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Abstract. Our goal is to understand how the Retinex parameters
affect the predictions of the model. A simplified Retinex computation
is specified in the recent MATLAB™ implementation; however, there
remain several free parameters that introduce significant variability
into the model’s predictions. We extend previous work on specifying
these parameters. In particular, instead of looking for fixed values for
the parameters, we establish methods that automatically determine
values for them based on the input image. These methods are
tested on the McCann-McKee-Taylor asymmetric matching data,
along with some previously unpublished data that include simulta-
neous contrast targets. © 2004 SPIE and IS&T.
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1 Introduction

The MATLAB™ implementatioh of the Retinex model
has three important input parameters: the number of itera
tions the algorithm performs at each level of its multilevel
computation, the output lookup table functigmostLUT),

and the input image size. The model’s final output depends

strongly on the values chosen for the parameters.

The Retinex model aims to predict the sensory responsr:{J

of lightness. In previous wofkwe suggested values for the

parameters based on fitting the model's predictions to the

data originally described over 35 years ago by McCann,
McKee, and Taylof. This fit led to the conclusion that 33

iterations had the lowest global average of the differences

#h

between observer data and computed values, assuming th
the number of iterations was constant for all levels of the
multiresolution computation. However, McCann felt that

33 was too high a number, and would not lead to a good
model of simultaneous contrast. Hence, together we begar

the current series of experiments by including previously

unpublished data from lightness matching experiments with
b-

simultaneous contrast targets. We also added other unpu

lished data for targets containing a fixed set of patches of
various shades of gray appearing on a background that var

ied from black to gray to white.

For the simultaneous contrast data, we indeed did find

that a much smaller value is required for the iteration pa-
rameter to make a good fit. However, we could no longer
find a universal value for the number of iterations that si-
multaneously would minimize the error for the combined
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data from the McCann-McKee-TayldMMT), fixed scale

of grays on different backgroundSB), simultaneous con-
trast(SC), and gray on whit€GW). This led us to consider

a method of automatically calculating how many iterations
to use based on how the computation was proceeding. As
described earlierthe postLUT processing needs to change
as a function of the number of iterations, so this led us to a
method of automatically calculating the appropriate
postLUT.

2 Number of lterations

The two MATLAB™ implementations of Retinex in Funt,
Ciurea, and McCarlrare referred to as McCann99 Retinex
and Frankle-McCann Retinex. For brevity, we concentrate
here only on McCann99 Retinex, but the results are similar

for both versions. McCann99 Retinex creates a multireso-
lution pyramid from the input by averaging image data. It
begins the pixel comparisons at the most highly averaged,
or top level, of the pyramid. After computing so called new
roducts(precursors to the final lightness estimates the
mage at a reduced resolution, the resulting new product
values are propagated down, by pixel replication, to the
pyramid’s next level as initial estimates at that level. Fur-
ther pixel comparisons refine the estimates at the higher
resolution level, and then those new estimates are again
ropagated down a level in the pyramid. This process con-
ues until values have been computed for the pyramid’s
bottom level.

At each level, the basic step is the comparison of each
ixel to each of its immediate neighbors. The number of
iterations refers to the number of times all the immediate
neighbors are cycled through before moving down to the
next level in the pyramid. Since pixels are only directly
compared to immediate neighbors, comparisons to more
distant pixels at the current pyramid level are only made
implicitly by propagation of information from pixel to pixel
during these iterations. Hence, increasing the number of
iterations increases the spatial distance across which pixels
are related during the computation. McCann99 Retinex
uses the same number of iterations at all levels, and so there
is only a single iteration parameter to specify, and we have
limited this work to consider a single value for all levels.

3 PostLUT Processing

PostLUT processing refers to applying a functibmuni-
formly to every image pixell (x,y)=f[1(x,y)], for all im-
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Patch iau;'(]:le 5:1‘:; Match g:\i’ Calc. ISIB tzh
G 1001 255 8.75 0.15 9.01 -0.26
E 595 236 7.55 0.20 7.66 -0.11
1 439 225 6.25 0.25 6.97 -0.72
C 336 215 5.94 031 6.40 -0.46
J 228 200 5.19 0.19 5.63 -0.44
H 125 178 436 0.26 4.66 -0.30
D 63 153 3.37 0.50 3.76 -0.39
F 50 145 2.80 0.30 3.51 -0.71
B 1001 255 8.80 0.20
A 1 0 1.0 0

Fig. 1 “Scale on white” target along with patch identification, the luminance values measured in the
original display, the digit representing log luminance, and the mean and standard deviation of observer
matches in Munsell value units. The sixth column lists the calculated lightness for all iterations above
three. The seventh column lists the errors between observed and calculated lightness.

age locations X,y) immediately after the main Retinex Based on a fit to the raw data, we use the following func-
computation. The term postLUT derives from historical use tion to convert the log luminance to the lightness scale
of image processing hardware using a lookup t4bléT) valuesL:
as a final postprocessing step. PostLUT processing is im-
portant in bringing the final result into the appropriate dy- L=129.6%-132.45.
namic range, compensating for differences in overall illu- ] _
mination intensity between test targets, and in converting to The final postLUT component compensates for differences
the coordinates of the Munsell value scale used in record_in overall illumination intensity between the test and match
ing the experimental data. Although all these factors can beconditions. Only the MMT experiments involved such in-
thought of separately, they are all eventually combined into tensity differences. The compensation is based on data from
a single postLUT function. Fig. 8 of McCann, Land, and TatnéIIGener_ally, the effect
The first postLUT step adjusts the dynamic range. Ret- of this gorrectlon is slight. Details are provided by Funt and
inex output from the pyramidal spatial comparison stage Ciurea:
falls in the [0,1] range. Because the value 1 represents . .
white and Retinex assumes there is at least one white pixeft Lightness Maiching Data
in every image, the value 1 necessarily arises in the outputThe experimental technique for the MMT matching experi-
However, the lowest output value depends on the imagements was reported a long time ay®he “new” data we
content and varies with the number of iterations used. Thereport here is based on experiments by McCann, which
fewer the iterations, the more local the spatial comparisonswere also conducted earlier, but not previously reported in
will be, and therefore, the less the likelihood of big inten- the literature. These experiments involve transparent gray-
sity differences being found. As a result, the fewer the it- scale targets lit from behind with uniform illumination.
erations, the higher the minimum Retinex output value Subjects were asked to report the lightness of each patch in
(Fig. 1 in Ref. 1 illustrates this effectThe first purpose of  the target display using a standard lightness transparency
the postLUT is to stretch the Retinex output to a reasonabledisplay as a reference. The standard lightness display con-
range. Since the amount of stretching needed depends osists of 25 squares of different lightness values against a
the number of iterations, and we vary the number of itera- white surround. The squares are arranged in a serpentine
tions in our experiments, we decided to always linearly path, such that the change in lightness from any of the 25
scale the Retinex output to the f{i0,1] range. This stretch  squares to the next is constanin the resulting lightness
does not correct for the fact that the number of iterations scale, 1.0 corresponds to an opaque area and 9.0 to the
performs a nonlinear compression of the image. Thebrightest area. The experiments were based on four to
postLUT is not fixed, but rather depends on the input image seven subjects, with each subject repeating the matches on
and number of iterations used. This decision effectively three different occasions.
means that we are assuming that there is at least on black The matching procedure was set up such that in the nor-
location in the test target. While this assumption need notmal viewing position, the subject saw the test display as the
be true for images in general and could lead to errors inonly thing in the field of view. By turning 90 deg to the
Retinex predictions, it is true for all the test target subjects right, the subject would see instead the standard lightness
viewed. display as the only thing in the field of view. Subjects were
After scaling to th€0,1] range, the postLUT then con- allowed to look back and forth between viewing the test
verts the Retinex output valuego the lightness scale used display and the standard display as many times as desired
for recording the subject’'s matches. For the MMT dataset, without a time constrairft The test display and the standard

the conversion is to Munsell value scafe’ lightness display had the same level of luminance.
Figures 1 through 6 illustrate the targets along with the
V=2.53913-1.838 forr>0.384. corresponding luminance, pixel value for each patch as in-

put to the Retinex algorithm, and average observed light-
For the SB, SC, and GW datasets, the conversion is to aness reported for each patch. All the patches have uniform
lightness scale described by Stiehl, McCann, and Savoy. luminance. It should be noted that the figures are intended
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Patch | Lumi | Pixel g | SW oy | Ltere-
nance | value dev tions

G 1001 | 255 9.00 | 0.20 | 895 1
E 595 236 8.50 | 0.50 | 8.53 24
I 439 225 7.31 0.31 | 7.32 31
C 336 215 7.06 | 0.31 [ 7.06 26
J 228 200 5.88 | 038 [ 5.88 28
H 125 178 498 | 0.28 | 4.98 26
D 63 153 4.08 | 0.48 | 4.08 23
F 50 145 3.05 ] 055 | 351 50
B 228 200 5.75 1025
A 1 0 1.0 0
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Fig. 2 (a) “Scale on gray” target along with patch identification, the luminance values measured in the
original display, the digit representing log luminance, the mean and standard deviation of observer
matches in Munsell value units, and the calculated values for the best fit to observer match. The
iterations column lists the number of iterations for best fit for calculated to observed lightness. The
average number of iterations for best fit from areas E, I, C, J, H, and D is 26.33+2.88, while the
average that included areas G and F is 26.13+13.32. The best fit for “Scale on gray” is 26 iterations.
(b) “Scale on gray” calculated lightness as a function of “Number of iterations.” In a gray surround, all
gray patches except white decrease with the increase of number of iterations. The number of iterations
has significant effect on the calculated values of grays. Area E, the lightest gray, has a calculated
lightness equal to white up until 20 iterations. Areas E, |, C, H, D, and F show different degrees of
nonmonitonic decrease in calculated Munsell lightness. The darkest gray, area F, and midgray, area J,
both show second phase starting at 20 iterations. A slightly lighter gray, area C, shows a similar
change in slope at 35 iterations.

only to illustrate the corresponding targets. They are notspatial comparisons. As seen in the previous data, it has no
accurate reproductions of the targets. Their printed appeareffect on grays in a white surround and significant effect on
ance is not the same as under the controlled experimentafjrays in a black surround. Using a very large number of
conditions. iterations, so as to have the lightness asymptote to the limit
The calculated lightness for the “Scale on white” dis- of the calculation, makes the output approach the ifput.
play are nearly constant with changes in “Number of itera- That special case serves no purpose. Human observers
tions.” In a solid white surround, all gray patches have a make matches consistent with mechanisms that are between
constant value after the third iteration. As shown in the |ocal and global. McCann, McKee, and Taylaeported
table in Fig. 1, the calculated lightness valusith col-  good fit from their experimental data using a path algorithm
umn) are close to the observer matchésurth column. of length 200 hops, a moderately global process. We have
There are residual errofseventh columnwith an average  previously reported 33 iterations for an experiment that
value of 0.42-0.2. Since the white surround is the control applied the same number of iterations for all spatial chan-
case that establishes the shape of the LUT, the lack of pernels. In these experiments, it is clear that an intermediate
fect correlation is due to experimental and LUT error. hnumber gives the best results for the “Scale on gray” target
These errors have no effect on the analysis of number of(Fig. 2) and “Scale on black” targetFig. 3). In addition,
cycles, but contribute to any global average. the best fit to observer data is with very few iterations with
) ) larger gray patches in the “Simultaneous contrast” series.
5 Discussion of Results Seven iterations gave the best fit.
The principle effect of selecting the number of iterations is  The displays that required the fewest iterations had large
to establish the degree of local versus global influence fromuniform surrounds. The scale displays had slightly smaller
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Lumi- | Pixel Std Itera-
Pateh nance | value Match dev Gl tions
G 1001 | 255 9.00 | 0.05 | 8.88 1
E 595 236 8.55 0.45 | 8.60 3
1 439 225 7.53 0.78 | 7.54 26
C 336 215 7.29 0.54 | 7.28 33
J 228 200 6.80 0.50 | 6.67 27
H 125 178 5.65 0.35 | 5.65 16
D 63 153 5.20 0.50 | 5.25 9
F 50 145 4.68 | 0.38 | 4.69 19
B 1 0 090 | 0.10
A 1 0 0.83 0.08
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Fig. 3 (a) “Scale on black” target along with patch identification, the luminance values measured in
the original display, the digit representing log luminance, the mean and standard deviation of observer
matches in Munsell value units, and number of iterations and calculated lightness. In a black surround,
the calculated lightness for all gray patches, except white, decreases with the increase of number of
iterations. The average for best fit from areas G, E, I, C, J, H, and D is 16.8+11.7 (b) “Scale on black”
calculated lightness as a function of “Number of iterations.” In a black surround, all gray patches
except white decrease with an increase of number of iterations. Area E, the lightest gray, has a
calculated lightness equal to white, up until 30 iterations. Areas | calculated lightness begins to fall at
25 iterations. C and J calculated lightness begin to fall at 12 iterations. The darkest grays begin to fall
at five iterations.

test patches and there were many more of them. The Mon-experimental data. Frankle and McCann used a table to
drians had many more patches with smaller angular sub-control the number and direction of comparisons for each
tends. This, combined with results of other recent spatial channel.

experiment$;® suggests that the different number of itera- Larger simple displays generate large signals in the low
tions in each spatial channel will give the best overall fit to spatial frequencies or highest levels of the image pyramid.

A
B
Patch Luni- Pixel Match Std dev
nance value
B 1001 | 255 9.03 0.23
C C 321 213 6.15 0.52
A 1 1 113 0.13

Fig. 4

“Gray on white” target along with patch identification, the luminance values measured in the

original display, the digit representing log luminance, and the mean and standard deviation of observer
matches in Munsell value units. There is no significant change in calculated values for white and gray.
Black values vary for iterations of 1 to 7. The best fit is three iterations with a calculated value of 1.16,
while the observed value is 1.13. The calculated asymptotes are 1.00, 6.29, and 9.01.
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Pach | Lom | Pixel o yih | Stddev
nance value
C 1001 258 8.85 0.18
D 321 213 6.16 0.40
E 321 213 6.95 0.45
B 50 145 3.95 0.45
A 1 1 1.08 0.27
10
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(b)

Fig. 5 (a) “Simultaneous contrast” target along with patch identification, the luminance values mea-
sured in the original display, the digit representing log luminance, and the mean and standard deviation
of observer matches in Munsell value units. (b) The best fits are at six iterations for gray on white and
eight for gray on black.

These channels need few spatial comparisons. Scales digeported by human subjects and those predicted by Retinex
plays generate signals with higher spatial-frequency infor-as a function of the number of iterations. The variation in
mation, and these channels best fit the observer data witlerror is shown in Fig. 7 for the case of the SC and GW data
more iterations. The color Mondrians have the most high from Figs. 4 through 7.

spatial-frequency information, and these channels need the Since subjects reported a single lightness value for each

highest degree of spatial comparisons. patch, we calculate the Retinex lightness of a patch as the
. ) mean of the Retinex lightness values for all pixels from the

6 Automatic Selection of the Number of patch. The Retinex prediction error for a patch, therefore,
Ilterations reflects the difference between the Retinex lightness esti-

To investigate the advisability of automatic processes tomate and the mean across all subjects of the lightness of the
measure the optimal number of iteratiofi®., cycles of  matches made for that patch. The overall prediction error
comparing a pixel to its neighbors at each pyramid [gvel for a target is simply the rms of the errors for the individual
we plotted the rms error between the mean lightness valuegpatches it contains.

Patch | Lemi- | Pixel o | stadev
nance value
C 1001 | 255 9.09 0.29
D 321 213 6.2 0.50
E 321 213 6.7 0.58
B 50 145 4.04 0.54
A 1 1 1 0.25

Fig. 6 “Simultaneous contrast strip.” Best fit is six iterations for gray on white, and eight iterations for
gray on black.

62/ Journal of Electronic Imaging / January 2004 / Vol. 13(1)



Turning Retinex parameters

Simultaneous Contrast Average RMS error (fixed number of iterations)
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Fig. 8 Rms error in Retinex lightness prediction averaged across
MMT, SB, SC, and GW experiments as a function of the number of
iterations. For each choice of the number of iterations parameter,
the same choice is then used for Retinex for all targets.

Fig. 7 SC and GW targets: rms error measuring the difference be-
tween Retinex lightness predictions and subjects’ reported matching
lightness as a function of the number of iterations.

For the SC targets, the minimum target prediction error is required. Note that the stopping condition cannot be

occurs when the number of iterations is small, as can be P : .
h . ' based on minimizing the rms error directly, since the sub-
seen from Fig. 7. The line labeled GW shows the average; g y

. . o ; jects’ matches are not available to Retinex. The lightness
rms error of Retinex predictions in lightness units for the | 1:-has are. after all. what Retinex is supposed to be pre-
case of a targeFig. 4) in which there are three areas: the dicting ' '
gray center, the white surround, and the black background.™ \ye'jniroduce and test two possible stopping conditions:
At one iteration, with a linear postLUT that expands the one based on the relative change in Retinex odpthe
dynamic range of the raw Retinex outpuf@..1], the rms <0004 hased on the average brightness of the Retinex out-
value is 0.9. That is much larger than the standard deV|at|onput We refer to them as the change-based and brightness-
of observer results of 0.52, 0.23, and 0.13. Increasing they,seq stopping conditions. The change-based condition
number of iterations to ten causes a drop in rms values tOmeasures the change in Retinex output as the number of
0.2 units. From 10 to 50 iterations, the values drop from 0.2 i is increased from to n+1, and stops when the
to 0.1. For this target, any number of iterations over five change becomes small. Although this is analogous to the
does reasonably well at matching the observer data. situation of numerical solution of a typical optimization

The thin line labeled *double” represents the data from problem, where the minimization process is iterated until

Fig. 5. In this simultaneous contrast target, the predlct|onthe change becomes small enough, it is not precisely the

rror (aver rror over all f minimum ; S ;
Zro%n(dasa ?)?ie(\a/eﬁ ite?ra?ior?s 'IF')P‘?ltsC I?se Ee(?at\uze the d;rk ray ome- The difference Is in the meaning of the term “itera-
’ 9raYion.” In the optimization case, the entire process is re-

Y : 9 rocess is not being repeated in its entirety. Here the num-

O.f particular Interest, because the two central grays haveger of iterations denotes the number of times the process of
different perceived lightness values, although the patches

have the same luminance. With too few iterations, the caI—CyCIIng through the neighbors is repeated at each level.

N ) .
culated value for the gray in black is too high. At the point -6t Ry be the Retinex output at location when Ret-
of minimum error, the calculation renders the gray-in-black IN€X'S iterations parameter has been sentdhe change-

one lightness unit higher than the gray-in-white. This actu- P2sed Retinex stopping condition for an imageNopixels

ally conforms to the observer’s predictions for this target. @nd thresholds can be expressed as:

When the number of iterations is increased beyond seven Nl 2112

Retinex reports that the two grays are almost identical in 2x(Ry Ry) -

lightness. This means that with too many iterations, the N =€

simultaneous contrast effect is no longer predicted cor-

rectly. Using this stopping condition, the number of Retinex itera-
Figure 8 shows the average error for the targets from thetions will vary with the input target. What is the optimal

combined MMT, SB, SC, and GW datasets versus the num-value of €? We determined an optimal value for it by a

ber of iterations. The minimum error now occurs when the brute force search. In other words, we chose an initial high

number of iterations is quite large, although the curve is value fore, ran Retinex on all the test targets and calculated

quite flat so the minimum is also not very distinct. the rms prediction error, decreasedy a small amount,
From Fig. 8 it is clear that there is no single optimal and repeated the process. A minimum occurg=ad.015.

choice for the number of iterations based on minimizing the The average prediction error drops to 0.62. In comparison,

rms error measurement alone. The number of iterations rethe minimum average error for any fixed choice of the

quired to minimize the error for one target does not neces-number of iterationgas shown in Fig. Bwas 1.71.

sarily minimize the error for other targets. Therefore, a  The second brightness-based stopping condition is based

stopping condition providing a method of adjusting the on the observation that Retinex reaches an optimal solution

number of iterations automatically on a case-by-case basidor bright targetsones for which the average of all image
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pixel values is highat fewer iterations than for dark ones. constitutes a significant improvement over a single choice
This effect can be seen in the “Scale on white,” “Scale on for the number of iterations. Since the method changes only
gray,” and “Scale on black,” target¢Figs. 1 through B Retinex’s input parameters, the Retinex model itself has not
The “Scale on white” target, a quite bright one, requires changed. However, the advantage of using the Retinex
just three iterations. On the other hand, the darker “Scalemodel in conjunction with automatic parameter selection is
on gray” and “Scale on black” targets require 28 iterations that it can be applied in a hands-off manner without requir-

and 30 iterations, respectively. These are the individualing further intervention. Future work will include modify-
number of iterations for each target that would give the besting Retinex to employ different numbers of iterations auto-
correlation with the observer matches. Intuitively, the cor- matically at each pyramid level.

relation between average brightness and the optimal num-

ber of iterations is to be expected, because Retinex pro-Acknowledgments

ceeds by subtracting from white, which has the highest
average brightness. At 0 iterations, the Retinex output con-
sists of a white imagéall pixels set to L After each suc-
cessive iteration, the average brightness of the image goe
down. At an infinite number of iterations, the Retinex ou
put image would equal the input image scaled by the maxi-
mum value in each channel.

As with the change-based stopping condition, we run the
Retinex algorithm at 1,2,n.iterations until the stopping
condition is reached. The brightness-based stopping condi-
tion is reached when the current average brightness of the
Retinex output image exceeds 110% of the average bright-
ness of the input scaled by its maximum value. The 110%
value was determined empirically. The resulting slight in-

crease in the overall image brightness can be compensated

for in the Retinex postLUT. Since scaling the input by the
its maximum value is equivalent to the Retinex output in
the limit as the number of iterations approaches infinity, the
stopping condition in essence is comparing the average
lightness estimate at iterations to what it would converge
to at an infinite number of iterations.

This new brightness-based stopping condition yields

better results than the previous incremental-change-based

stopping conditiort? in that the Retinex lightness estimates
correlate better with the observer predictions. The average
prediction error drops to 0.5(brightness-basedrom 0.62

(change-basedEither stopping condition error is substan-
tially less than the 1.71 obtained in the optimal fixed-
iteration case. If we look at each target individually and
manually choose a number of iterations yielding the best
prediction, we get an average error of 0.39. This gives a

lower bound on the error that we could obtain with a per- ¥

fect stopping condition.

7 Conclusion

Our goal is to study the effects of the number of iterations
in the special case where all spatial channels use the sam
number of iterations. Further, this study uses the same pat
tern of spatial comparisons. However, Retinex requires the
parameters’ postLUT and number of iterations be set. We
introduce methods for setting these parameters automati
cally. Using these methods, Retinex yields an average rmg
prediction error of only 0.51 units on a 1-to-9 lightness
scale in predicting the available psychophysical data. By
comparison, optimization for a fixed setting for the number

The authors gratefully acknowledge the financial support of
the Natural Sciences and Engineering Research Council of
ganada. We thank John McCann for supplying data and
t. comments.
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