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A neural network can learn color constancy, defined here as the ability to estimate the chromaticity of a scene’s
overall illumination. We describe a multilayer neural network that is able to recover the illumination chro-
maticity given only an image of the scene. The network is previously trained by being presented with a set of
images of scenes and the chromaticities of the corresponding scene illuminants. Experiments with real im-
ages show that the network performs better than previous color constancy methods. In particular, the per-
formance is better for images with a relatively small number of distinct colors. The method has application to
machine vision problems such as object recognition, where illumination-independent color descriptors are re-
quired, and in digital photography, where uncontrolled scene illumination can create an unwanted color cast in

a photograph. © 2002 Optical Society of America
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1. INTRODUCTION

As the color of the illumination of a scene changes, the
colors of the surfaces in the scene will also change. This
color shift presents a problem since color descriptors will
be too unstable for use in a computational vision system
without something being done to compensate for it.
Without color stability, most areas where color is taken
into account (e.g., color-based object recognition systems'
and digital photography) will be adversely affected even
by small changes in the scene’s illumination.? The term
“color” will be used here to refer to the red—green—blue
(RGB) signal recorded by a digital camera rather than
what a person sees, unless the context specifically implies
human color perception.

Humans exhibit some color constancy, which experi-
ments by Brainard et al.>* aim to quantify; however, the
mechanisms behind human color constancy remain unex-
plained. We would like to achieve machine color con-
stancy (i.e., automatically estimate the color of the inci-
dent illumination) as accurately as possible without
regard to the process as a model of the human visual sys-
tem.

In this paper we will assume that the chromaticity of
the scene illumination is constant throughout the image,
although its intensity may vary. The goal of a machine
color constancy system will be taken to be the accurate es-
timation of the chromaticity of the scene illumination
from a three-band, RGB digital color image of the scene.
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To achieve this goal, we developed a system based on a
multilayer neural network. The network works with the
chromaticity histogram of the input image and computes
an estimate of the scene’s illumination.

Calculating color-constant color descriptors is done
here in two steps. The first step is to estimate the illu-
minant’s chromaticity. The second step is to color correct
the image, on the basis of the estimated illuminant chro-
maticity. Given an estimate of the illuminant chromatic-
ity, the image can be color corrected® by using a global,
von Kries type®” diagonal transformation of RGB image
data as shown in Eq. (1) or, equivalently, a coefficient rule
scaling of the image bands. In other words, the proce-
dure is equivalent to scaling all the camera responses on
the R, G, and B channels independently by coefficients
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The same coefficients are applied to all image pixels.
The coefficients are computed so that the diagonal trans-
formation maps colors as recorded by the camera under
the scene illuminant to those that would be recorded by
the camera under a standard “canonical” illuminant.
The colors under the canonical illuminant then provide a
color-constant representation of the scene colors. Color
correction of the form given in Eq. (1) has a long history.
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Although Worthey and Brill® have shown that broad and
overlapping receptor spectral sensitivities affect the accu-
racy of the coefficient rule as a model of the effect of illu-
mination change, the diagonal model is generally suffi-
ciently accurate. It has been shown®%1 that if the
receptor spectral sensitivities are sharp enough, the diag-
onal model provides a good vehicle for color correction. If
the spectral sensitivities are not sharp, they can be sharp-
ened by using a linear transformation that converts them
into a new set of spectral sensitivity functions that opti-
mizes the diagonal model by minimizing the nondiagonal
elements of the transformation matrix.

2. RELATED WORK ON COLOR
CONSTANCY

Computing illuminant-independent color descriptors is an
underdetermined problem, since in a three-band image
(retinal or camera) with n image locations, there are 3n
sensor measurements (three color channels times n loca-
tions), but there are 3n + 3 unknowns (the surface de-
scriptors plus the illuminant). All color constancy algo-
rithms therefore impose some additional constraints to
permit a solution to be obtained. The algorithms differ
in the assumptions they make.

One common approach is to make some assumptions
about the expected distribution of image colors. For ex-
ample, Buchsbaum!! assumes that the average of the re-
flected spectra corresponds to the actual illuminant.
Gershon et al.'? refined this idea further, counting each
distinct color only once. Brainard and Freeman'? ex-
tended beyond a simple average by constructing prior dis-
tributions that characterize illuminants and surfaces in
the world. Then, given a scene, they used the Bayesian
rule for a posteriori estimation of illuminants and sur-
faces. Retinex theory'* bases color constancy on the
lightness in each of the three color bands. A pixel’s light-
ness is computed by comparing its value with other pixels
in the image, generally with a bias to pixels in a localized
neighborhood. In a different vein, finite-dimensional lin-
ear models for illuminants and surface reflectances have
been used by several authors’®~® in order to make the
underdetermined set of equations solvable. These mod-
els make strong assumptions about the dimensionality
and statistics of the surface reflectances and illuminants.
For example, in the case of the Maloney—Wandell algo-
rithm for a trichromatic system, the assumptions require
that surface reflectances fall in a two-dimensional (2D)
subspace. This assumption is violated so significantly in
real image data that the method fails to work in
practice.’® It fails in the sense that when an image is
color balanced on the basis of its estimate of the illumina-
tion, the resulting image is worse than the input image.

One of the best-performing color constancy algorithms,
by Forsyth,?’ estimates color-constant descriptors for the
objects in a scene under a standard canonical illuminant,
on the basis of intersections of constraints given by the
colors of surfaces in the scene. Finally, the “color-by-
correlation” algorithm developed by Finlayson et al.?b?
builds a correlation matrix that correlates the chromatici-
ties in the image with a set of predetermined scene illu-
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minants. The illuminant is identified as the one with the
maximum correlation.

Other authors have discussed neural networks in the
context of color, but none has solved the problem of esti-
mating an unknown scene illuminant by using a neural
network designed to learn the relationship between a
given scene illuminant and the gamut of corresponding
image colors that is likely to arise under that illuminant.
For example, Hurlbert and Poggio?®?* developed and
tested a neural network that learns a version of the main
stage of the Retinex algorithm, in particular the compu-
tation of lightness in a single color band. Moore et al.?®
developed a neural network implementation of a variant
of Retinex using a VLSI analog network for speed; the
network itself does not learn. Usui et al.?% designed a
simple three-neuron recurrent neural network that de-
correlates the triplets of cone responses, thus obtaining
marginally color-constant descriptors for the objects in a
scene. Courtney et al.2” modeled the structure of the pri-
mate visual system from the retina to the cortical area
V4, with a multistage neural network. Courtney’s model
is not a learning model, either, but rather a neural net-
work implementation of an existing theory. Courtney
does not present any actual color constancy results with
real image data, so it is unclear whether the method
works.

The neural network approach?® to color constancy that
we describe below is novel in two ways. First, the net-
work learns the connection between image colors and the
color of the illuminant. Second, it works better than any
previous color constancy algorithm.

3. NEURAL NETWORK APPROACH

We use a neural network to extract the relationship be-
tween a scene and the chromaticity of its illumination.
To discard any intensity information, all the scene’s pixels
are projected into a chromaticity space. This space is
then sampled and presented to a multilayer neural net-
work. During training, the actual chromaticity of the il-
luminant is presented to the output of the neural network
so that it can learn the relationship between the scene
and its illuminant. During testing, the network pro-
duces at its two output nodes an estimate of the illumi-
nant’s chromaticity.

A. Data Representation

The neural network’s input layer consists of a large num-
ber of binary inputs representing a binarized chromatic-
ity histogram of the chromaticities of the RGBs present in
the scene. In our experiments we use the rg chromaticity
space:

r=R/(R + G + B),

g=G/R + G + B). 2)

This space has the advantage that it is bounded between
0 and 1, so it requires no additional preprocessing before
being input into the neural network. If necessary, the
implicit blue chromaticity component can easily be recov-
ered:
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b=1-r—g. (3)

We also experimented with other chromaticity spaces,
such as the logarithmic perspective space, where r
= log(R/B) and g = log(G/B), as well as CIELAB a*, b*.
In each case we obtained similar results.

Using rg-chromaticity space discards all spatial and in-
tensity information, which has its pros and cons. For ex-
ample, recent experiments performed on 2D versus three-
dimensional gamut-mapping algorithms?®?° showed that
intensity information can help in estimating the illumi-
nant. In the case of the neural network approach, how-
ever, a mapping from the image space into a three-
dimensional space (such as RGB) would have increased
the size of the neural network to the point where it would
have made training impossible, both from the standpoint
of training time and from the standpoint of the much
larger training set that would be required.

The rg-chromaticity space is uniformly sampled with a
step size S, so that all chromaticities within the same
sampling square of size S are taken as equivalent. Each
sampling square maps to a distinct network input neu-
ron. The input neuron is set either to 0, indicating that
an RGB of chromaticity rg is not present in the scene, or
to 1, indicating that rg is present. The idea of a chroma-
ticity being strictly present or absent is used for synthetic
images where there is no noise, but it is modified some-
what, as discussed below in Subsection 3.B, by the prepro-
cessing that is performed in working with real images.
This quantization has the apparent disadvantage that it
forgoes some of the resolution in chromaticity, and it does
not represent the number of pixels having a particular
chromaticity value. However, we have found that in-
creasing the chromaticity resolution indefinitely does not
improve the neural network’s performance. It also ap-
pears to be the presence or absence of a given chromatic-
ity that matters, not how often it occurs. The represen-
tation is also good in that spatial information is
discarded, thereby reducing the number of possible inputs
to the net, which is a major advantage for both training
and testing.

A large sampling step S results in a small input layer
for the neural network but loses a lot of color resolution,
which when taken too far can lead to larger illumination-
estimation errors. Alternatively, a small sampling step
yields a very large input layer, which can make training
very difficult.

Figures 1 and 2 show binarized chromaticity histo-
grams for a natural image taken under two different illu-
minants, a fluorescent light (Fig. 1) and a tungsten halo-
gen light (Fig. 2). As can be seen, the transformation
between the two histograms is not simple. Moreover, as
a result of to noise, filtering, and sampling errors, the
number of activated bins is usually different under two
different illuminants.

The output layer of the neural network produces the
chromaticities r and g (in the rg-chromaticity space) of the
illuminant. These values are real numbers in the range
0 to 1. In practice, the chromaticities of real illuminants
are limited, so the neural network output values range
from 0.05 to 0.9 for both the r and the g components.
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Fig. 1. Binarized histograms of a scene taken under fluorescent
illuminant, as represented in the rg-chromaticity input space of
the neural network.
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Fig. 2. Binarized histogram of the same scene as the one de-
picted in Fig. 1, taken under tungsten illuminant, as represented
in the rg-chromaticity input space of the neural network.

B. Neural Network Architecture

The neural network that we used is a perceptron with two
hidden layers. The first layer is large, and the input val-
ues are binarized (0 or 1), as described above. The larger
the layer, the better the chromaticity resolution, but a
very large layer substantially increases the training time
and requires a much larger training set. Another prob-
lem with a large network is that it has a tendency to
memorize the relationship between inputs and output tar-
gets and therefore has poor generalization properties.
On the other hand, a small network cannot fully model
the input—output mapping. This is known as the bias/
variance dilemma.?! The proper network architecture
depends on the dimensionality of the function that it tries
to model and on the amount and quality of training data.
In our initial experiments, the neural networks with only
one hidden layer yielded worse results than the ones with
two hidden layers, so we focused on the networks with
two hidden layers.

We experimented with different input layer sizes (512,
900, 1024, 1250, 2500, and 3600), with comparable color
constancy results in all cases. The first hidden layer,
H-1, contains roughly 200 neurons and the second layer,
H-2, approximately 40 neurons. The output layer con-
sists of only two neurons, corresponding to the chromatic-
ity values of the illuminant. From our experiments we
found that the size of the hidden layers can vary within a
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wide range (from 25 to 400 nodes for the first hidden layer
and from 5 to 50 nodes for the second one) without affect-
ing the overall performance of the network.

All neurons have a sigmoid activation function of the
form

1

_— 4
1+ exp(—A)’ @

y =
where the activation A is the weighted sum of the inputs
of the neuron, minus a threshold value. The neural net-
work is trained with the backpropagation algorithm.3233
The error function used for training the network and for
estimating its accuracy is the Euclidean distance between
the target and the estimated illuminant in the rg-
chromaticity space.

C. Optimizing the Neural Network

Initial tests performed with the standard neural network
architecture described above showed that it took a large
number of epochs to train the neural network, and conse-
quently the training time was very long. To overcome
this problem, various improvements were developed.®*

1. Adaptive Layer

The gamut of the chromaticities encountered during
training and testing is much smaller than the whole (the-
oretical) chromaticity space. The chromaticities are lim-
ited in part because the illuminants and surfaces are not
very saturated and in part because the camera sensors
overlap. To take advantage of the fact that the set of all
chromaticities does not fill the whole chromaticity space,
we developed an algorithm that automatically adapts the
neural network’s architecture to the actual chromaticity
space. Thus the input layer of the network adapts itself
to the chromaticity histograms such that the neural net-
work receives input only from active nodes, where an ac-
tive node is an input node that has been activated at least
once during training. The inactive nodes (those input
nodes that were not activated at any time during train-
ing) are purged from the neural network, together with
all their links to the first hidden layer. Since all scenes
are presented to the network during the first training ep-
och, the network’s architecture, illustrated in Fig. 3, is

Adaptive Layer

Fig. 3. Perceptron architecture. Gray input neurons denote in-
active nodes as determined by the data in the training set.
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Table 1. Active and Inactive Nodes versus the
Total Number of Nodes in the Input Layer (NI)

NI Active Nodes Inactive Nodes
400 166 234
625 258 367
900 351 549
1600 601 999
2500 909 1591
3600 1255 2345
4900 1673 3227

Table 2. Neural Network Architectures®

Type In Links H-1 H-2 Out
A 3600 400 200 40 2
B 3600 400 200 50 2
C 2500 200 400 30 2

“Neural network architectures A, B, and C described in terms of the
number of nodes in each layer and the number of links between layers.
In is the input layer, H-1 is the first hidden layer, H-2 is the second hidden
layer, and Out is the output layer. “Links” is the number of connections
between each node in the first hidden layer H-1 and the input layer In.

modified only once, immediately after the first training
epoch. The links from the first hidden layer, H-1, are re-
directed only toward the neurons in the input layer that
are active (i.e., that correspond to existing chromatici-
ties), while links to inactive nodes are eliminated. For a
sampling step of 1/60 of the rg-chromaticity space, there
are 3600 nodes, of which less than one half remain active
after the first pass through the training set (the first ep-
och). As a direct consequence of this adaptation process,
the first hidden layer, H-1, is not fully connected to the in-
put layer.

Table 1 shows the number of active and inactive nodes
as a function of NI, the total number of input nodes, for
typical data generated by using the sensor sensitivity
functions of a SONY DXC-930 video camera. Having
fewer nodes and fewer links in the network shortens the
training time roughly fivefold. To shorten the training
time even more, the number of links between the nodes in
the first hidden layer and the input layer can actually be
smaller than the total number of active nodes in the input
layer. For instance, as shown in Table 2, the type C neu-
ral network has only 200 links from each node in the first
hidden layer to the input layer, although the total number
of active nodes is 909, as shown in Table 1.

This approach is similar in some respects to the gamut-
mapping algorithms, which consider all possible RGBs
that can be encountered under a set of illuminants for a
given representative set of surfaces. However, whereas
gamut-mapping algorithms take only the convex hull of
the gamut into account, the network bases its estimate on
all chromaticities from the image, including those that
would be interior to the convex hull.

Of course, some chromaticities that were never encoun-
tered during training might appear in some scenes during
testing; however, such previously unseen chromaticities
do not present a problem. They will simply be ignored by
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the neural network because there will be no link from
that input node to the first hidden layer. Since there was
never any information with which to train such nodes, ig-
noring them is better than the alternative of a fully con-
nected input layer. The untrained weights in a fully con-
nected input layer would only introduce error into the
rest of the network.

2. Architecture-Dependent Learning Rates

The backpropagation algorithm is a gradient-descent al-
gorithm, which changes the weights in the network until
the error between the network output values and the tar-
get values falls below a threshold. The learning rate is a
proportionality factor controlling how fast the network
adapts its weights during training. If the learning rate
is too small, the training time becomes unnecessarily
large and the backpropagation algorithm might get
trapped in a local minimum. On the other hand, if the
learning rate is too large, the training process becomes
unstable and does not converge. There is no algorithm to
set exact values for the learning rate because it depends
on the data set, the network architecture, and the initial
random values of the network’s weights and thresholds.
However, there are heuristic methods to improve the
training time. For example, because the sizes of the lay-
ers are so different, we used different learning rates for
each layer proportional to the fan-in of the neurons in
that layer.® Typical values for the learning rates are 0.1
for the output layer; 0.2 for the second hidden layer, H-2;
and 4.0 for the first hidden layer, H-1. This shortened
the training time by a factor of more than 10, to approxi-
mately five or six epochs.

Figure 4 illustrates the difference in the mean error for
the standard training method with only one learning rate
for all layers, as well as for the improved method with
multiple learning rates. The training set was composed
of 4900 scenes; 50 scenes were generated for each of the
98 illuminants in a set described in more detail in Sub-
section 2.D. Each scene contained from 5 to 50 colors,
generated (with use of that scene’s illuminant) from a da-
tabase of 260 reflectance spectra including those provided
by Vhrel et al.?® plus additional ones that we measured
with a PhotoResearch PR650 spectroradiometer. For
this test, we used the neural network architecture A, as
described in Table 2. When different learning rates are
used for each layer, the average error drops to 0.03 after
one training epoch and attains the target error of 0.01 af-
ter only eight or nine epochs.
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Fig. 4. Average error during the ten training epochs for three
different learning-rate (7) configurations.
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Fig. 5. Chromaticities of the 98 illuminants in our database, re-
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Fig. 6. Chromaticities of the 260 surfaces in our database, illu-
minated with equal-energy white light.

D. Databases Used for Generating Synthetic Data

If testing is done on data generated from the same surface
and illuminant databases and by using the same sensor
sensitivities, then any database and sensors can be used.
However, our final goal is to test the neural networks on
real image data of natural scenes taken with a digital
camera. If a neural network that is trained on synthetic
data is to be tested on real images, the sensor sensitivity
functions used to train it must be as close as possible to
the real sensors. Any deviation of the real camera from
its model leads to differences in the RGBs observed by it
and, consequently, to errors in the neural network’s illu-
minant estimate. In this context, a SONY DCX-930 cam-
era was calibrated,?” and we used the calibrated sensor
sensitivity functions for training and testing the net-
works. The illuminants in the database were measured
with a PhotoResearch PR650 spectroradiometer and cov-
ered a wide range from bluish fluorescent lights to red-
dish tungsten ones. Colored filters were also used to cre-
ate new illuminants. A blue filter was wused in
conjunction with four illuminants to create additional
sources similar to various phases of daylight. However,
strongly colored, theater-style lighting was avoided. Fig-
ure 5 shows the rg chromaticities of the 98 illuminants in
the database, and Fig. 6 depicts the rg chromaticities of
the 260 surfaces under equal-energy white light.

E. Training and Testing the Network

Table 2 specifies the three different network architectures
for which we report results. For instance, neural net-
work A has 3600 nodes in the input layer, 200 nodes in the
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first hidden layer (H-1), 40 nodes in the second hidden
layer (H-2), and 2 nodes in the output layer. Each node
in the first hidden layer has 400 links to the input. All
other layers are fully connected to the preceding ones, so
in these layers the number of links connecting a neuron to
its preceding layer is equal to the size of that layer.

In the first series of experiments, the neural network
was trained on synthesized data. Each scene, represent-
ing a flat Mondrian, is composed of a variable number of
surface patches seen under one illuminant. The patches
correspond to matte reflectances and therefore have only
one rg chromaticity. Of course, the same patch will have
different chromaticities under different illuminants, but
it will have only one chromaticity when seen under a par-
ticular illuminant. This model is a simplification of the
real-world case, where, owing to noise, a flat matte patch
will yield many more chromaticities scattered around the
theoretical chromaticity.

Training on artificial data instead of natural scenes has
the advantage that the environment can be carefully con-
trolled, and it is easy to generate very large training sets.
Each training set is composed of a large number of artifi-
cially generated scenes. For synthesized data the user
can set the number of patches constituting a scene,
whereas for real images (used for testing), the number of
patches depends on the input image. This representa-
tion disregards any spatial information in the original im-
age and takes into consideration only the chromaticities
present in the scene.

The RGB color of a patch is computed from its ran-
domly selected surface reflectance S/ and the spectral dis-
tribution of the illuminant E* (selected at random, but
the same for all patches in a scene) and by the spectral
sensitivities of camera sensors p according to

R =2 E*S/pf, G =2 ESipS,

B = E EikSLjpiB. (5)

The index i is over the wavelength domain corresponding
to wavelengths in the range 380 to 780 nm.

4. EXPERIMENTS

Tests were performed on synthesized scenes as well as on
real images taken with a Sony DXC-930 camera. The
synthesized scenes used for testing were generated in a
way similar to that for the training sets. A large number
of scenes, each containing a variable number of surfaces,
were synthesized from the same spectral databases and
with the same sensor sensitivity functions as in training.
The neural network estimates are compared with those of
other color constancy algorithms.

A. Testing on Synthetic Data

Testing on synthetic data offers the advantage that the
tests are not affected by noise or other artifacts. More-
over, tests can be performed on a very large data set, thus
achieving reliable statistics on the performance of various
color constancy algorithms. After the neural network
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training, the average error in estimating the illumination
chromaticity for the training set data ranged from 0.0083
to 0.011, depending on the neural network architecture
and the test set. When tests were done on scenes that
were not part of the training set, the average error was
slightly higher, ranging from 0.01 to 0.02. These average
errors are also a function of the distribution of the num-
ber of patches in each scene, since scenes containing a
smaller number of patches generally lead to larger errors.

In the example given in Fig. 7, the test set contains 100
random scenes for each of the 98 illuminants. The num-
ber of patches in each test scene ranges from 3 to 50, dis-
tributed uniformly. Each patch can appear only once in a
test scene. The performance of the neural network (NN)
algorithm is compared with the white-patch (WP) algo-
rithm and the gray-world (GW) algorithm, described be-
low.

The WP algorithm estimates the color of the illuminant
as being the color given by the maxima taken from each of
the R, G, and B channels. Since there are no “clipped”
pixels (i.e., pixels for which the sensor response on a
channel is saturated) in synthesized scenes, the WP algo-
rithm performs much better on synthetic data than on
real-world images.

The GW algorithm is based on the assumption that the
average of the tristimulus values of the surfaces in the re-
flectance database illuminated by a particular light
source will be the same as spatial average of the tristimu-
lus values from a real scene under the same light. The
algorithm averages the pixel values of the test image on
each of the three color channels and assumes that any de-
viation of these average values from the database aver-
ages is caused by the color of the illuminant. Because
the GW algorithm uses a priori knowledge about the sta-
tistical properties of the surface reflectances used for cre-
ating the test sets, it will eventually converge to zero er-
ror when tested on scenes with a very large number of
patches. On real images, GW performs more poorly, be-
cause the distribution of the colors in real world images is
not known a priori.

The superior performance of the NN algorithm is
clearly apparent in Fig. 7 for scenes with a small number
of patches, especially below 20. For scenes with a large
number of patches, the error converges to a very small
value. The good performance of the NN algorithm might
allow local image processing, which could help solve the
color constancy problem for scenes with multiple
illuminants.'?3®
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It should be noted that both GW and WP algorithms
are at an advantage relative to the NN owing to the de-
sign of the testing scenario. Statistically, the estimation
errors for both WP and GW algorithms will converge to
zero as the number of surfaces in the scene approaches
the size of the database. In the case of the WP algorithm,
this happens because the probability of a surface with a
constant 100% spectral reflectance (i.e., a white surface)
being present in the scene increases. There is, in fact, a
reference white surface in the database. Similarly, in the
case of the GW algorithm the scene average converges to
the database average.

B. Testing on Real Images

The network was also tested on 48 images (of size 637
X 468 pixels) taken with the Sony DXC-930 camera un-
der controlled conditions. The chromaticity of the illumi-
nant was assumed to be the same as the chromaticity of a
reference white patch under the same illuminant. The il-
luminants varied from fluorescents with added blue fil-
ters to tungsten illuminants.

The images were preprocessed before being passed to
the network. The clipped and the very dark pixels were
eliminated. A threshold value of 7 (on a 0-255 scale) in
any of the three RGB color channels was used to select
the dark pixels. The images were also smoothed by using
5 X 5 local averaging to eliminate noise. After prepro-
cessing, approximately 10,000 valid image pixels were
passed to the network. Owing to the sampling size of the
chromaticity histogram, the number of distinct binarized
histogram bins and, consequently, active inputs to the
neural network representing the set of rg-chromaticities
occurring in the image, varied from 60 to 120.

Table 3 shows the results on real images. The mean
distance error represents the average Euclidean distance
in rg-chromaticity space between the estimated and the
actual illuminants. The standard deviation is also given.
To relate the results to a perceptual measure of the color
difference between the estimated and the actual illumi-
nants, the mean CIE L*a*b* AE errors® are also given.
The AE error is taken between the color of the estimated
illuminant and the color of the actual one, under the fol-
lowing assumptions. We assume first that the RGB
space is that of an sSRGB-compliant device?® and second
that the two illuminants have the same luminance so that
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Y is equal to 100 in CIE XYZ coordinates. The cameras
that we used are not calibrated to sSRGB space, so the first
assumption is violated to some extent; however, this
should not have much effect since we are computing only
the difference in color between the two illuminants, not
either one’s true color. Converting from the RGB space
to the CIE L*a*b* color space involves first converting
the RGB values to the CIE XYZ space, on the basis of the
sRGB model. The tristimulus values X,,, Y,,, Z,, of the
nominal white involved in the conversion from XYZ to
CIE L*a*b* are equal to the values of the CIE Dgs stan-
dard illuminant, with Y, equal to 100. The conversion
from XYZ to CIE L*a*b* was done by using the formulas
in Ref. 39.

In Table 3 the illumination-chromaticity variation
listed in the first row shows the average shift in the rg-
chromaticity space between the canonical illuminant and
the true illuminant of each of the test scenes. This can
be considered a worst-case estimation algorithm that sim-
ply outputs the chosen canonical illuminant as the “an-
swer” in all cases. In our experiments the canonical illu-
minant was selected to be the one for which the CCD
camera was best color balanced. For this illuminant, the
image of a white patch records identical values on all
three color channels.

In every case, the errors are higher for real images
(Table 3) than for synthesized ones (see Figs. 4 and 7).
The average errors, larger than 0.05 for all algorithms,
were almost five times higher than the average errors ob-
tained for synthesized scenes. Noise, specularities,
clipped pixels, and errors in camera calibration are some
of the factors that might have affected the performance of
the algorithms. The gray-world algorithm (second row)
had to rely only on a model based on a priori knowledge
gathered from the surface database. The results show
that the particular distributions found in the databases
from which the artificial scenes were synthesized do not
match the real-world distributions of surfaces and illumi-
nants. The white-patch algorithm (third row) suffered
because of clipped pixels, noise, and the fact that the
“whitest” patch may not in fact have been white but some
other color.

The results for the neural network (fourth row) were
obtained by using the neural network architecture B (de-
scribed in Table 2) and trained with synthesized data.

Table 3. Tests on Real Images®

Mean Standard Mean
Method of Illumination Estimation Error Deviation AEq.,
Illumination-chromaticity variation 0.090 0.062 22.38
Gray-world with average R, G, and B 0.071 0.051 15.27
White-patch with maximum R, G, and B 0.075 0.049 16.36
Neural network trained on synthetic data 0.059 0.043 15.03
2D gamut-mapping method with surface 0.054 0.047 12.90
constraints only
2D gamut-mapping method with surface and 0.047 0.039 12.67
illumination constraints
Neural network B with 25% specularity model 0.044 0.032 12.13

“Comparison of performance of the various color constancy algorithms when tested on real images. Distances are measured between the actual and the
estimated illuminant in terms of Euclidean distance in rg-chromaticity space and CIE L*a*b* AE.
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Fig. 8. Error as a function of the number of colors used. Colors
were randomly selected from a single image. All values are
relative to the base case of using only four distinct colors. Error
drops noticeably as the number of colors increases.

Error Relative to Error for 4 colors

The 2D gamut-mapping algorithm that uses only surface
constraints (fiftth row) is Finlayson’s “perspective”
variation*! on Forsyth’s algorithm,?’ and the extended
method (sixth row) adds illumination constraints.*’ The
neural network results are improved (seventh row) by
modeling specular reflections in the training set, as will
be discussed in more detail below. As a general rule, the
more distinct colors there are in a scene, the better most
color constancy algorithms are likely to perform, since
having more colors implies more information to exploit.
To determine the accuracy of the neural network as a
function of the number of distinct colors in an image, we
created new “images” by taking random subsets of the col-
ors found in a single real image. As the test image, we
took the Macbeth Colorchecker under a relatively blue
light created by a fluorescent tube behind a blue filter.
After the initial preprocessing was applied to the image
as described above, 4, 8, 16, or 32 colors were selected at
random. Fifty new sampled “images” were made for each
number of colors to be selected. As well, the original im-
age with all its initial colors was included in the testing.
The relative error as a function of the number of colors,
plotted in Fig. 8, clearly shows that the neural network’s
performance improves with the number of colors. Al-
though Fig. 8 is based on a single image so as to factor out
the effect of scene content, the results are consistent,
nonetheless, with those based on all scenes.

C. Modeling Specular Reflections

The accuracy of the neural network’s illumination-
chromaticity estimate generally was similar to or sur-
passed that of the GW and WP algorithms. However, as
seen above, the errors obtained with real images were sig-
nificantly larger than those for the synthetic ones. After
experiments with adding noise to the synthetic data, we
concluded that there was a more fundamental problem re-
quiring explanation than simply the influence of noise.
We hypothesized that specular reflection was partially
causing the problem, so we modeled the specular reflec-
tion in the training set.*?

Most color constancy algorithms assume matte surface-
reflection properties for the objects appearing in images.
However, some algorithms*>** exploit specularities ex-
plicitly when calculating the illuminant’s chromaticity
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and will fail if there are no specularities. Those algo-
rithms use the dichromatic model of specular reflection®
and depend on the fact that the spectrum of the specu-
larly reflected component—that which is reflected directly
from the surface of the object rather than entering the
object—is approximately the same as that of the incident
illumination. These algorithms detect a specularity
based on its spatial structure. In contrast, the neural
network’s histograms contain no spatial image structure,
and the network does not explicitly identify specularities
in the image.

To incorporate specularities into the neural network
approach, we modified the training set to include random
amounts of specularity calculated by using the dichro-
matic reflection model, which states that the reflected
light is an additive mixture of a specular and a body com-
ponent. The body component describes the light that en-
ters the object’s surface before being reemitted. There-
fore specularities were added to the training set simply by
adding random amounts of the scene illumination’s RGB
to the matte component of the synthesized surface RGBs.

Two different neural network architectures, B and C
from Table 2, were tested. The networks were trained
with training sets containing 9800 artificially generated
scenes (100 scenes for each of 98 illuminants). Each
scene contained 10 to 100 randomly selected surfaces. To
each of the generated RGB values we added a random
amount w of the scene’s illumination. The value of w for
a scene was computed as the product, w = Sp, of a user-
controlled maximum value for the specular component S
and a random subunitary coefficient p. Since surface
specularity is not uniformly distributed in a real image,
we created a nonuniform distribution by squaring a uni-
formly distributed random function: p = rand(-)2.
This model has an expected value for the specular coeffi-
cient p of 33.3% and a standard deviation of 29.81%.
This ensures that generally, only a few surfaces in the
scene will be highly specular while a large variance of
specularity is retained. A random amount of white noise,
to a maximum *5% of the RGB values, was then also
added to the data.

We generated training sets with different amounts of
maximum specularity and trained the networks for ten
epochs on each training set. All networks of the same ar-
chitecture were trained by starting from a network ini-
tialized with identical random weights, which ensures
that the results depend only on the training sets and not
on the network’s starting state. When finished, we have
a separate neural network for each training set.

For these networks, the average error in estimating the
illumination chromaticity for the images in the training
set ranged from 0.008 to 0.011. When the networks were
tested on synthesized scenes that were not part of the
training set, the average error ranged from 0.012 to 0.022.
More important, on the test set of real images, the specu-
larity modeling improved the neural network’s perfor-
mance significantly. The results are summarized in
Table 4, Table 5, and row 7 of Table 3.

The results in Tables 4 and 5 show that there is a sig-
nificant improvement in the network performance for net-
works trained on images with a specular component.
The error drops from an average of 0.059 to 0.044 mea-
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Table 4. Results with Network C with Use
of Specularity Modeling®

Specularity Mean Standard Improvement
(%) Error Deviation (%)
0 0.058 0.047 —
5 0.051 0.037 11.8
10 0.056 0.038 34
25 0.045 0.036 22.4
50 0.047 0.032 18.9

“Results for the C network trained for different amounts of specularity
and then tested on images of real scenes. The error is reported in terms
of Euclidean distance in rg-chromaticity space between the actual and the
estimated illuminant chromaticities.

Table 5. Results with Network B with Use
of Specularity Modeling®

Specularity Mean Standard Improvement
(%) Error Deviation (%)
0 0.059 0.043 —
5 0.051 0.035 13.5
10 0.044 0.026 25.4
25 0.044 0.030 25.4
>50 ~0.044 ~0.035 254

¢Results for the B network trained for different amounts of specularity
and then tested on images of real scenes. The error is reported in terms
of Euclidean distance in rg-chromaticity space between the actual and the
estimated illuminant chromaticities.

sured in the rg-chromaticity space. As can be seen from
Table 3, the neural network’s estimates are more accurate
than those of any of the other methods tested. Nonethe-
less, the error (Table 3, row 7) for real images is still four
times larger than the average error obtained with syn-
thetic images (~0.01, as can be seen from the NN curve in
Fig. 7). This discrepancy leads to the question of
whether training on real image data will improve the re-
sults and the accompanying problem of how to obtain a
large enough training set of real images.

D. Training and Testing on Real Images

As shown in the previous subsections, the neural network
does not work as well with real images as with synthetic
ones. It is possible that training on real image data will
improve the network’s performance on real images. An-
other benefit of training on real images is that it elimi-
nates the need for camera calibration.

The main problem in training on real images is how to
obtain a sufficiently large number of images. Training
sets need to contain 10,000 or more images in which the
illumination conditions are known. Since obtaining
thousands of images under controlled conditions is not
practical, we had to take a different approach. As an al-
ternative, we created new image histograms from subsets
of the pixels found in a modest set of controlled real im-
ages. In essence, this method synthesizes new scenes
from real data. The training sets were generated from
only 44 images. The images used for training and testing
the neural network were taken with a Kodak DCS460
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digital camera. This camera has the advantage over the
Sony DXC-930 camera in that it is portable and has a
wider dynamic range (8 to 9 bits). It also has greater
spatial resolution, but the extra resolution is not neces-
sary, so the images were reduced to a resolution of 1000
X 600 to speed up the preprocessing.

The images contain outdoor scenes, taken in daylight
at different times of day, as well as indoor scenes, taken
under a variety of tungsten and fluorescent light sources
both with and without colored filters. The chromaticity
of the light source in each scene was determined by tak-
ing an image of a reference white reflectance standard in
the same environment. The average distance AE in the
CIE L*a*b* space between the chromaticity of one of the
light sources and the chromaticity of the reference light
source (i.e., the source for which the camera produces
R = G = B for a white reflectance standard) was 17.05
with a standard deviation of 9.51.

To obtain even more training and test data, all images
were downloaded from the camera by using two different
camera-driver color-balance settings (“Daylight” and
“Tungsten”). These settings performed a predefined color
adjustment; however, this did not mean that the images
were correctly color balanced, since the actual illumina-
tion under which any particular image was taken was
usually different from that anticipated by either of the
two possible camera settings. We made no assumptions
regarding the camera sensors nor about the two color-
balance settings of the camera driver. We measured the
gamma of the camera, which we found to be the same for
both color-balance settings, and linearized the images ac-
cordingly.

The neural network was trained for five epochs on data
derived from the 44 real images. Each image was pre-
processed in the same way as described above. The set of
chromaticities appearing in each of the 44 preprocessed
images was then randomly sampled to derive a much
larger number of training “images.” A total of 50,000 im-
ages containing between 10 and 100 distinct chromatici-
ties were generated in this way.

Table 6 compares the performance of the neural net-
work relative with other color constancy algorithms on a
test set of 42 real images not included in the neural net-
work’s training set. To make the comparisons, we also
trained a neural network on 123,000 synthetic scenes
based on the spectral sensitivity functions of the Kodak
DCS460 camera, using the same databases of illuminants
and surface reflectances as before. As well, we generated
gamuts for the gamut-mapping algorithms based on the
DCS460 sensors. As in the other tables, the mean error
and standard deviation are computed in the rg-
chromaticity space and as CIE L*a*b* AE.

The network trained on real data clearly outperforms
the network trained on synthetic data as well as the other
color constancy algorithms. The accuracy of all the
gamut-mapping algorithms was not as good as we ini-
tially expected. One possible reason is that the sensors
of the Kodak camera are rather broad, which makes them
less suitable for diagonal transformations® and gamut-
mapping algorithms.?® Inaccuracies in the calibration of
the camera’s spectral sensitivity functions also reduce the
effectiveness of both the gamut-mapping algorithms and



Cardei et al.

Table 6. Estimation Errors of Color Constancy algorithms (I)¢
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Illumination-Estimation Algorithm Mean Error Standard Deviation Mean AEq,,
Illumination-chromaticity variation 0.0956 0.0789 21.22
Database gray-world 0.0553 0.0295 19.61
White-patch 0.0716 0.0464 19.47
Gamut-mapping algorithms

2D Hull average with surfaces only 0.0861 0.0420 21.43
2D Hull average with surfaces and illumination 0.0839 0.0436 20.68
2D Constrained-illumination hull average 0.0782 0.0427 20.61
2D Surface constrained-illumination average 0.0821 0.0437 22.22
2D Surface constrained-chromaticity average 0.0824 0.0439 22.23
Neural networks

RG neural net trained on synthetic data with 0.0748 0.0493 14.84
specularity

RG neural net trained on real images 0.0207 0.0231 5.67

“Comparison of the performance of the various color constancy algorithms when tested on Kodak DCS 460 images. The last two rows show the per-
formance improvement obtained by training on real image data instead of synthetic image data. Training the network on real image data reduces the error

by more than half.

the neural network trained on synthetic data. Training
the neural network on real images reduces the average
illumination-estimation distance in rg-chromaticity space
to only 5.67 in CIE L*a*b* space.

E. Example of Color Correction

Figure 9 shows an example of color correction based on
the illuminant estimate provided by various color con-
stancy algorithms. Given an estimate of illuminant chro-
maticity, the image is then corrected using the diagonal
model.? After application of the diagonal transforma-
tion, the intensity of the pixels is adjusted such that the
average intensity of the image remains constant: The
average image intensity is computed before and after the
diagonal transformation, and then the corrected image is
scaled globally such that its average intensity becomes
equal to the average intensity of the original image.

In Fig. 9, the top-left panel shows the original image,
taken under an unknown illuminant with the Sony cam-
era. The top-right panel shows the target image, taken
under the canonical illuminant. Given only the image in
the top-left panel, our color-correction goal is to produce
an image that matches the top-right image as closely as
possible. The middle-left image is calculated by first us-
ing the neural network to estimate the illuminant of the
top-left image followed by the appropriate scaling of each
of the RGB channels on the basis of the estimated illumi-
nant. Similarly, the middle-right image shows the result
of the gamut-mapping algorithm that uses both surface
and illuminant constraints. The bottom-left panel gives
the WP algorithm result, and the bottom-right panel
shows the GW result.

5. TRAINING AND TESTING ON
UNCALIBRATED IMAGES

The experiments described above were done by using im-
ages taken with calibrated cameras (i.e., cameras for
which the sensor sensitivity functions, white balance, and
amount of gamma correction were known). In dealing

with uncalibrated images, such as images downloaded
from the Internet or taken with an unknown camera (a
common case for photo-finishing labs), the problem be-
comes more difficult.

First, there is the issue of estimating the illuminant.
The camera’s white balance, its gamma value (gamma
values other than 1.0 result in the image intensity becom-
ing a nonlinear function of scene intensity), and its sensor
sensitivity functions are unknown. Each of these factors
can have an effect on the illuminant estimate. Consumer
digital cameras produce an image that is intended for
CRT monitors, so the expected variation in gamma is
relatively small; but, on the other hand, the white balance
and sensor sensitivity functions of these cameras vary
significantly.

Second, even if the color of the illuminant is estimated
correctly, there remains the problem of how to correct all
the nonwhite colors in an image of unknown gamma. In
previous work*® we have shown that as in the linear case,
a diagonal transformation can be used for color correction
of uncalibrated nonlinear images. Although for nonlin-
ear images the off-diagonal terms of the full 3 X 3 trans-
formation matrix are larger relative to the diagonal
terms, the perceptual error of the transformation induced
by ignoring the off-diagonal terms remains small, and
therefore the diagonal transformation remains a good
model of illumination change.

For this experiment on uncalibrated images, we used a
database of 900 images, collected with a variety of digital
cameras: Kodak DCS 460, DC 210 and DC 280, Olympus
C2020Z and C820L, Hewlett-Packard PhotoSmart C30
and 912xi, Fuji 600, 2400Z and MX-1200, Polaroid PDC
640 and PDC 2300, Canon Powershot S10, Ricoh RDC-
5000, and Toshiba PDR-M60. The actual illuminant
chromaticity was determined for each image by measur-
ing the RGB of a gray card in the image.

The images were taken over a long period of time (over
one year), under very diverse lighting conditions (indoors
with and without flash, outdoors under natural light, out-
doors with fill-in flash, etc.). All images were down-
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sampled to a fixed size such that the larger of the width or
height has 150 pixels.

We trained numerous networks of different architec-
tures to find the one yielding the best illumination esti-
mates. The best network designed for the case of a 1024-
bin rg-chromaticity binary histogram contains 206 nodes
in the input layer (corresponding to a total of 206 active
bins in the chromaticity histogram), one hidden layer
composed of ten neurons, and two output neurons repre-
senting the r and g chromaticity of the illuminant. This
network turns out to be smaller than the ones used in our
earlier experiments, especially those done on synthetic
data, but is optimized for the actual training data.’!

For this experiment we employed the leave-one-out
cross-validation approach?”*8: We excluded one image at
a time from the image set, trained a neural network on
the remaining 899 images (as described in Subsection
4.D), and then tested it only on the one excluded image.
This process was repeated 900 times, resulting in 900 dif-
ferent neural networks. This process is computationally
intensive but nonetheless feasible, since the training time
for a single network is approximately 30 s. The leave-
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one-out cross validation allows us to test the network ap-
proach on a large number of images, none of which the
network was trained on.

The estimation errors were quite small, with an aver-
age of 0.0226, a maximum of 0.0774, and a root-mean-
square (RMS) error of 0.0276. In terms of CIE L*a*b*,
the average AE;,, = 6.70. The CIE L*a*b* errors were
computed by representing the estimated illuminant chro-
maticity in terms of their colors on an sRGB-compliant
monitor. The nominal white tristimulus values involved
in the conversion® from XYZ to CIE L* a*b* were derived
from CIE Dgs, as discussed in Subsection 4.B. The CIE
L* value was set to 50 for all illuminants to ensure that
the CIE L* a*b* errors reflected differences only in a* and
b*.

All these results are compared in Table 7 with the com-
peting color constancy algorithms that are described be-
low. In each case, there are some difficulties in making a
fair comparison. For example, the gamut-mapping algo-
rithm, against which we benchmarked the neural net-
work in Subsection 4.D, requires camera calibration, but
the test set is composed of 900 uncalibrated images from a

Fig. 9. Color correction of real images: Top left, original image; top right, target image; middle left, neural network estimate; middle
right, gamut-mapping algorithm; bottom left, WP algorithm; bottom right, GW algorithm.
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Table 7. Estimation Errors of Color Constancy
Algorithms (I)*

Mean RMS Mean
Algorithm Error Error AE 1,
Illumination chromaticity 0.0403 0.0576 11.60

Variation

Database gray-world 0.0292 0.0381 8.26
White-patch 0.0311 0.0438 8.76
Color by correlation 0.0292 0.0389 8.45
Neural network trained 0.0226 0.0276 6.70

on 900 images

“Comparison of the accuracy of illuminant estimation errors of differ-
ent algorithms, evaluated on a collection of 900 uncalibrated images.

range of cameras. Therefore in this experiment we did
not compare the network with the gamut-mapping algo-
rithm. Instead, we adapted the related color-by-
correlation algorithm developed by Hubel and Finlayson
and colleagues.??> To implement this algorithm, we
used the 1024-bin chromaticity histogram to bin all illu-
minants encountered in the image database. After bin-
ning, we obtained 46 distinct illuminants.

In order to have unbiased results, we employed the
same leave-one-out cross-validation method that we used
for testing the neural network. We excluded one image
at a time and computed the correlation matrix by using
actual chromaticity data from the other 899 images. For
any given test image, the histogram vector (obtained from
the 2D rg-chromaticity histogram, rearranged as a row
vector) containing values of either 0 or 1 is multiplied by
the correlation matrix. If H; is the image histogram of
image i that was not used for computing the correlation
matrix and C is the correlation matrix, the algorithm
computes a vector L;, where L;;, the jth component of
L;, is the likelihood of illuminant j in image i:

Li = Hi . C. (6)

Given the properties of our image database, the correla-
tion matrix C has 206 rows (the number of active bins in
the histogram) and 46 columns (the number of illumi-
nants). Finally, we used a weighted average over the
vector L; to compute the best estimate for the scene illu-
minant. We repeated this procedure for all 900 images.

The database GW algorithm estimates the chromaticity
of the illuminant by averaging the RGBs of all pixels in
the image and then converting this average RGB triplet
{R., G, , By} into the rg-chromaticity domain:

r/l. = Rav/(Rav + GaV + Bav)’ 7
8, = Gay/(Ryy + Goy + Byy). @)

The final estimation is obtained by normalizing this rg
value by the average chromaticity of the illuminants from
all images in the image database {ry;, gy} relative to the
value of the chromaticity of white {ry, = 1/3, gwn
= 1/3}:

rew = 1/3r#/riu,
gaw = 13g,/gu-

raw = T'wh u7'in o
Sow = gwhgu/gill

The WP algorithm is the same as in our previous experi-
ments and is based on the values of the brightest R, G,

(8
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and B pixels in the image. Since most images contain
relatively large numbers of clipped and near-clipped pix-
els, this method is not very accurate.

The illumination-chromaticity variation shows the dis-
tribution of the actual illuminants around camera white
and is described in more detail in Subsection 4.B. Since
the images are of natural scenes under normal lighting
conditions (we did not use colored filters as we did in the
earlier tests) with use of the cameras’ built-in color cor-
rection algorithms, the average chromaticity variation is
smaller than before, but it perhaps reflects much better
the range of chromaticity variation and estimation errors
than we can expect from consumer cameras under typical
conditions.

6. CONCLUSIONS

A novel neural network approach to achieving color con-
stancy has been developed and tested. The neural net-
work learns to estimate the chromaticity of the scene il-
lumination on the basis of the colors present in the image.
The method is novel in that although neural networks
have been discussed in the context of color, none has
solved the problem of estimating an unknown scene illu-
minant by learning the relationship between the colors
appearing in an image and the scene illuminant. When
trained on synthesized images, the network outperforms
other color constancy algorithms on tests done on synthe-
sized images. When tested on real images, it performs
well, although the errors are larger than for synthetic
data. Introducing specular reflections into the model re-
duced the error for tests performed on real images, but
not to the point of rivaling the results on synthetic test
data. Much better results were obtained on real images
by a network trained on real images. A sufficiently large
training set for real-data training was created by taking
subsets of the colors found in a much smaller set of real
images. The resulting average AE CIE L*a*b* error is
small and compares favorably with that obtained by hu-
man subjects in the experiments of Brainard and
co-workers.>* Since the error is also lower than that ob-
tained by the gray-world and the white-patch methods,
which have been previously used for color-cast removal, it
could also lead to improved color balance in applications
such as digital photography.
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