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Abstract

The retinex algorithm for lightness and color constancy is extended to include 3-dimensional spatial information reconstructed from a
stereo image. A key aspect of traditional retinex is that, within each color channel, it makes local spatial comparisons of intensity. In
particular, intensity ratios are computed between neighboring spatial locations, retinex assumes that a large ratio indicates a change
in surface reflectance, not a change in incident illumination; however, this assumption is often violated in 3-dimensional scenes, where
an abrupt change in surface orientation can lead to a significant change in illumination. In this paper, retinex is modified to use the
3-dimensional edge information derived from stereo images. The edge map is used so that spatial comparisons are only made between
locations lying on approximately the same plane in 3-dimensions. Experiments on real images show this method works well, however,
they also reveal that it can lead to isolated regions, which, as a result of being isolated, are incorrectly determined to be grey. To over-
come this problem, stereo retinex is extended to allow information that is orthogonal to the space of possible illuminants to propagate
across changes in surface orientation. This is accomplished by transforming the original RGB image data into a color space based on
coordinates of luminance, illumination and reflectance. This coordinate system allows stereo retinex to propagate reflectance information
across changes in surface orientation, while at the same time inhibiting the propagation of potentially invalid illumination information.
The stereo retinex algorithm builds upon the multi-resolution implementation of retinex known as McCann99. Experiments on synthetic
and real images show that stereo retinex performs significantly better than unmodified McCann99 retinex when evaluated in terms of the
accuracy with which correct surface object colors are estimated.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction areas are not only darker, but much bluer, than those in
the sun, because the sky’s light is bluer than the sun’s.
In this paper, we extend retinex to take advantage of

3-dimensional distance information extracted from stereo

Although it is well established that for human subjects
that a surface’s perceived spatial location affects the per-

ception of its lightness and color [1,2], many machine color
constancy models [3—-14] make no use of 3-dimensional spa-
tial information. In fact, many of the methods are based on
binarized color histograms, which discard all the images’
spatial structure, and rely instead on statistical properties
of the color distribution in order to determine the color
of the scene illuminant. Although these methods work
quite well [5], they all assume implicitly that there is a single
scene illuminant. However, multiple illuminants are com-
mon in typical scenes. Outdoors, for example, shadowed
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imagery. In particular, since an abrupt change in surface
orientation may lead to an abrupt change in the incident
illumination as, for example, occurs due to self-shadowing,
retinex is modified so that its computation does not cross
edges in the depth map. In this way, it can provide light-
ness/color estimates for different parts of the scene that
may be illuminated differently.

Although this modification of retinex does ameliorate
many of problems that arise in mulit-illuminant scenes,
the processing has a tendency to result in isolated grey
areas. This problem arises especially for surfaces of uni-
form color that are completely isolated from other surfaces
by a change in surface orientation. Retinex normalizes to
white, so any completely isolated single color will always
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be made white (or grey after subsequent intensity adjust-
ment). To overcome this problem, a color coordinate sys-
tem [27] is used with axes representing variation in
illumination color, intensity, and object reflectance. Retin-
ex is applied separately to each of these color channels and
the result is then transformed back to the original color
coordinates. The coordinate system allows stereo retinex
to propagate reflectance information across changes in sur-
face orientation, while at the same time inhibiting the prop-
agation of potentially invalid illumination information.

Tests on synthetic and real images show that the modi-
fied, depth-aware stereco retinex method outperforms the
original retinex method in terms of the accuracy with which
the true scene surface colors are estimated. Accurate esti-
mation of scene colors under uncontrolled illumination
conditions is important in many computer vision
applications.

1.1. Retinex background

Retinex has a long history beginning with an early paper
by Land and McCann [15] and there are many variations
on the original retinex algorithm. The basic principles of
retinex are: (1) color is obtained from 3 ‘lightnesses’ com-
puted separately for each of the color channels; (2) the
ratios of intensities from neighboring locations are
assumed to be illumination invariant; (3) lightness in a
given channel is computed over large regions based on
combining evidence from local ratios; (4) the location with
the highest lightness in each channel is assumed to have
100% reflectance within that channel’s band. Lightness
refers to the perceived (in the case of human perception),
or estimated (in the case of computational methods) sur-
face albedo (reflectance averaged over the channel’s band).

The initial versions of retinex where based on combining
the ratio information along random paths across the
image. Multi-resolution versions of retinex were introduced
for efficiency [16]. Horn [17] formalized retinex in terms of
differentiation, thresholding and re-integration in the loga-
rithm domain. Kimmel et al. [18] formulate the computa-
tion as a variational optimization problem. Two versions
of retinex have been given standardized definitions in terms
of Matlab code [19].

All of the retinex variants treat the input image as a spa-
tial arrangement of colors and make no use of the 3-dimen-
sional structure of the underlying scene. However, there are
a number of psychophysical experiments indicating that
the human lightness and color perception are influenced
by information from several sources, including 3-dimen-
sional scene geometry. In particular, Gilchrist’s early
experiments [20] showed that, in the black and white
scenes, changing a surface’s apparent 3-dimensional con-
text affected the perception of its lightness. Gilchrist writes,
“The central conclusion of this research is that perceived
surface lightness depends on ratios between regions per-
ceived to lie next to one another in the same plane” [20].
The extension to retinex proposed here uses ratios between

regions lying next to one another and, furthermore, specif-
ically excludes ratios from neighboring regions lying in dif-
ferent planes. In experiments using computer graphics
rendered 3-dimensional scenes, Boyaci et al. [21] provided
further evidence for the relationship between perceived ori-
entation and the perceived lightness of matte surfaces.
Yamauchi et al. [22] used stereoscopic stimuli to support
the notion that surface color perception is strongly influ-
enced by depth information. Bloj et al. [23] illustrated the
effect of spatial shape on chromatic recognition. Yang
and Shevell [24] show that binocular disparity can improve
color constancy. Adelson [25] argues that statistical and
spatial arrangement information are combined for light-
ness perception.

Since there is plenty of psychophysical evidence indicat-
ing a connection between a surface’s spatial properties in
3-dimensions and its perceived lightness and color proper-
ties, the question is how to include the spatial information
into a color constancy model? We investigate how it can be
incorporated into the retinex model in particular, and show
that spatial information does improve its color constancy
performance significantly.

2. Stereo retinex

Since we begin with the multi-resolution version of the
retinex algorithm, known as McCann99 [19], and extend
it to include 3D spatial information, we briefly describe
the original algorithm. McCann99 is a multi-resolution
technique which involves the standard pyramid of decreas-
ing resolution. The computation starts at the top of the
pyramid with a ratio-product-reset-average process that
involves local comparisons between each pixel and its
immediate neighbors. The procedure is iterative so that a
pixel’s lightness estimate is updated based on its current
lightness estimate in conjunction with its intensity ratios
with respect to its neighbors. After a fixed, but user-select-
able, number of iterations, the lightness estimates are prop-
agated down a layer where the computation is continued,
then propagated further.

We use a stereo image to calculate a depth map regis-
tered with the image data. Details of the camera setup, cal-
ibration and stereo-correspondence algorithm will be
described in the Experiments section; however, any stan-
dard stereo-reconstruction algorithm could be used. Edges
in the depth map are then detected using a modified version
of the method proposed by Gelautz et al. [26]. These edges
represent sharp changes in surface orientation, or depth
discontinuities such as those created by occlusion.

The depth edges are the key factor in controlling the
spatial comparisons made during the retinex computation.
Traditional retinex compares a pixel to all its neighbors. In
this case, the implicit assumption is that a large change in
intensity between pixels arises from a change in surface
reflectance, while a small change arises from a gradual
change in illumination. However, in 3-dimensions an
abrupt change in surface orientation can also mean that
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there is an abrupt change in the incident illumination, since
the differently oriented parts of the surface may be pointed
towards different light sources. Similarly, depth discontinu-
ities imply that there are two separate surfaces, which may,
of course, be illuminated differently. As Gilchrist [20]
pointed out, the only spatial comparisons between neigh-
boring locations on the same locally planar surface should
be used. With the additional information about the loca-
tion of depth edges derived from stereo, the proposed ste-
reo retinex method only makes comparison between
pixels that do not cross a depth edge. Although this is con-
ceptually simple, the computation requires some organiza-
tion, especially to accommodate the multi-resolution aspect
of McCann99 retinex.

Since McCann99 retinex compares values at neighbor-
ing pixels and averages lightness estimates from them as
well, what is required is an efficient way to stop it making
comparisons across depth edges. This is accomplished by
first constructing separate maps for vertical and horizontal
edges elements. This division makes it easier to propagate
the edges up to lower resolution levels of the multi-resolu-
tion pyramid. Once the edge information is propagated
through the pyramid, a bit-mask is used to encode the sub-
set of the immediate a pixel’s 8 neighbors that are all on the
same side of any edges. As McCann99 iterates, it simply
uses the bit-mask encoding to determine which neighbors
to visit. Details are given below in the “Implementation
Details” section.

3. Stereo retinex in LIS color coordinates

Fig. 1 demonstrates a problem that can arise with stereo
retinex when spatial edges isolate regions from one
another. If all spatial comparison across the edge is inhib-
ited then the color information will not propagate at all. In
this case, some areas will tend to become grey. This prob-
lem becomes especially acute for surfaces of uniform color
that are completely isolated by spatial edges. Because retin-
ex normalizes to white, any completely isolated single color
will always become grey. The final result is grey, not white,
because in the all the figures below, a pixel’s output inten-
sity is made to match its input intensity. The synthetic
scene in Fig. 1 is composed of two patches meeting at a
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sharp angle. There is tungsten illumination illuminating
the blue patch from left, while D65 is illuminating the
red patch from the right. For stereo retinex, the spatial
edge between them isolates them from one another, so both
turn grey.

To mitigate against this greying problem, we use a color
coordinate system that will allow retinex to pass informa-
tion about surface reflectance across 3D orientation
changes while still inhibiting the exchange of possibly
incorrect illumination information. The goal of the coordi-
nate system is to represent illumination change, reflectance
and luminance in as independent components as possible.
Without some additional assumptions, this would not be
possible. However, it can be done to a certain extent by
exploiting the 1-dimensional constraint on illumination
[27].

We model the RGB sensor response in the standard
way,

pe= / E()S()Ri(7) k=R,G,B (1)

E(2), S(4), R(A) are the illumination spectral power dis-
tribution, matte surface reflectance function, and sensor
sensitivity, respectively. If the sensor sensitivities are nar-
row band, they can be modeled as Dirac delta functions
and (1) reduces to,

P = E(4)S(A) 2)

Following [27], let us further suppose that the illumina-
tion can be approximated as a blackbody radiator
described by Planck’s law,

E(,T) =Ic; ) e 7 (3)

I is the power of illumination, 7 is the blackbody radia-
tor temperature, and the constants C; and C, are
3.74183%107 ' Wm? and 1.4388+10"2mK, respectively.
Eq. (2) becomes

P = ler 2 e B8 (y) (4)

Taking logarithms, we have [27]

log(p,) = log! +1log (S(4)) —

2

Tin + log (0131:5) (5)

|
(b) (c)

Fig. 1. (a) A synthetic scene composed of two patches. The blue one is lit by tungsten light from the left; the red one is lit by D65 from the right. (b) The
image (monocular version) input to stereo retinex. The red line is the spatial edge between them, inserted manually in this case. (c) Both patches appear

gray after stereo retinex because they are isolated surfaces.
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In this equation, log/ relates to luminance; log(S(/y))
depends only on surface reflectance; ¢./(T4) depends only
on illumination; and the last term is a constant determined
by the sensor sensitivity. After combining the equations
and canceling out the terms log/ and _%’ we have

<1+ AL >logR—nB_anogG—logB
ng — g NG — Np ng — ng
nrMg — NpMp + ngm
:mR+R G RMR BB_mB (6)

ng — ng

The n,. are fixed by the choice of camera sensitivity, and
my, are fixed by the choice of camera and surface reflec-
tance. Therefore, for a given surface reflectance, varying
the illumination’s color temperature or its luminance
causes (logR, logG, logB) to move within a plane. The
planes generated for different surface reflectances are all
parallel to one another.

Fig. 2 shows the planes formed by 3 sample surfaces
under the 102 illuminant spectra from the Simon Fraser
University database [28] at 15 different luminance values
each. These 102 illuminants are not specifically black-
body radiators, but common light sources found around
a university campus; nevertheless, the planar model
works well. PCA (principal component analysis) deter-
mines the plane and establishes that the first 2 dimen-
sions explain 99.1% percent of the variance. The PCA
axes define the color coordinate system to be used by ste-
reo retinex. We label the resulting axes as L, I and S for
Luminance, Illumination and Surface, and the space the
LIS color space.

The basic stereo retinex method described above is mod-
ified so that, at a 3D surface edge, information is allowed
to propagate within the channel representing surface reflec-
tance, while it continues to be inhibited within the illumina-
tion and intensity channels.

LogB
LR T S TR

o

4. Implementation details

The main difficulty in implementing stereo retinex as a
modification of the McCann99 algorithm is in transmitting
the spatial edge information from one level of the multi-
resolution pyramid to the next. For convenience, the edges
found from the stereo depth map are assumed to lie in
between image pixels. To propagate the edge information
to the next lower resolution level in the pyramid, the
rewrite rules shown in Fig. 3 are used. For a 2-by-2 group
of pixels, if they are all to one side of an edge then the edge
is easily propagated to the next level. For the case where a
vertical edge runs through the group, it is randomly
assigned to pass on one side of the group or the other; or
above or below it in the case of a horizontal edge.

If there are any edges between a pixel and its neighbors,
then it should only make comparisons with a subset of
those neighbors. This subset is compactly represented by
the ‘on’ bits in an §-bit mask using 1 bit for each of a pixel’s
8 immediate neighbors. This strategy is useful for reducing
the memory requirements. Deciding whether or not an edge
must be crossed to reach a neighbor to the east, south,
west, or north is straightforward because the edges are
either above or to the side of a pixel. For a diagonal neigh-
bor, the one to the northeast for example, an edge must be
crossed if there are edges both to the north and to the east.
Together they surround the pixel’s northeast corner form-
ing an edge as shown in Fig. 4a. Similarly, an edge must be
crossed to reach either of the 2 shaded pixels in Fig. 4b.

At each iteration, McCann99 compares each pixel to its
neighbors and averages the local lightness estimates. The
algorithm is modified to use the 8-bit neighbor mask to
indicate what subset of the neighbors to use. The number
of ‘on’ bits also indicates the number to divide by in the
averaging step.

Luminance

lllumination

Surface

Fig. 2. (LogR, LogG, Log B) obtained from three different surface reflectances under 102 illuminants at 15 various intensities. Each surface is plotted with
a different color. Each set lies close to a plane, and the planes corresponding to the different surfaces are parallel. The three colored lines indicate the LIS

coordinate system.
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Case 1. No Edges

Case 2. One Edge Element
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Case 3. Two Edge Elements
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Fig. 3. Rewrite rules using in propagating edge information to the next lower resolution. An edge running through the middle of a 2-by-2 region is
randomly assigned to one side or the other. Vertical edges are shown here. Horizontal edges are treated analogously.

(a) (b)

Fig. 4. (a) From the center pixel, the three shaded pixels in the upper right
cannot be reached without crossing an edge. (b) The two pixels that
cannot be reached are shaded.

For stereo matching, we use a fast cross-correlation,
rectangular sub-regioning, and 3D maximum-surface tech-
niques in a coarse-to-fine scheme [29]. However, noise in
the image, as well as errors in calibration and rectification,
can lead to false matches being made that lead to errors in
the depth map. To improve the accuracy of detected spatial
edges, we use the ‘edge combination’ technique developed
by Gelautz et al. [26]. We used their original method with
the exception of using Laplacian of Gaussian edge detec-
tion in place of Canny detection, since for our purposes
it seemed to give slightly better results.

5. Experiments

We implemented stereo retinex in Matlab 7.0 by down-
loading and modifying the McCann99 Matlab code avail-
able from the Simon Fraser University Computational
Vision Laboratory [28]. We then tested it on both synthetic
and real images. Retinex’s performance is evaluated in
terms of the accuracy with which it estimates the chroma-
ticity of surface colors as they would occur under a canon-
ical ‘white’ illumination.

Images were captured using a Kodak DCS460 single-
lens reflex digital camera. A “LOREO 3D lens in a cap”
is attached in place of the standard lens so that the camera
records a stereo pair within a single image frame [30]. Cam-
era geometry calibration, image rectification and stereo
matching were conducted using standard procedures
[29,31]. We use the stereo image to calculate a 3D depth
map and then detect edges in the depth map using a mod-
ified version of the method proposed by Gelautz et al. [26].

We evaluate performance in terms of the distance
between colors in rg-chromaticity (r = R/(R+ G+ B),
g=G/(R+ G+ B)) space, and in terms of the angle
between colors viewed as vectors in RGB space. These
are given by the following formulas, where subscript ‘e’
indicates the result of retinex processing, and ‘w’ indicates
the ‘benchmark’ color under white light:

Ed=\/(re =) + (. - 8.) 7)

1 (reagev be) o (rwagwa bw)
N R AR R R

We report four basic statistical measures of the error distri-
butions: mean, median, RMS (root mean square) and
M ax. Mpay is the average value of the largest p percent
of the errors. M.« is more stable with respect to presence
of an isolated extreme value than the simple maximum. In
this paper, p is set to be 0.5. Hordley et al. [32] indicate that
the median angular error is often the most appropriate one
to use when evaluating color constancy. RMS of the errors
from N pixels is given by the standard formula:

Ea = cos™

(®)

5.1. Tests using synthetic images

Since stereo reconstruction and edge detection will be
imperfect, one goal of the synthetic-image tests is to deter-
mine how much undetected edges will affect accuracy. It is
also useful to compare the performance of stereo retinex to
McCann99 retinex in a controlled, noise-free environment,
with completely accurate ground-truth data.

The synthetic images are constructed with a variable
number of patches of different reflectances selected from
the 1995 reflectances available in the database described
by Barnard [28]. The illumination spectrum and sensor sen-
sitivity functions [28] of a SONY DXC-930 3-CCD camera
are used to derive the RGB for each patch. First, a bench-
mark image is generated using ‘white’ illumination. Sec-
ond, using the same patch reflectances, the same synthetic
scene is divided into two parts. RGB’s for one part are syn-
thesized using the spectrum of tungsten light, and for the
other using D65 daylight. All the reflectance and illuminant
data were downloaded from the Simon Fraser University
color database [28]. For the synthetic case, we do not syn-
thesize stereo images, but instead create the depth-edge
map manually so that the number and extent of leaks
between the two differently illuminated parts of the image
can be controlled.

For the first experiment, we divided the image down the
middle. We apply stereo retinex to the image once provid-
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(e) )

Fig. 5. Results for synthetic images containing only a single edge down
the middle of the image. The illumination on the left half is tungsten, and
on the right D65. The black line indicates the manually defined edge (a)
Input image; (b) the benchmark image; (c) standard McCann99 applied in
log RGB space; (d) stereo retinex applied using log RGB space; (e)
McCann99 result applied using the LIS color channels; (f) stereo retinex
applied using the LIS color channels with 3D edge information inhibiting
propagation only within the illumination and intensity channels.

ing it a perfect edge map, and then a second time with an
edge map containing a single leak. The results are shown
visually in Fig. 5 and tabulated numerically in Table 1.

For the second experiment, the image is separated into 2
parts via an irregular border. The irregular border tests the
effectiveness of the propagation of the edge information
through the multi-resolution pyramid. The results are
shown in Fig. 6 and Table 1.

Table 1

5.2. Tests using real images

We conducted two sets of experiments with real images.
In the first, the only objects in the scene were Macbeth Col-
orCheckers [33]. In the second, other more typical objects
were included. Although scenes such as a room with tung-
sten light from a lamp along with daylight from a window
are common, we arranged a controlled 2-illuminant envi-
ronment. Two tungsten lamps were used with filters

(a) (b)
(c) (d)
(e) )

Fig. 6. Irregular boundary between the two regions. The edge separating
the regions is defined manually. (a) Input image; (b) the benchmark image;
(c) standard McCann99 applied in log RGB space; (d) stereo retinex
applied using log RGB Space; (¢) McCann99 result applied using the LIS
channels; (f) stereo retinex applied using the LIS channels.

Performance comparison of the synthetic image cases from Fig. 5 with straight edge boundary, and Fig. 6 with an irregular edge boundary of SR LIS
(stereo retinex processed using LIS color channels); SR (stereo retinex processed using log RGB space), M99 LIS McCann 99 retinex processed in LIS color
channels); and M99 (McCann99 retinex processed using log RGB space)

Distance (x10%) Angular
M ax RMS Mean Median M ax RMS Mean Median
Straight boundary SR LIS 8.16 3.44 2.97 2.54 4.67 3.51 3.13 2.86
SR 10.43 4.05 3.54 3.21 5.01 4.49 4.01 3.78
M99 LIS 11.61 5.01 4.37 3.83 11.94 5.32 4.85 4.58
M 99 10.13 4.99 4.55 443 11.94 5.59 5.19 5.13
Irregular boundary SR LIS 6.52 3.08 2.72 2.62 7.06 3.06 2.73 2.61
SR 6.69 3.53 3.26 3.21 10.19 4.08 3.70 347
M99 LIS 12.27 4.83 4.22 3.58 13.27 5.11 4.62 4.33
M99 12.63 4.97 4.33 4.12 13.88 5.19 4.98 4.65
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attached. One, with a blue filter, lit the scene from the left;
the other, with a red filter, lit the scene from the right.
The first scene consisted of two Macbeth ColorCheckers
meeting at an angle as shown Fig. 7. The scene was then
photographed in stereo. To obtain a benchmark image, a
white reflectance standard was introduced at the side of
the scene and then an additional image was taken using
white light. The RGB channels were then scaled in order
to make the reflectance standard perfectly white (i.e.,

Fig. 7. Comparison of standard retinex to stereo retinex both in log RGB
and in LIS coordinates operating on the image of a simple scene lit with
bluish light from the left and reddish light from the right. (a) Input image
of a two-illuminant scene; (b) the white-point adjusted benchmark image;
(c) standard McCann99 applied in log RGB space; (d) stereo retinex
applied using log RGB space; (¢) McCann99 result applied to LIS color
channels; (f) stereo retinex applied in LIS color channels with 3D edge
information inhibiting propagation only within the illumination and
intensity channels.

(a) (b) (c)

R = G = B=255). Results are shown in Fig. 8 and Table
2.

The surface orientation edge in the previous scene is
very distinct and easily identified. To test how well stereo
retinex works in a less controlled environment, we use
the more complex scenes shown in Figs. 9 and 10. Again,
Fig. 9 has blue light from the right and red light from
the left. As can be seen from the white bust in the upper
right, as well as the white button in the lower left, stereo
retinex in log RGB (Fig. 9¢) is more successful at eliminat-
ing the illumination variation than McCann99 (Fig. 9d).
Both methods push the colors towards grey because retinex
normalizes colors relative to the whitest surface within a
local region. This leads to desaturation of the colors when
there is no nearby white surface. In the case of stereo retin-
ex, this problem is exacerbated by the fact that depth edges
(correctly) limit the distance within which a white surface
needs to be found. Using the LIS color space, more surface
color information propagates across the edges and this
leads to the more colorful result (Fig. 9g, Table 3).

Both the ColorChecker and toy scenes have two distinct
illuminants, but even in a single-illuminant scene the illumi-
nation can vary locally due to light interreflecting off
colored surfaces. Fig. 10 shows an example of a single-illu-
minant scene. One example of the advantage of stereo ret-
inex over McCann99 can be seen by comparing the left
facing part of the horizontal book, which is in shadow so
that it is only being illuminated indirectly. In the McC-
ann99 result, on the book cover there is a region with a
pink cast as well as one with a pale green cast; whereas, ste-
reo retinex in LIS space correctly removes the original red
cast. Overall performance results are tabulated in Table 4.

6. Retinex’s iteration parameter

One of the key parameter choices to make when running
McCann99 retinex is the number of iterations to be con-
ducted at each pyramid level. The larger the number of iter-
ations the greater distance at which pixels affect one
another. Fig. 11 plots the median chromaticity error as a
function of the number of iterations for the scene from
Fig. 10. The plots for all the other scenes showed a similar
trend. From this plot, it appears that 1 iteration is the best

Fig. 8. Edge map and recovered illumination: (a) edges representing abrupt changes in surface orientation extracted from the stereo image pair are marked
in white; (b) chromaticity of illumination as estimated by stereo retinex in LIS color channels correctly shows a sharp change in illumination where the
surface orientation changes; (c) Illumination field recovered by McCann99 shows a much less distinct change in illumination.
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Table 2

185

Two-illuminant real image performance comparison of SR LIS (stereo retinex processed using LIS color channels), SR (stereo retinex processed in log

RGB space), M99 LIS McCann 99 retinex processed in LIS color channels), and M99 (McCann99 retinex processed in log RGB space)

Distance (+10%) Angular

M 1ax RMS Mean Median M ax RMS Mean Median
SR LIS 8.51 2.98 2.77 2.68 8.88 3.80 3.63 2.99
SR 9.44 3.09 2.79 2.73 9.72 4.06 3.67 3.59
M99 LIS 16.93 5.32 3.78 3.83 13.62 7.14 5.46 4.38
M99 18.99 5.81 4.77 3.89 16.73 7.69 6.25 4.77

s
t{\_"‘
(0

(k)

Fig. 9. Real image performance comparison. (a) Input image of two-illuminant scene of toys with uniform background illuminated with reddish light from
the left and bluish from right; (b) white-point adjusted benchmark image; (c) edge map in which the arrow indicates where edges completely isolate the
toy’s green tongue from all other regions; (d) standard McCann99 applied in log RGB space; (e) stereo retinex applied using log RGB Space, the isolated
small patch turns gray; (f) McCann99 result applied to channels of the LIS color coordinate system; (g) stereo retinex applied in the LIS color channels
with 3D edge information inhibiting propagation only within the illumination and intensity channels, the isolated small patch is close to the green it should
be as in the (b). (h-k) Error maps corresponding to the results from (d-g) in which large errors are shown as dark and zero error as white.

choice, so it is what has been used to obtain all the results
reported above.

7. Conclusion

The McCann99 retinex method was modified to include
information about the 3-dimensional structure of the
imaged scene. The additional 3-dimensional information
is obtained from sterco imagery. Fundamental to retinex
is that it ratios intensities from neighboring image loca-
tions. Stereo retinex specifically stops retinex from using
ratios that occur across abrupt changes in 3-dimensional
surface orientation, or across abrupt changes in depth. It
thereby avoids abrupt changes in the incident illumination
from having a deleterious effect upon its calculations. This
strategy is in line with Gilchrist’s experiments [20] that
showed how spatial context affects human lightness percep-
tion and his conclusion that the important ratios are the

ones relating to locations lying on the same 3-space plane.
Although stereo imagery was used here to determine the
3-dimensional structure, any other method (e.g. from shad-
ing in a monocular image) of identifying when neighboring
image pixels correspond to scene points lying on a locally
planar surface would work just as well.

Although a significant improvement over traditional
retinex, stereo retinex also highlights the problem that
limiting the propagation of lightness information across
the image increases the likelihood that it will normalize
colors relative to a color which is not a true white, with
the result that some colors are estimated as being more
desaturated than they should be. To solve this problem,
the LIS color coordinate system was applied during ret-
inex processing. The LIS system defines channels that
relate to changes in illumination, intensity and reflec-
tance. Both retinex and stereo retinex applied to these
channels performs modestly better than when either is
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Fig. 10. Real-image performance comparison. (a) Input image of single-illuminant scene of books illuminated soley by reddish light from the right; (b) the
white-point adjusted benchmark image; (c) standard McCann99 applied in log RGB space; (d) stereo retinex applied using log RGB Space; (e) McCann99
applied in LIS color channels; (f) stereo retinex applied in LIS space with 3D edge information inhibiting propagation only within the illumination and
intensity channels. Note how the color of the orange and yellow patches on the ball are recovered better in this case. Also the pink illumination cast is
removed more completely. (g—j) Error maps corresponding to the results from (c—f) in which large errors are shown as dark, and zero error as white.

Table 3

Two-illuminant image of toys against a gray background. Performance comparison between SR LIS (stereo retinex processed using LIS color channels);
SR (stereo retinex processed in log RGB space), M99 LIS McCann 99 retinex processed in LIS color channels); and M99 (McCann99 retinex processed in
log RGB space)

Distance (x10%) Angular

M ax RMS Mean Median M nax RMS Mean Median
SR LIS 34.12 4.11 2.71 1.73 31.92 4.31 3.31 2.36
SR 43.60 7.82 493 3.04 39.71 7.91 5.51 3.75
M99 LIS 53.68 5.83 4.51 3.16 41.62 6.37 5.27 4.10
M99 57.18 7.02 5.46 4.13 47.25 7.73 6.40 5.32

Table 4
Single-illuminant real image books scene performance comparison between SR LIS (stereo retinex processed using LIS color channels); SR (stereo retinex
processed in log RGB space), M99 LIS McCann 99 retinex processed in LIS space); and M99 (McCann99 retinex processed in log RGB space)

Distance (+10%) Angular

M ax RMS Mean Median M ax RMS Mean Median
SR LIS 10.64 4.03 2.92 1.82 10.72 4.24 3.12 2.02
SR 18.56 5.59 3.83 2.47 14.92 6.37 4.53 2.89
M99 LIS 24.31 6.47 4.84 3.44 24.42 6.92 5.29 3.78
M99 30.53 6.71 5.06 3.81 30.61 7.28 571 4.48

applied to the standard log RGB channels. By at least  remains valid even though the illumination may have
partially separating changes in surface reflectance from  changed in unpredictable ways.

changes in illumination and intensity, the LIS color space Stereo retinex consistently outperforms McCann99 ret-
makes it possible to express the fact that across an inex in its ability to estimate the chromaticity of surface
abrupt change in 3D surface orientation, the comparison  colors as they would appear under ideal white light. For
of surface reflectance information across the edge  the case of retinex at least, this demonstrates that knowl-
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Fig. 11. Median angular error as a function of the number of retinex’s iterations parameter. The number of iterations affects the distance with which
lightness information propagates across the image. Results here are for processing Fig. 10, but the trend is the same for the other scenes as well.

edge of scene’s 3-dimensional spatial structure can be use-
ful for color constancy.
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