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Diagonal versus affine transformations
for color correction
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Standard methods for color correction involve the use of a diagonal-matrix transformation. Zaidi proposes the
use of a two-parameter affine model; we show that this offers no improvement in terms of accuracy over the
diagonal model, especially if a sharpening transformation is also used. © 2000 Optical Society of America
[S0740-3232(00)01411-3]
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1. INTRODUCTION
In Ref. 1, Zaidi proposes the use of a two-parameter affine
model as a vehicle for transforming sensor outputs from a
scene into illumination-independent color descriptors.
The idea of mapping raw cone signals to color descriptors
is motivated in part by the problem of object recognition
in varying illuminations. An algorithm that uses the
color of an object as a recognition aid is not useful in dif-
ferent illuminations unless these descriptors can be found
with some degree of accuracy, since the raw sensor data
may be very different in these various conditions.

In Zaidi’s model, the sensor responses are combined
into a luminance channel and two color channels in
MacLeod–Boynton2 chromaticity space. These are re-
ferred to as the rg and yv coordinates. To account for
changes in illumination, these coordinates are trans-
formed into illumination-independent color descriptors
with an affine transformation that involves a scaling of
one coordinate and a translation of the other.

This is an interesting approach, which we will examine
to see whether it offers any improvements over the per-
formance of the more standard diagonal-matrix transform
(DMT). Zaidi’s model accounts for illumination change
by a two-parameter affine transformation. Using two pa-
rameters, instead of the three parameters implicit in a
typical von Kries scaling of the cone signals, is an inter-
esting approach, but the affine model is not the only two-
parameter model available. We consider as an alterna-
tive a two-parameter diagonal model and find it to model
illumination change more accurately than Zaidi’s affine
model, especially when used in conjunction with a tech-
nique known as spectral sharpening.

A. Color Constancy
Color constancy can be defined as the operation of map-
ping responses from surfaces under an arbitrary illumi-
nant to illumination-independent color descriptors.
These descriptors are generally the response vectors of
the sensors, such as the cones, under a canonical illumi-
nation.

Most existing color-constancy algorithms attempt to de-
termine chromaticity information about the illumination
0740-3232/2000/112108-05$15.00 ©
in an input scene for which the only known information is
the sensor responses for each point (or color patch) in that
scene. The problem of finding this chromaticity informa-
tion will not be dealt with here. Instead, we will be con-
cerned with the task of transforming these sensor re-
sponse vectors into descriptors once this information is
already known. A standard method for doing this has
been the use of a DMT; in other words, the response of
each sensor is adjusted independently by a multiplicative
scaling as suggested by von Kries (see Ref. 3).

B. Spectral Sharpening
Spectral sharpening4 is the construction of new sensor
sensitivities as linear combinations of the original sen-
sors, such as the cones, by applying a 3 3 3 ‘‘sharpening’’
matrix. Many existing color-constancy algorithms use a
DMT to map sensor response vectors to surface descrip-
tors; however, the ability of a DMT to map these vectors
to descriptors accurately is dependent on the spectral sen-
sitivity functions of the sensors used. The aim behind
sharpening is to produce sensors more optimal for use
with a DMT. The process is called sharpening, from the
intuition that narrow-band sensors will produce better re-
sults.

There are several ways to derive the sharpening ma-
trix. In this paper we use the data-based method, where
an optimal matrix T is found for use with a DMT over a
data set of reflectances and test illuminants. This
method is outlined in detail in Ref. 4 and is summarized
as follows.

Let Wc be the 3 3 n matrix of descriptors from n sur-
faces observed under a canonical illuminant, and let We

be the observations of the same surfaces under a test il-
luminant. We would like Wc and We to be approximately
equal under a DMT:

We ' DWe. (1)

The idea of sharpening is to improve the error by trans-
forming Wc and We by a 3 3 3 sharpening matrix T:

TWc ' DTWe. (2)

In Ref. 4 it is shown that to optimize D and T in the least-
squares sense, T is calculated as
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T 5 U21, (3)

where

UDU21 5 Wc@We#1 (4)

is the eigenvector decomposition of Wc@We# 1 and 1 de-
notes the Moore–Penrose inverse; i.e., A 1 5 At@AAt#21.

For data-based sharpening we choose a set of n surface
reflectances and a pair of test and canonical illuminants i
and j and then solve for Tij . This value of Tij is of course
optimized for these particular illuminants; however, it of-
ten gives good results for other illuminant pairs as well.

In this communication we generate sharpening matri-
ces for each pair of illuminants and then choose one of
these sharpening matrices that gives good global results
for all pairs of illuminants in our database.

2. ILLUMINANT DATABASE
Six different test illuminants were used for this experi-
ment. Illuminants were chosen that exhibited a wide
chromaticity variation from one another while still being
‘‘reasonable’’ in the sense that similar illuminants might
be found in the real world. The six illuminants are

1. CIE Illuminant D50
2. CIE Illuminant D65
3. CIE Illuminant D250
4. CIE Illuminant A
5. Sylvania Cool White/No Filter
6. Room lighting (fluorescent)

Table 1. Illuminant 5 Spectral Information

l E(l) l E(l) l E(l) l E(l)

380 0.2973 480 3.328 580 10.03 680 0.8206
384 0.3367 484 3.326 584 9.416 684 0.7390
388 0.4028 488 3.317 588 8.979 688 0.6723
392 0.4870 492 3.303 592 8.631 692 0.6223
396 0.6660 496 3.271 596 8.215 696 0.5742
400 1.518 500 3.219 600 7.747 700 0.5088
404 2.717 504 3.175 604 7.260 704 0.4840
408 2.130 508 3.135 608 6.654 708 0.4440
412 1.431 512 3.125 612 6.128 712 0.3731
416 1.466 516 3.167 616 5.593 716 0.3376
420 1.640 520 3.267 620 5.075 720 0.3088
424 1.815 524 3.443 624 4.542 724 0.3010
428 2.558 528 3.698 628 4.012 728 0.2863
432 6.414 532 4.016 632 3.571 732 0.2990
436 9.050 536 4.448 636 3.174 736 0.3292
440 5.088 540 5.580 640 2.823 740 0.2879
444 2.829 544 8.650 644 2.469 744 0.2708
448 2.753 548 8.566 648 2.182 748 0.3719
452 2.856 552 7.079 652 1.949 752 0.3478
456 2.965 556 7.333 656 1.743 756 0.2752
460 3.066 560 7.887 660 1.546 760 0.4224
464 3.159 564 8.404 664 1.354 764 0.4520
468 3.244 568 8.884 668 1.196 768 0.3520
472 3.307 572 9.453 672 1.063 772 0.3319
476 3.324 576 10.16 676 0.9408 776 0.2441

780 0.1988
Spectral information for illuminants 5 and 6 is listed in
Tables 1 and 2. The chromaticities of the illuminants are
plotted in Figs. 1–3. In these figures are also shown 140
other illuminants, which are plotted as small dots and in-
clude various measurements taken both indoors and out-
doors.

3. REFLECTANCE DATABASE
The database of reflectances used contains 1995 different
entries, each consisting of 101 data points. These data

Fig. 1. Coordinates of the six illuminants plotted in (l, m) space.
140 other illuminants are plotted as small dots.

Table 2. Illuminant 6 Spectral Information

l E(l) l E(l) l E(l) l E(l)

380 0.9173 480 3.049 580 8.540 680 2.662
384 1.143 484 2.850 584 13.46 684 2.362
388 1.924 488 2.632 588 34.01 688 2.240
392 2.405 492 2.585 592 31.83 692 2.468
396 2.415 496 2.913 596 17.14 696 3.333
400 3.896 500 3.436 600 9.539 700 3.450
404 4.920 504 5.972 604 6.762 704 2.748
408 3.812 508 8.045 608 6.629 708 2.053
412 2.825 512 5.181 612 8.857 712 1.722
416 2.546 516 2.814 616 11.78 716 1.716
420 2.579 520 2.619 620 11.66 720 1.612
424 2.993 524 2.464 624 8.875 724 1.372
428 3.356 528 2.561 628 7.359 728 1.213
432 5.099 532 3.598 632 6.121 732 1.249
436 6.165 536 4.262 636 4.949 736 1.349
440 4.492 540 5.683 640 4.458 740 1.400
444 3.024 544 11.54 644 4.179 744 1.291
448 2.455 548 10.89 648 4.223 748 1.327
452 2.245 552 5.772 652 4.713 752 1.349
456 2.128 556 3.638 656 5.440 756 1.358
460 1.943 560 3.226 660 5.660 760 1.701
464 2.108 564 6.363 664 5.992 764 2.857
468 3.351 568 11.17 668 8.206 768 3.098
472 5.528 572 10.52 672 7.313 772 2.197
476 4.715 576 10.50 676 3.913 776 1.907

780 2.048
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give the amount of light of a particular wavelength re-
flected from some reflectant surface, expressed as a frac-
tion of the incident light. The surfaces are sampled at
4-nm intervals throughout the visible spectrum (from 380
to 780 nm). The database consists of 120 Dupont paint
chips, 170 natural objects, the 24 Macbeth color-checker
patches and 1269 Munsell chips,5 the 350 surfaces in the
Krinov data set,6 and 57 additional surfaces measured by
us.

4. EXPERIMENT
In this experiment we calculate the long-, middle-, and
short-wavelength-sensitive (L-, M-, and S-) cone re-
sponses for each of the reflectances in our database under
a given test illuminant. We then try to predict what the
responses would be for the same set of reflectances under
a different target illuminant, given the chromaticities of
the two illuminants. We also calculate what the actual
cone responses would be under the target illuminant and

Fig. 2. Coordinates of the six illuminants plotted in (l, s) space.
140 other illuminants are plotted as small dots.

Fig. 3. Coordinates of the six illuminants plotted in (m, s) space.
140 other illuminants are plotted as small dots.
compare these values with our predictions in order to
evaluate the method of prediction. The process is re-
peated each pair of illuminants in our database.

For each source illuminant, the sensor responses for
the reflectant patches are given by

pi 5 E E~l!S~l!Ri~l!dl, (5)

which is approximated by

pi 5 ( E~l!S~l!Ri~l!, (6)

where E(l), S(l), and Ri(l) are the illumination, the
surface reflectance, and the sensor sensitivities, respec-
tively, and the sum is taken over the visible spectrum,
380–780 nm, at 4-nm intervals. p is the three-
dimensional response vector with one value for each cone;
i.e.,

p 5 @L M S#. (7)

The sensor sensitivities used were the cone fundamentals
derived by Vos and Walraven.7

The cone response vectors for the two illuminants are
found by

pi 5 ( E~l!Ri~l!, (8)

which is then used to find the chromaticities of the illu-
minants in (l, m) space, where l and m are given by

l 5
L

L 1 M 1 S
, (9)

m 5
M

L 1 M 1 S
. (10)

Using only this information, we predict the canonical
chromaticities of the patches, using the three following
methods.

A. Affine Model
In Zaidi’s method, the chromaticities in the MacLeod–
Boynton rg –yv space are calculated as follows:

sa 5
S

L 1 M
, (11)

la 5
L

L 1 M
. (12)

To predict the chromaticities in the target illuminant, the
sa coordinate is scaled by s, and the la coordinate is
shifted by t :

sa8 5 sas, (13)

la8 5 la 1 t. (14)

We wish to find s and t, which, when applied to each of
the chromaticities of the reflectances under the source il-
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luminant, yield a good approximation (sa8 , la8) to the chro-
maticities of the same reflectances under the target illu-
minant. We do not know the actual chromaticities in the
target illuminant, but we do know that the chromaticity
of a ‘‘perfect reflector’’ or ‘‘ideal white’’ in the target illu-
minant will be that of the illuminant itself. We calculate
the values of s and t such that when applied to an ideal
white under the source illuminant, the resultant rg –yv
chromaticity is the same as that of the ideal white under
the target illuminant:

t 5
Ltarget

Ltarget 1 Mtarget
2

Lsource

Lsource 1 Msource
, (15)

s 5 S Starget

Ltarget 1 Mtarget
D Y S Ssource

Lsource 1 Msource
D .

(16)

To apply the transformation to the reflectant patches, we
can calculate the equivalent transformation in (L, M, S)
space:

S8

L8 1 M8
5

sS

L 1 M
, (17)

L8

L8 1 M8
5

L

L 1 M
1 t. (18)

Here we take L 1 M 1 S 5 1; the values will be scaled
later to account for luminance.

L8 1 M8 1 S8 5 L 1 M 1 S 5 1; (19)

solving Eqs. (17)–(19) for S8, L8, and M8 gives

S8 5
sS

sS 1 L 1 M
, (20)

L8 5 S 1

L 1 M
1 t D ~1 2 S8!, (21)

M8 5 1 2 L8 2 S8. (22)

This transformation provides a mapping from an input
image to an output image, where the input image can be
seen as the cone responses from a collection of surface un-
der a source illuminant and the output image is the set of
predicted cone responses of the same surfaces under the
target illuminant.

B. Diagonal Model
In contrast to the affine model, the DMT performs a mul-
tiplicative scaling on each of the raw L,M,S channels in-
dependently. In the standard DMT, each of the three
sensors is scaled by a constant value:

F L8
M8
S8

G 5 F a 0 0

0 b 0

0 0 c
G F L

M
S
G . (23)

These values are calculated such that when applied to an
ideal white under the source illuminant, the resulting
chromaticity is the same as that of the ideal white under
the target illuminant:
a 5
L8

L
5

l8

l
, (24)

b 5
M8

M
5

m8

m
, (25)

c 5
S8

S
5

1 2 l8 2 m8

1 2 l 2 m
. (26)

Note that although we have three coefficients, we are re-
ally working in two dimensions, since l 1 m 1 s 5 1. It
can also be seen that a, b, and c are functions of only two
parameters, l and m, since the chromaticity coordinates of
the canonical illuminant, l8 and m8, are constant.
Therefore having three coefficients does not in fact give
the diagonal model an inherent advantage over the two-
parameter affine model, since all three coefficients are
functions of the same two parameters.

C. Diagonal Model with Sharpening
Like the diagonal model, the DMT with sharpening in-
volves the independent scaling of three coordinates, but
where the standard DMT operates on raw cone response
vectors, this model first applies a linear transformation.
Sharpening is applied to the (L, M, S) coordinates with a
3 3 3 sharpening matrix T [Eqs. (3) and (4)]:

F Ls

Ms

Ss

G 5 T 3 F L
M
S
G . (27)

We then work in the new (Ls , Ms , Ss) coordinate space.
A diagonal transform is applied to the new coordinates as
in Eq. (23):

F Ls8

Ms8

Ss8
G 5 F a 0 0

0 b 0

0 0 c
G F Ls

Ms

Ss

G . (28)

It should be noted that sharpening adds no extra free pa-
rameters to the diagonal model. The nine components of
the sharpening matrix are a fixed attribute of the model—
the same sharpening matrix is used for all illuminants
and all images. The sharpening matrix is not something
that is changed to suit the circumstances. If the sharp-
ening matrix were allowed to change, then the diagonal
model with sharpening would effectively become a nine-
parameter least-squares fit, which clearly would be more
accurate than Zaidi’s two-parameter affine model. It is
not possible to perform such a nine-parameter fit, because
all that is known in the case of illumination modeling are
the two parameters represented by the chromaticity of
the illumination. There are insufficient data to solve for
nine parameters. Sharpening simply optimizes the effec-
tiveness of the available two parameters; it does not in-
troduce new ones.

D. Error Metric
To determine how well a transformation works, we con-
vert the predicted chromaticities of the patches, as well as
the actual values, to L* a* b* coordinates8 via XYZ coor-
dinates. Converting from LMS to XYZ requires a linear
transformation.9 The actual LMS coordinates of the re-
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flectances in the target illuminant are calculated by using
the spectral information of the illuminant, as in Eq. (6).

In this experiment we are comparing to what degree of
accuracy each method can predict chromaticities, and so
we ignore luminance information. This is done by scal-
ing the predicted values for each patch to match the ac-
tual luminance of that patch under the target illuminant.
In other words, we scale each XYZ triple by Yactual /Y,
where Yactual is the actual value of Y for that patch under
the target illuminant, as calculated with spectral infor-
mation. We are assuming that each method can predict
luminance information perfectly, allowing us to compare
their performance at predicting chromaticities indepen-
dent of luminance.

The XYZ values are then converted to L* a* b* space,
and the DE (Euclidean distance in L* a* b* space) error is
calculated between each predicted/actual pair. Since we

Table 3. Mean DE Errors for the Three
Transformation Methods under Various

Illuminations Changesa

D Illum. Affine Diagonal Sharp

1 → 2 1.3770 1.3878 0.6415
1 → 3 4.6767 4.6066 2.2696
1 → 4 3.6417 3.5209 1.9154
1 → 5 5.4890 5.2359 5.5988
1 → 6 5.0514 4.2943 4.5018
2 → 1 1.3471 1.3516 0.6244
2 → 3 3.2520 3.1731 1.6862
2 → 4 4.8454 4.7062 2.3222
2 → 5 5.4898 5.0146 5.6132
2 → 6 5.5378 4.7249 4.5612
3 → 1 4.2844 4.2056 2.2446
3 → 2 3.0395 2.9658 1.7139
3 → 4 * * *
3 → 5 6.7828 6.0704 6.3894
3 → 6 7.4110 6.5305 5.3664
4 → 1 4.0076 3.9832 2.2910
4 → 2 5.4638 5.4723 2.8850
4 → 3 * * *
4 → 5 5.8199 6.5076 5.7592
4 → 6 4.5408 4.4755 4.3232
5 → 1 5.8771 5.6795 5.7869
5 → 2 6.3195 5.9182 5.8582
5 → 3 9.1361 8.4556 6.4883
5 → 4 5.3768 5.7662 5.1354
5 → 6 1.9891 2.0129 1.0505
6 → 1 6.0512 5.2903 5.0901
6 → 2 6.9800 6.1134 5.1799
6 → 3 10.4682 9.4186 5.9129
6 → 4 4.6511 4.6010 4.4653
6 → 5 2.0605 2.1618 1.1126

Mean 5.0345 4.7730 3.8138

3 → 4 7.4434 7.1846 3.4056
4 → 3 8.9822 8.8912 4.2255

a Sharpening is done with T4,3 . Results for this pair of illuminants
are not included in the global mean but are shown at the bottom of the
table.
have scaled by Yactual /Y, there is no error in the L coordi-
nates, so we are effectively calculating errors in a two-
dimensional chromaticity space. The error for a given
transformation and source/target illuminant pair is the
arithmetic mean of DE errors for each surface.

5. RESULTS
Table 3 shows the mean DE error for the three different
methods under each of the 30 possible illumination
changes. The mean over all the illumination changes is
also shown for each method at the bottom of the table.
For each change in illumination the method that gives the
best results, i.e., the lowest mean DE error, is shown by
bold text.

The sharpening matrix used was T4,3 , and so sharpen-
ing has an inherent advantage with this pair of illumi-
nants. Because of this, results for this pair of illumi-
nants are not calculated into the global mean and are
shown only at the bottom of Table 1.

6. CONCLUSIONS
In this experiment we have examined several methods of
predicting cone response vectors under a target illumi-
nant, given the vectors under a source illuminant and the
chromaticities of the two illuminants. We assessed the
performance of these methods based on how closely the
predicted vectors matched the actual vectors. The re-
sults in Table 3 clearly show that if accuracy in predicting
colors under a different illuminant is the goal, the two-
parameter affine transformation offers no advantage over
the two-parameter diagonal-matrix transform (DMT) or
the DMT with sharpening. In no case did the affine
transformation outperform both the DMT and the DMT
with sharpening, although in 7 out of 30 cases it outper-
formed the DMT.
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