
not there is some other non-diagonal 3-parameter model 
that we could use that would perform better than the 
diagonal model for color correction of digital imagery.  
We form a new model by considering the 9-dimensional 
space of 3x3 transformations that model illuminant 
change and then finding the 3-dimensional subspace that 
best approximates the space of transformations. This 
subspace provides a 3-parameter, non-diagonal model of 
i lluminant change that works better than other models of 
i lluminant change. 

There are two main differences between the cases of 
chromatic adaptation and color correction. The first is 
the difference in sensor sensitivities.  The second is that 
digital imagery usually is represented in a non-linear 
fashion relative to the original scene luminance---a 
‘ gamma’ function [10] is applied to the linear data. 
Hence, it would be advantageous for the color correction 
transformation to apply directly to the non-linear 
representation. 

There is a some similarity between the use of PCA in 
color correction and its use in color eigenflows [9]; 
however, color eigenflows are based on applying PCA to 
vector fields of RGB differences, while here it is applied 
to transformation matrices. 
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2. PCA BASED COLOR CORRECTION 
 
To succeed in color correction, we need to estimate the 
RGB of a surface under different i lluminations. In this 
process, we assume matte surfaces and ignore changes 
due to shading since by a change of illumination we 
mean only a change in the spectral composition of the 
illumination, not a change in the illuminant’s position.  

The RGB at single point on the surface as 
determined by the incoming spectrum of the illumination 
and the surface reflectance is then 

           =
λ

λλλλ dRSEh ii )()()( , 

where )(λE is the spectrum of the illumination, )(λS is 

the percent surface spectral reflectance function, )(λiR , 

i=1, 2, 3 are the camera sensitivity functions which we 
assume are normalized to unity.  

If the image is nonlinear, we assume the nonlinearity 
is of the form 

      γ
1

* hh =  with a typical value of .2≈γ  

The l inear model of the change in RGB induced by a 

change from il luminant a  to i lluminant b  is ab Mhh =  

where M  is 3-by-3. M is independent of the surface 
reflectance.  For the nonlinear case, the form remains the 
same although M will be different. 

If we write the elements of the 3-by-3 M  out as a 
vector, the space of such matrices is 9 dimensional. 
However, what is the underlying dimensionality of 
matrices M ? Might the 9-dimensional space be 
embedded in a subspace of dimension as low as three? 
Since we know that color correction based on diagonal 
matrix works quite well, it seems reasonable to expect the 
dimensionality of M  to be much lower than 9. Rather 
than force the 3 parameters to be those of a diagonal 
matrix, we use principal component analysis to extract 
the optimal 3-parameters.  

To determine the dimensionality of the space of 
matrices M , we first construct a large set of 
corresponding RGBs under different pairs of i lluminants. 
These pairs are formed from the 140 illuminants in the 
Simon Fraser University database [1]. All the illuminants 
were normalized to unit energy. For each il luminant pair, 
the corresponding RGBs for 1995 surface reflectances 
from the Kodak reflectance and Krinov databases [1, 8, 
11] are calculated. The best, in the least-squares sense, 3-
by-3 il lumination transformation matrix, M , mapping 

one set to the other is then determined.  For n  illuminant 
pairs, we obtain n  new such matrices M . 

We apply principal components analysis to the set of 
matrices M . To do so, we first write each M  as a vector 
m  by scanning it row by row. Arranging all such 9-
element vectors as rows in a matrix results in an n-by-9 
matrix S.  Principal components analysis of S produces 

basis vectors iv , 9,...,1=i .  Let the mean m  vector be 

0m . These vectors can be reshaped back into 

corresponding 3x3 matrices iV  and 
0M . An 

i llumination transformation matrix M can then be 
represented as 

0

9

1

MVM
i

ii +=
�

=
α ,  

where ii vmm ⋅−= )( 0α .  
We can also approximate M  by truncating the 

summation and using fewer than 9 basis matrices iV . 

Figure 1 shows the residual error in approximating all 
matrices M  as the number of basis matrices is increased.      

 
Figure 1. Residual variance versus dimension 

More than 99% of the total variance is accounted for 
in the first 3 dimensions. The remaining issue is how to 
use this model for color correction. Based on principal 
component analysis, we have the first three bases 
matrices 1V , 2V  and 3V . We approximateM : 

                 
0332211 MVcVcVcM +++≈ .  

Then given the RGB 3-vectors, al and bl , of white under 

the two i lluminants, the coefficients ic  required to 

predict RGBs under illumination b  from RGBs from 
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corresponding locations under illumination a  can be 

determined as follows. Since Mll ab = , we have 
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)( jVi
 denotes column j of matrix 

iV . Letting 
Tcccc ],,[ 321= , then 

                               1
0 )( −−= QMllc ab

 

To color correct an image, we simply calculate the 
coefficient vector c  and use it to construct M. M is then 
applied to the RGB of each image in the input image. 

Color correcting images that are nonlinear due to 
gamma is no different from the linear case except that 
the PCA must be applied to RGB data synthesized to 
include gamma. We can expect the PCA method to work 
since previous research [4] showed that color correction 
using a diagonal transformation on non-linear images 
had only a slightly higher error than diagonal color 
correction of linearized images. 

 
3. EXPERIMENTAL RESULTS 

 
To test the proposed color correction method, we 
measure the error in predicting RGB under illuminant 
change in terms of relative error and CIE L*a*b*  ∆E. 
The results are tabulated in Table 1.  The tests are based 
on the spectral sensitivity functions of the Kodak DCS 
420,  Kodak DCS 460 and SONY DXC 930 cameras. 
 

Table 1 shows that the new PCA-based method 
reduces the CIE L*a*b*  ∆E error in all cases. The 
improvement is greater for the Kodak cameras than the 
SONY camera.  The reason for this is that the SONY 
sensors have very narrow and sharply peaked sensitivity 
functions; whereas, the Kodak sensors are much broader.  
The sensors are compared in Figure 2. Narrow sensors 
make the diagonal model work very well. In the limit, a 
sensor with a Dirac delta sensitivity would lead to the 
diagonal model working perfectly, in which case the 
PCA method could not yield any improvement.  
However, there are many tradeoffs in sensor design. For 

example, narrow sensors let in less light. The PCA 
method could allow broader sensors without creating 
color correction problems. 
 
 
 
 
 
 

Method/Camera/Data %R  %G  %B  CIE  ∆E 

Diag/DCS420/Linear 3.9 4.6 7.3 1.25 
PCA/DCS420/Linear 2.0 3.0 2.0 0.80 
Diag/DCS420/Nonlin 2.0 2.3 3.7 1.33 
PCA/DCS420/Nonlin 1.0 1.6 1.1 0.86 
Diag/DCS460/Linear 3.3 3.4 7.6 2.09 
PCA/DCS460/Linear 1.4 2.8 1.5 0.75 
Diag/DCS460/NonLin 1.6 1.7 3.8 2.58 
PCA/DCS460/Nonlin 0.7 1.4 0.8 0.95 
Diag/SONY930/Linear 2.6 3.1 2.1 0.41 
PCA/SONY930/Linear 2.5 3.4 1.5 0.31 
Diag/SONY930/Nonlin 1.3 1.7 0.7 1.15 
PCA/SONY930/Nonlin 1.2 1.3 0.8 0.82 

Table 1: Average percentage error in R, G, B estimates 
and average CIE L*a*b* ∆E for each combination of 
method (simple diagonal, new PCA method), camera 
type, and linear versus nonlinear (gamma corrected) 
data. 
 
 
 

 
Figure 2.  The sensor sensitivities of the SONY DXC 930 
camera (dash lines) and the Kodak DCS 460. In 
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comparison to the Kodak curves, the SONY curves form 
narrower peaks and have only 1 peak per channel. 
 

4. CONCLUSION  
 
We have shown that color correction can be improved by 
modeling the 9-parameters of a full l inear 3-by-3 
transformation by a 3-dimensional l inear model.  Once 
the basis matrices have been determined, the additional 
computational cost of the new model is small. The 
method works on both l inear and nonlinear image data.  
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