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Abstract

We show how to achieve better illumination estimates for
color constancy by combining the results of several existing
algorithms. We consider committee methods based on both
linear and non–linear ways of combining the illumination
estimates from the original set of color constancy
algorithms. Committees of grayworld, white patch and
neural net methods are tested. The committee results are
always more accurate than the estimates of any of the other
algorithms taken in isolation.

Introduction

For our purposes, we consider the goal of a color constancy
algorithm to be the precise estimation of the chromaticity of
the scene illumination from image data alone. Given such an
estimate, the image can be then color corrected to make it
look as if it was taken under a standard, canonical illuminant
[1].

Our hypothesis was that by combining several color
constancy algorithms, we could obtain a more accurate
estimate of the illuminant than any of the algorithms
provides individually. A similar approach is known in the
neural network literature [2] as using committees of neural
networks. Committees of neural networks are based on
averaging the outputs of multiple neural networks, trained
on the same data, in order to obtain smaller estimation
errors. When the estimation errors are uncorrelated with
zero-mean, it has been shown [2] that by using n neural
networks, the average sum-of-squares estimation error is
reduced by a factor of n, relative to the MSE (mean squared
error) of individual networks. In practice, the reduction is
much smaller because of systematic estimation errors and
because the estimation errors of the neural networks are
correlated. In any case, the average error given by the
committee was found to be smaller than the average of the
errors of the individual networks.

In this paper, we explore whether or not a committee of
color constancy algorithms leads to a better color constancy.
As ‘members’ of the committee, we used a version of the
white patch algorithm [3], the grayworld algorithm [4] and a
neural network algorithm [5,6].

The grayworld algorithm (GW) determines the
chromaticity of the illuminant from an average of all the

pixels in an image. The algorithm assumes that the average
color of the scene is gray and that any deviation from gray of
the image average is caused by the color of the illuminant.
To compensate for the possible deviation from gray of the
distribution of surface colors, the average is computed
relative to the gray world average of the colors in the image
database used for training.

The white patch (WP) algorithm independently scales
each channel of the image (R,G,B) by the maximum pixel
value found in each channel. This is equivalent to estimating
the color of the illuminant as being the color given by the
maximum pixel value on the R, G and B channels. WP
derives from retinex [3], but is only equivalent to it under
special circumstances.

We also used a neural network [5,6] for estimating the
chromaticity of the illuminant. This algorithm is more
accurate than the other two methods, described above. The
neural network was trained to estimate the chromaticity of
the illuminant, based on the rg-chromaticity histogram of an
image.

Experiments & Results

For our experiments, we used two similar data sets, each
composed of 19,800 illuminant estimates. One, the training
set, was used for optimizing the committees and the other
one was used as a test set for validation. The results reported
below are those obtained on the test set.

In a first set of experiments, we compared the individual
performance of the NN, WP and GW algorithms to that of
three types of committees. It should be noted that the NN
algorithm has twice the accuracy of the GW and WP
algorithms.

The first type of committee simply averages the outputs
of the three color constancy algorithms. The individual r and
g chromaticity estimates are averaged, as shown in Equation
1, and the resulting values rc and gc are compared to the
actual illuminant chromaticities.
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The second type of committee is a weighted average of
the outputs of the individual algorithms. The weights were
optimized in the least mean square (LMS) sense, and were



computed from the data available in the training set. The
actual values of the weights are shown in Equation 2. It is
interesting to notice the cross-talk between the red and green
channels (i.e. the influence of the green estimates on those of
the red).
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The first two types of committees are linear. It is
possible that there could be some higher-order correlation
involved between the different estimates that are not
captured by the linear models. Neural networks are good at
modeling such non-linear statistical properties, so we
experimented with a third type of committee— a neural
network (a multi-layer Perceptron) trained to estimate the
illuminant, based on estimates provided by the other three
color constancy algorithms.

We tried various network architectures and trained each
network a number of times starting from different random
initial weights. The network with the smallest average error
over the training set has 6 inputs to the neural network, 6
nodes in a hidden layer and two outputs nodes. The 6 input
nodes encode the illuminant estimates from the 3 algorithms,
while the output nodes encode the new chromaticity
estimate. The network was trained on the training set for
50,000 epochs.
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Figure 1. The average RMS error of the 3 raw algorithms and the
various committees. NN, GW and WP denote the raw neural
network, grayworld and white-patch algorithms’ mean RMS

errors. The ‘Mean Average’ is the average of the NN, GW and WP
means. ‘Simple Committee’ refers to the linear committee based
on the simple unweighted average of the raw estimates, ‘LMS

Committee’ to the optimized weighted average of raw estimates,
and ‘Non-linear Committee’ to the neural network method of

combining results.

The average RMS error for each of the original
algorithms as well as the three committees is plotted in Fig.
1 where it can be seen that all three committees result in

smaller average errors than the mean error of the raw color
constancy algorithms (NN, GW and WP) working alone.
The LMS committee provides an 8% improvement over the
raw neural network. Despite the generality of the neural
network’s architecture, this shows that the GW and WP
methods still have something additional to offer when their
results are combined with the neural network’s in an
appropriate way.

It is interesting to note that the non-linear committee
does not perform as well as the linear LMS committee. This
leads to the hypothesis that there are no higher-order
statistical relationships between the estimates of the raw
color constancy algorithms. Of course, our failure to find a
non-linear network architecture with better performance
does not prove this hypothesis.

The committee of three algorithms worked well. Would
a committee of only WP and GW work well also? Since the
non-linear committee method did not work as well as the
linear committees, we restrict our attention to the two linear
ones based on a simple averaging and LMS optimized
weights. Equation 3 shows the simple averaging method,
while Equation 4 shows the actual weights, obtained from
the training set through the LMS method.
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In Figure 2 we compare the results obtained by the WP
and GW color constancy algorithms, as well as the two
linear committee methods. LMS committee performance
improves by 12% over the GW algorithm and 26% over the
WP algorithm.
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Figure 2. RMS average error of individual algorithms and
committees

Systematic errors in the raw algorithms could adversely
affect committee performance. In particular, GW is prone to
systematic errors if the colors in the test images do not



average to the database average used to compensate for the
deviation from gray. To test the effect of systematic error on
the committees, we introduced a systematic shift into the
data set by assuming that the red component of the RGB
values of the surfaces in the test set is 10% higher than its
actual value.

This systematically biases the illuminant estimates to be
too red. The actual amount by which the red chromaticity is
increased is a function of pixel brightness and is not
necessarily 10%. The new r chromaticity is given by:

( )BGRRr ++⋅⋅= 1.11.1 (5)

Since the purpose of this test is to test if committees can
eliminate systematic errors, we assumed that WP algorithm
is not affected by this color shift.

Figure 3 shows the performance of two committees, one
employing a simple average and one using a LMS weighted
average.
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Figure 3. RMS error of individual algorithms and committees. The
systematic errors induced in the GW algorithm do not affect the

performance of the LMS committee

The estimation errors of the GW algorithm are larger
due to the systematic estimation error induced by the color
shift described above. However, the LMS model
compensates for the systematic error and yields the same
performance as the model shown in Figure 2.

Conclusion

We have shown that committee models, which combine the
results of two or more color constancy methods, can
significantly improve overall color constancy performance.
The implementation of these models is simple and the
computational overhead is very small. Thus, committees
provide a useful tool for improved color constancy.
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