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Abstract. Many different descriptions of Retinex methods of light-
ness computation exist. We provide concise MATLAB™ implemen-
tations of two of the spatial techniques of making pixel comparisons.
The code is presented, along with test results on several images
and a discussion of the results. We also discuss the calibration of
input images and the postRetinex processing required to display the
output images. © 2004 SPIE and IS&T. [DOI: 10.1117/1.1636761]

1 Introduction

The Retinex model for the computation of lightness w
introduced by Land and McCann.1 McCann refers to these
models as ratio-product-reset average, but for simplic
we call these operations the Retinex model. Frankle
McCann provide complete FORTRAN code for their alg
rithm, with extensive discussion of image processing st
that follow spatial comparisons. Since that time, Land a
his colleagues have described several variants on the o
nal method.2–6 The variants on Retinex mainly aim to im
prove the computational efficiency of the model, while p
serving its basic underlying principles.

Retinex calculations aim to predict the sensory respo
of lightness. It is important to distinguish between physi
reflectance, the sensation of lightness, and perceived re
tance, which are three distinct entities. A single model c
attempt to calculate only one of the three: the Retinex g
is to calculate the sensation of lightness. Consider the c
of two faces of a white cube, one in direct sunlight and
other in shadow. Physical reflectance is a measure o
property of the cube’s surface relating its radiance to
irradiance.

The reflectances of the two faces are identical. Sen
tions, on the other hand, are the appearances of the fac
the cube in the sun and shade. To create the same ap
ances in a painting, a fine art painter would mix white w
a little yellow to make the sunny face, but use white w
blue and a little black to reproduce the appearance of
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shadowed face. These samples of different colored pa
are measures of sensation. Here the two faces are differ7

In comparison, the question of the perceived reflectance
the cube’s surfaces involves cognition. It asks the obse
to recognize the paint on the cube. Asked to repaint
cube, the observer is not confused by sun and shade,
would simply apply white paint. In terms of perception, th
two faces of the cube are identical. In contrast, Retin
calculates lightness sensations: it cannot be used to ca
late physical reflectances or perceived reflectances.

The first model designed to calculate lightness was
scribed in Land’s Ives Medal Address to the Optical So
ety of America in 1968 and later published.1 This lecture
included a working demonstration of a primitive electron
Retinex camera. This was followed by publications a
patents with additional details and improvements.4,8,9 Mc-
Cann, McKee, and Taylor3 described a study of huma
color constancy that included color-matching experimen
the details of the lightness model, and successful result
modeling the experimental data. This result was further
veloped to show that there is no effect of cone pigm
adaptation in color constancy.10 The Retinex operators wer
selected for simplicity to mimic biological operators th
sum, difference, and rectify input signals to obtain spa
interactions.

Dynamic range compression of real images was
scribed in a patent by Frankle and McCann.2 This imple-
mentation used specialized hardware~International Imag-
ing Systems I2S image processor with scrollable 8-b
image planes! for efficient image calculation. It describe
the idea that information from 2n pixels is accumulated
after n steps of the process. This patent also described
multiresolution approach to Retinex calculation used
computer applications.6,11

2 Appropriate Input Data

For quantitative testing of the Retinex model, it is cruc
that the data be calibrated in the sense that the image di
values must be a logarithmic function of scene radian
and they must be represented with sufficient precisi
McCann12 used slope 1.0 photographic film to capture re

;



Retinex in MATLAB
Table 1 This table describes the care one must take in preparing input images. The data comes from
the image of two test targets: one in sun, the other in shade (see Fig. 1). The shade reduced the
illumination such that white paper in the shade sends the same radiance to the eye as the black paper
in the sun. The left box demonstrates the digitization of raw image data as equally spaced log10
increments. In other words, convert the scene into log radiance and then quantize to 8-bit (0 to 255)
digits (log then quantize). The first column specifies either sun or shade illumination. The second
column describes the papers in the grayscale. The third column lists the scene radiance from the two
identical grayscales in sun and in shade. Note that the radiance from the black in the sun is equal to
that from the white in the shade. The fourth column, in the left box, lists log radiances of scene
radiance values (column 3). The fifth lists the 8-bit Quantized Log Digits for the values in column 4.
Quantizing the log image makes equal log increments with equal differences 0.45 log units in radiance.
That means each digit represents radiance ratio steps of 1.0321. The right box demonstrates problems
arising from quantizing before converting to log. The sixth column (right box) lists the 8-bit quantized
linear digit. The seventh column lists the log quantized digit. This segments the image into equal linear
increments, namely equal radiance differences of 13.3971. The consequence of this is that all radi-
ance values for Black, Dark gray 4, and Mid gray 3 are all represented by the same digit, 0. In other
words, quantizing the input image to digits shows poor use of digits. Following quantization with a log10
transform does not improve the image. Representing radiances of the input image as log quantized
digit (log then quantize) makes a suitable input image for studying high dynamic range images. Using
log quantized digits (quantize then log) makes a highly undesirable input image.

Paper
Scene

radiance
Log

radiance

Quantized
log
digit

Quantized
linear
digit

Log
quantized

digit

Sun White 3162 3.50 255 255 255

Light gray 1 1412 3.15 229 114 229

Gray 2 631 2.80 204 51 204

Mid gray 3 282 2.45 178 23 179

Dark gray 4 126 2.10 153 10 152

Black 56 1.75 127 5 131

Shade White 56 1.75 127 5 131

Light gray 1 25 1.40 102 2 102

Gray 2 11 1.05 76 1 80

Mid gray 3 5 0.70 51 0 0

Dark gray 4 2 0.35 25 0 0

Black 1 0.00 0 0 0
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images~Ektachrome 5071 slide duplicating film!. He was
able to measure an in-camera dynamic range of 3.5
units. The importance of the logarithmic function follow
from Wallach’s experiments on appearance.13 He showed
that equal radiance ratios generate equal lightness di
ences. A pair of papers, i.e., a 20% gray paper and a 10
white paper, have the same lightness difference in sun
shade. The pair also has a log10 edge difference of 0.7
regardless of illumination. If the input image data devia
from logarithmic, then the log10 edge difference for thes
papers will change with illumination, and the calculat
lightness difference of the pair will change. For Retinex
work well, edge ratios, or log10 differences, within an ob-
ject must be independent of illumination. Accurate logari
mic calibration guarantees this to be the case.

The need for sufficient precision can be demonstrated
comparing two routes to the same scaling of an image
one, we convert raw data to log radiance and then quan
to 8-bit log10 digits. This represents the image well~see
Table 1!. In the other example, we quantize raw data
8-bit linear and then take the log. The 8-bit quantizati
stage truncates the information severely. Mid gray, d
gray, and black are all represented by the same digit~see
Table 1, right columns!. One cannot take an existing 8-b
image, apply a log to it, and have meaningful input ima
g

r-

d

y

e

data for quantitative testing of the Retinex model.
Nevertheless, Retinex often enhances random ima

that have unknown and unknowable radiances
inputs.2,14,15The process improves the visibility of dark ob
jects while maintaining the visual discrimination of th
light areas. Unlike lookup tables, which improve one ran
of radiance at the expense of others, Retinex improves
sual differentiation in all ranges of radiances. The dange
that artifacts such as noise create artificial edge informa
that is enhanced by Retinex processing. The ability to br
out shadow detail is limited by image noise.

3 Retinex Operators

The original Land and McCann work1 described four steps
for each iteration of a Retinex calculation: ratio, produ
reset, and average.16 With the exception of reset,5 these
operators have remained the same over the years. T
operators are iteratively applied to an image, but the m
ner in which they are applied has varied. The focus of t
work is to list specific details of how these four operato
are applied to the image.

A fundamental concept behind Retinex computation
lightness at a given image pixel is the comparison of
pixel’s value to that of other pixels. The main differenc
between the Retinex algorithms is the way in which t
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 49
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Funt, Ciurea, and McCann
other comparison pixels are chosen, including the orde
which they are chosen. They use the same calculations
have dramatically different computational efficiencies
dealing with large real images. The original way of defini
comparisons is by following a path, or set of paths, fro
pixel to neighboring pixel through the image.1 Lightness
estimates are accumulated along the path in a seque
product~SP!. SP starts as 1 and then is modified by mu
plying it with the ratio of the next pair of pixels along th
path. In the case of the path following, path length affe
the results substantially. Short paths mean the compar
is made only to others in a spatially localized group
pixels. Intermediate path lengths are to be used when m
eling human vision. Infinite path lengths result in a dege
erate case, in which the output image is simply a sca
version of the input image. Infinite path lengths should n
be used to model vision.17,18

A reset step is a second important feature of Retin
Each time a comparison is made, the SP is tested;
exceeds 1.0, it is reset to 1.0. In this case, the value
becomes the current lightness estimate. A third aspec
Retinex is the way in which lightness estimates obtain
from different paths to a pixel are combined. In earlier v
sions, Retinex also included a thresholding step. Howe
it is not included in later versions6 and is not part of the
MATLAB™ implementations shown later. The fourth-ste
averages present values of the product with previous o

4 Implementations

We have chosen two versions of Retinex to implement. T
first is a computer-based version described by McCan6

which we refer to as McCann99 Retinex~see Fig. 6!. The
second is an older specialized-hardware version,2 which we
call Frankle-McCann Retinex. The two versions both
place the path following with more computationally ef
cient spatial comparisons. McCann99 Retinex create
multiresolution pyramid from the input by averaging ima
data. It begins the pixel comparisons at the most hig
averaged or top level of the pyramid. After computin
lightness on the image at a reduced resolution, the resu
lightness values are propagated down, by pixel replicat
to the pyramid’s next level as initial lightness estimates
that level. Further pixel comparisons refine the lightne
estimates at the higher resolution level, and then those
lightness estimates are again propagated down a level in
pyramid. This process continues until new products h
been computed for the pyramid’s bottom level.

In comparison, Frankle-McCann Retinex uses sin
pixel comparisons with variable separations. An import
difference between this method and that described in L
and McCann1 is that there are no paths. A single pixel eve
tually averages different products from all other pixels. T
advantage of this structure, and also for the multiresolut
approach, is that long-distance interactions are propag
with fewer comparisons.

4.1 McCann99 Multilevel Retinex Details

For this implementation, the input images must be of
mensionw•2n3h•2n, wherew>h andw andh are inte-
gers in the range@1,5#. This constraint arises from the fac
50 / Journal of Electronic Imaging / January 2004 / Vol. 13(1)
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that each level of the image pyramid differs from previo
levels by a factor of 2 in each dimension. It is not a serio
limitation in practice.

The algorithm assumes that input digits are proportio
to the logarithm of scene radiance and are of meaning
precision. Using logarithms simplifies the computation
radiance ratios, which become simple differences. It a
implies that when results from different spatial compa
sons are averaged, the averaging is in log space and h
equivalent to a geometric mean.

In the first step, the log image is averaged down to
lowest resolution level, which, depending on the input
mensions, will be of the size 131, 132, 133, 233, 3
34, 335, 435, or 535. At each step, the resolution leve
will be doubled. The number of layers in the pyramid d
pends on the size of the input image. The number of lay
will be the greatest power of 2, dividing both the width an
height of the input images as calculated by the funct
ComputeSteps.

When the results~called new products! at one level of
dimensionn-3-m have been computed, the values are th
replicated to form an old product image of dimension 2n-
3-2m. In our implementation, we pad the old product im
age with zeroes to simplify handling boundary condition
These extra pixels are discarded at the end of the com
tation.

At all levels, the new product, a precursor of calculat
lightness, for each pixel is computed by visiting each of
eight immediately neighboring pixels in clockwise orde
Each visit involves a ratio-product-reset-avera
operation,6 which is implemented by the function Com
pareWithNeighbor. It subtracts the neighbor’s log lum
nance~the ratio step!, and then adds the result to the o
product~the product step!. If the result exceeds the max
mum defined by Maximum, it is reset to Maximum~the
reset step!. Finally, the new product for the pixel obtaine
by comparison to its neighbor is averaged with the previo
old product.

A crucial parameter to the McCann99 algorithm is t
number of times a pixel’s neighbors are to be visited. In
code, this is set by nIterations. It controls the number
times the neighbors are cycled through, which, as a res
affects the distance at which pixels influence one anot
This occurs because the new product values for all pix
are being computed in parallel, so that after one iterati
all neighboring pixels have had their new products valu
updated. Hence, in the second iteration, these new va
involve information propagated from beyond a pixel’s im
mediate neighbors. In the limiting case of an infinite nu
ber of iterations, the algorithm converges to produce
output image that is simply the input image scaled by
image’s maximum value. A practical value for the numb
of iterations is 4. The final step is to scale the new prod
values to make an estimated lightness~see Sec. 6 on scaling
of Retinex output to desired media and purpose!. In the
case of color images, the function retinex–mccann99 must
be applied to each of the color channels independently

The code is based on MATLAB™ 5~Version 5.1.0.421!.
For the reader unfamiliar with MATLAB™, the stateme
IP(IP.Maximum)5Maximum, which sets all values in
matrix IP that are greater than Maximum to Maximum
demonstrates an important feature of the language, nam



ole
ts.

m-
and
. I
ing
ee
ac
tio
s u

be

56
ur

his

th

io-
th

d a
re
is
he

-

pri
this
era

atia
l-
ag

pa-
ibl
lar

t
o-
-
ill

d a
lte
s t
of

m
tia
er-

fi-
ed
m
t

e
0:1
be-

a-
ital
n a
s

am-

spa-
he
e
m-
ro-

ing
ply

e

ns
m-
ro-
ge,
ith
he

or a
is
n-

ns,
the
ne
an-
ic

sion
s to
ing
put
all

ed
the
he
ge
tio

the
ut
is-
el
ial
on
he

ion.
al

Retinex in MATLAB
that most of the functions and operators work on wh
matrices applying the given function to all matrix elemen

4.2 Frankle-McCann Retinex

As in McCann99 Retinex, Frankle-McCann Retinex co
putes long-distance interactions between pixels first
then progressively moves to short-distance interactions
Frankle-McCann, the spacing between the pixels be
compared decreases with each step. The direction betw
pixels also changes at each step, in clockwise order. At e
step, the comparison is implemented using the ra
product-reset-average operation. The process continue
til the spacing decreases to 1 pixel.

The original algorithm assumed the input image to
5123512. This followed the hardware design of the I2S.
As a result, the initial spacing between pixels started at 2
We have generalized the algorithm slightly so that o
implementation works on an image of arbitrary size. In t
case, the initial spacing~as encoded by the variable shift! is
computed as the largest power of 2, smaller than both of
input image dimensions.

The function CompareWith~s–row, s–col! updates the
current lightness estimate for a pixel using the rat
product-reset-average operation described before. In
case of Frankle-McCann, it is based on the pixel locate
a distance of s–row, s–col. The square spiral path structu
in this implementation means that when this function
called, one of the two parameters will always be zero. T
original Frankle and McCann2 implementation had the op
tion of either square or 8-direction comparisons.

5 Retinex Parameters

All spatial operators use variable parameters to appro
ately match their effects to input images. For example,
is true of unsharp masking, jpeg, and Retinex spatial op
tors.

The purpose of unsharp masking is to change the sp
content in the image, particularly in the high-spatia
frequency components. When successfully used, the im
looks sharper and free of artifacts. With inappropriate
rameters, the process will generate artifacts that are vis
to the observer. If we compare the effects of a particu
unsharp mask on same-size prints of a 256-3-256 digital
image with the effects on an 2k-3-2k image, we see tha
they act very differently. A sharpening filter that is appr
priate for the small image will have no effect on large im
ages, while an appropriate filter for the large images w
introduce artifacts in small ones. Given a print size an
viewing distance, one can optimize the shape of the fi
kernel. The choice of sharpening kernel is selected so a
keep artifacts below visual threshold, which is a function
both spatial frequency,19 size of the display,20 and light in-
tensity of the display.21

An analogous spatial dependence is found in jpeg co
pression, where knowledge of human sensitivity to spa
information is used to reduce the number of bits for rend
ing a visually similar image.22 When we select a quality
factor, we are controlling an underlying array of coef
cients that filter the data, so as to reduce the data need
recreate the image. To make two same-size prints fro
256-3-256 versus a 2k-3-2k image requires differen
n
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jpeg coefficients. Any reduction in information will likely
be visible in the small number-of-pixel image, while th
larger image might well be compressed by factors of 1
or 20:1 without noticeable effect. The difference arises
cause the size and viewing distance control what inform
tion the observer can see in the final prints. Large dig
files often contain more information than can be seen i
small print. This is the information that jpeg discards. A
with unsharp masking, the user specifies the spatial par
eters to optimize performance and avoid artifacts.

Retinex has parameters that are responsive to both
tial frequency and dynamic range of the input data. T
number of iterations, as specified in the MATLAB™ cod
by nIterations, controls the amount of dynamic range co
pression and sets the stage for a different level of postp
cessing by a post-lookup table~postLUT!. The term
postLUT derives from historical use of image process
hardware using a lookup table. PostLUT processing sim
refers to the application of a functionf applied uniformly
to every image pixel,I (x,y)5 f @ I (x,y)#, for all image lo-
cations (x,y). The effect of the number of iterations can b
seen in Fig. 1.

As we can see, the effect of the number of iteratio
~nIterations! is to reduce the contrast of the images, as de
onstrated by the smaller range in the histograms. The p
cess moves the entire image into a smaller dynamic ran
with smaller digit differences representing edge ratios. W
very few iterations, the range of output digits is small. T
postLUT expansion~stretching of the image intensities!
must be large to regenerate edge ratios appropriate f
print. With more iterations, the range of output digits
larger. The postLUT expansion will be moderate to rege
erate edge ratios. With a very large number of iteratio
the range of output digits is large, approaching that of
input image. The postLUT expansion must be small to no
to regenerate edge ratios. The amount of postLUT exp
sion and its shape will vary with the amount of dynam
range compression.

The examples of unsharp masking and jpeg compres
demonstrate the need for selecting the right parameter
match viewing size and distance. Analogously, the view
distance, size, dynamic range and noise level of the in
image, the number of iterations, and the postLUT are
important to make artifact-free Retinex images.

6 Scaling of Retinex Output to Desired Media
and Purpose

As shown in Fig. 1, the contrast of the output is controll
by the number of iterations. This parameter can vary
output from radical to no dynamic range compression. T
input data also plays a major role. The total dynamic ran
of input data determines the magnitude of radiance ra
associated with each digit. The final parameter is
postLUT that matches the final new product with the outp
media. That media can be a printer, a monitor, a LCD d
play, a system profile, a 3-D plot of output at each pix
~output equal height!, or a pseudocolor image. The essent
idea is that the input calibration controls the correlati
between digital differences and radiances in the world. T
number of iterations controls the degree of compress
The postLUT controls the rendition of new product digit
differences in the output media. All three parameters~input
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 51
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52 / Journal of Elec
Fig. 1 This figure demonstrates the role of the number of iterations and postLUTs. The first column
shows the effect of spatial comparisons (ratio product reset average). The second column is the
histogram of the images in the first column. The third column shows images that have been stretched
by a different postLUT for each number of iterations. The first row shows the input log10 image scaled
so that 3.5 log10 units covers 0 to 255. The sun half of the image is on the right and the shade half is
on the left. The shade image is a lower radiance copy of the sun image. The histogram of this image
is in the second column. The third column image is the same as the first column, illustrating that it has
a slope 1.0 postLUT. Output equals input. The second row shows an output image using one iteration,
with its histogram. Here the output dynamic range has been compressed into the top 25% of the 0 to
255 digit range. A slope 4.0 linear postLUT will stretch the first column image to render contrast in the
sun properly. It is very steep and generates artifacts. The third row shows the output for four iterations,
and its histogram. Here the range data has been compressed from 3 log units to 1.5. A slope 2.0
postLUT has only to expand the data from 128 to 0. The fourth row shows the output for 128 iterations
and its histogram. There is only a 25% compression. A slope 1.5 postLUT will be very gentle; however,
the improvement of the shadow detail in the third column output image is minimal. In this figure, we
used simple linear postLUTs to illustrate how calibration, number of iterations, and postLUT work
together. To optimize the image, these postLUTs should be shaped so as to take into account the
response of the output device and the tone reproduction curve desired. (See Appendices 2 and 3 of
Frankle and McCann for details.2)
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dynamic range, number of iteration, and postLUT! are cru-
cial to the process. All three share the control of the out
image. They can be used only as well designed sets. T
are not randomly interchangeable.

7 Results on Test Images

Figures 2–5 illustrate the behavior of the two algorithm
Figure 2 shows the behavior when the input is a sim
square at the very center of the image. A slight asymme
can be seen in both the McCann99~using four iterations
comparing eight nearest neighbors! and Frankle-McCann
~using four iterations of four directions! outputs.
tronic Imaging / January 2004 / Vol. 13(1)
t
y

These calculations used the same pattern of spatial c
parisons for each layer of comparisons. The McCann
output shows the effect of processing the 8-pixel neighb
in clockwise order. No postLUT has been applied to the
images. This enhances the visibility of the effect.

The calculations in Fig. 2 used the same pattern of s
tial comparisons for each size of comparisons. The origi
Frankle and McCann calculation changed the order of
direction of comparisons in each size of spatial separat
This sequence of the spatial process was controlled b
LUT of comparison directions. Such randomization of t
comparison process minimizes the directional gradie



ag
rts
ing
tia
an
trib

nt,
di

eas
. 3
nd
th
fte

evi
s

the
ot
.
a
o-
de
re

cy
tic-
, in

ba
at
se
re
is

lue

in
y
s.

n a
it
ap
lu

ra-
id

wn
is
. If
ess
im-
than

a-
ss

for
ut
in

dif-
the
i-

es to
an

ages
ng-
the
ra-
nd
er
va-

ing
ti-

e
rd
ra-
o-

y

nce

for
l-
for

Retinex in MATLAB
shown in Fig. 2. Alternatively, one can change the aver
ing process controlling the old product. If all the repo
from different directions were averaged before chang
the value of the old product, then these calculated spa
asymmetries are not observed. The use of postLUTs
more complex sequences of spatial comparisons all con
ute to reducing the magnitude visibility of asymmetries.

Figure 3 shows Logvinenko’s gradient experime
which generates a large lightness change between the
monds. A vertical sinusoidal gradient in nondiamond ar
creates the illusion. The numbers on the left side of Fig
show that the input digits for the light and dark diamo
faces are both 139. The numbers on the right show
output from the corresponding faces to be 152 and 163 a
McCann99 four-iteration processing. McCann6 reports that,
‘‘Retinex models can predict appearances that were pr
ously attributed to cognitive behavior.’’ Figure 4 show
pseudocolor renditions of input~left! and output~right! of
the Logvinenko illusion. The diamond-shaped tops of
cubes are equal on the left and unequal on the right. N
that the upper faces of the output cubes are not uniform

Figure 5 shows the effect of McCann99 applied to
color image with a substantial blue color cast. The alg
rithm has been applied to each of the color channels in
pendently. Clearly, in this case the color cast has been
moved. Retinex differs from many color constan
methods, in that it does not aim to find a single chroma
ity for the scene illumination, as is the case, for example
the neural network23 and color by correlation24 methods.
Retinex instead adjusts the image colors in a nonglo
manner as is necessary, since the model attempts to m
the human visual response. Some effects of this can be
in the way that some of the green bleeds into the white a
surrounding the C in Compiler, and the way the blue
darkened near the white lettering on the right-hand b
book in Fig. 5~b!.

8 Discussion

This work describes the basic Retinex algorithms
MATLAB™ code. It provides the starting point for man
different implementations for many possible variation
This code is the basis of making spatial comparisons i
very efficient manner. In carefully calibrated situations,
can be used as the basis for a model of human color
pearance. This requires accurate calibration in both the

Fig. 2 Effect of McCann99 and Frankle-McCann processing (with-
out postLUT) on input of a single bright square against a black back-
ground. In the limiting case of the square being a single pixel, this is
analogous to the point spread function for the algorithm. It must be
noted that because of the reset step, the shape of this function
varies depending on the direction of individual comparisons of the
image content. Frankle-McCann used different papers of spatial
comparisons to minimize these effects. From left to right we have:
input image, McCann99 four-iteration output, and Frankle-McCann
four-iteration output.
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minance and spatial frequency domains. Numbers of ite
tions for each pixel separation or level of pyram
processing must match human spatial frequency data.3,6,25

Alternatively, it can be used to enhance images of unkno
calibrations in digitization. In an uncalibrated mode, it
more limited. The system works by enhancing edges
poor calibration introduces edges from noise, the proc
will enhance the noise. Nevertheless, uncalibrated input
ages generally appear better with Retinex processing
without it.

As in many image-processing operations,26 there are
three sequential steps:

1. taking the raw input and transforming the inform
tion into an image space appropriate for the proce

2. performing the process

3. scaling the output process into a space appropriate
the end use. In this particular case, ideally the inp
transforms convert the captured digits into a space
which constant, scene edge ratios have constant
ferences in digits. This property can be used by
process to render pairs of objects in different illum
nation as equally different in appearance.

The process assumes that the visual system uses edg
synthesize appearance. The Retinex algorithms provide
image processing engine that synthesizes sensation im
from spatial comparisons of radiance inputs. The meani
ful parameters in McCann99 are the pyramid level and
number of iterations. In Frankle and McCann, it is sepa
tion and the number of iterations. In McCann, McKee, a
Taylor, it is path length and the number of paths. A numb
of studies experimentally measured the appearance of a
riety of achromatic and color constancy experiments. Us
this quantitative data, it is possible to experimentally op
mize the parameters of the model.2,27–29The details of this
work are summarized by Ciurea, Funt, and McCann29 and
McCann and Savoy.30 All of these studies indicate that th
human visual system is neither local nor global, with rega
to spatial interactions. Neither local center-surround ope
tors, nor global gray-world models can account for psych
physical results.29 The spatial frequency filter applied b
human vision is image dependent.16 The effect of maxima
have an effect over large distances, but varies with dista
and enclosure.31,32

In the examples described, we used constant values
the number of iterations for all levels of a pyramid. A
though efficient, this is not the best set of parameters

Fig. 3 Logvinenko cubes pattern illusion. As shown on the left, the
input values of the cube tops are equal despite the fact that we see
them as unequal. McCann99 four-iteration Retinex output values
are shown on the right.
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54 / Journal of Elec
Fig. 4 Pseudocolor representation of a portion of the Logvinenko cubes input (left) and McCann99
four-iteration output (right). Note that despite the fact the upper cube faces on alternating rows appear
to differ in intensity, the top faces of all the cubes are, in fact, both uniform and equal. In the output,
however, the top faces of the cubes are no longer equal nor are they completely uniform.
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modeling human vision. An obvious variation is to ha
different numbers of iteration for each size. Franke a
McCann used different numbers of iterations for each s
of separation. They also changed the pattern of direction
remove the pattern found in Fig. 2.2 The 1, 4, and 128
iteration images in Fig. 1 could be described by th
spatial-frequency content. The difference between the in
and output images describes a spatial filter. That filter
be resolved into a 2-D spatial filter, or set of spatial filte
Since the work of Campbell and Robson, and Hubel a
Wiesel, human visual processing has been regarded as
of spatial channels.33 As demonstrated in Fig. 1, the numb
of iterations controls the strength of the filter. The grea
the number of iterations, the weaker the filter. The size
tronic Imaging / January 2004 / Vol. 13(1)
o

t

ts

the separation or the pyramid level controls the spatial
quency of the response. The number of iterations at
level controls the strength of the filter at that frequen
Just as human vision requires models using multichan
with different filter strengths, the Retinex models shou
have the same spatial frequency tuning.

Sobol32 has described variations to the Retinex proc
that uses LUTs to control the magnitude and shape of ed
at different spatial separations. This algorithm produc
dramatic images. The ability to control different spatial fr
quencies adds considerable power to the algorithm. In
dition, it makes the model more like human vision.

An important final variation is the use of the spati
comparison engine for gamut mapping problems. Examp
Fig. 5 (a) Input with blue color cast created by scene illumination, for which the camera was not
balanced. The image also has extended dynamic range obtained by frame averaging. (b) Output from
the McCann99 four-iteration. (c) Output from the Frankle-McCann four-iteration. The results here can
be compared with those of Barnard.14 Note that both the input and output images have been adjusted
with postLUTs for printing. The actual Retinex input image is in log space.



Retinex in MATLAB
Fig. 6 Matlab implementation of McCann99 Retinex (continued on next page).
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are in another article in this issue.16 The principle is
straightforward. If displays and printers had the same co
spaces, then Tristimulus matches would be able to succ
fully transform display/print images. However, they occu
only half of their combined physical color space. Usi
strict colorimetric matches creates problems with ext
gamut colors. All of the variations between the gamut
the smaller space are represented by the gamut value.
clipping of local detail produces undesirable artifac
Many algorithms systematically distort the colorimetr
matches to achieve an image with a better appearance
the transforms increase the colorimetric errors.16,34

The Retinex approach uses two different sets of R
input images. One image~Goal! has digits representing th
color space values of the large gamut desired image.
other image~Best! has digits representing the color spa
values of the best colorimetric reproduction possible in
smaller gamut media. The RGB Goal images are use
r
s-

is

ll

e

o

supply the ratios. The Best image is used to supply the r
values. The rest of the process is the same as descr
before. The color gamut calculation provides an excell
example of using the Retinex spatial-comparison proces
generate new sensation images that have very similar
pearances with different radiances at each pixel. Exp
ments have shown that human spatial processing is ke
understanding color constancy, high dynamic range se
tions, and transparency.35 Further, spatial comparisons ca
be used to simplify gamut mapping algorithms. As long
spatial comparisons are constant, near-constant appeara
can be made from very different stimuli.

9 Conclusions

We present new, very concise MATLAB™ implement
tions of two of the main practical Retinex algorithms.~The
MATLAB™ code and figures are available at http:
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 55
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Fig. 6 (Continued.)
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at
www.cs.sfu.ca/research/groups/Vision/.! Our hope is that
this will eliminate much of the variability in what is mean
when different researchers refer to Retinex and thereby
cilitate further rigorous testing and discussion of t
method. For modeling human vision, these MATLAB™
programs depend on calibrated input data. Although th
MATLAB™ programs provide the details of how pixels a
compared and processed during the ratio-product-re
average steps of Retinex processing, they do not pro
details on the selection of an appropriate postLUT fo
particular output device. The postLUT must be provided
the reader.
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